1use crate::error::{QuantRS2Error, QuantRS2Result};
8use crate::gate_translation::GateType;
9use crate::parallel_ops_stubs::*;
10use crate::platform::PlatformCapabilities;
11use scirs2_core::ndarray::{Array1, Array2};
12use scirs2_core::Complex64;
13use serde::{Deserialize, Serialize};
14use std::collections::{BTreeMap, HashMap, HashSet};
15use std::sync::Arc;
16use std::time::Duration;
17
18pub struct AutoOptimizer {
20 platform_caps: Arc<PlatformCapabilities>,
22 config: AutoOptimizerConfig,
24 analysis_cache: HashMap<String, ProblemAnalysis>,
26 backend_profiles: HashMap<BackendType, PerformanceProfile>,
28 resource_monitor: ResourceMonitor,
30}
31
32#[derive(Debug, Clone, Serialize, Deserialize)]
34pub struct AutoOptimizerConfig {
35 pub enable_auto_switching: bool,
37 pub performance_bias: f64,
39 pub max_memory_gb: f64,
41 pub target_time: Option<Duration>,
43 pub enable_gpu: bool,
45 pub enable_distributed: bool,
47 pub gpu_threshold_qubits: usize,
49 pub distributed_threshold_qubits: usize,
51 pub enable_caching: bool,
53 pub monitoring_interval: Duration,
55}
56
57impl Default for AutoOptimizerConfig {
58 fn default() -> Self {
59 Self {
60 enable_auto_switching: true,
61 performance_bias: 0.5,
62 max_memory_gb: 8.0,
63 target_time: Some(Duration::from_secs(300)), enable_gpu: true,
65 enable_distributed: false,
66 gpu_threshold_qubits: 12,
67 distributed_threshold_qubits: 20,
68 enable_caching: true,
69 monitoring_interval: Duration::from_millis(100),
70 }
71 }
72}
73
74#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
76pub enum BackendType {
77 CPUSingle,
79 CPUParallel,
81 GPU,
83 Distributed,
85 Hybrid,
87 Hardware,
89 NoisySimulator,
91 HighPrecision,
93}
94
95#[derive(Debug, Clone, Serialize, Deserialize)]
97pub struct ProblemAnalysis {
98 pub num_qubits: usize,
100 pub circuit_depth: usize,
102 pub gate_composition: GateComposition,
104 pub entanglement_analysis: EntanglementAnalysis,
106 pub memory_estimate_gb: f64,
108 pub complexity_estimate: ComplexityEstimate,
110 pub problem_type: ProblemType,
112 pub parallelization_potential: ParallelizationPotential,
114 pub resource_requirements: ResourceRequirements,
116}
117
118#[derive(Debug, Clone, Serialize, Deserialize)]
120pub struct GateComposition {
121 pub total_gates: usize,
123 pub single_qubit_gates: usize,
125 pub two_qubit_gates: usize,
127 pub multi_qubit_gates: usize,
129 pub gate_types: HashMap<String, usize>,
131 pub parameterized_gates: usize,
133 pub simd_friendly_percentage: f64,
135}
136
137#[derive(Debug, Clone, Serialize, Deserialize)]
139pub struct EntanglementAnalysis {
140 pub max_entanglement_depth: usize,
142 pub connectivity_ratio: f64,
144 pub separable_subsystems: usize,
146 pub entanglement_entropy: f64,
148}
149
150#[derive(Debug, Clone, Serialize, Deserialize)]
152pub struct ComplexityEstimate {
153 pub time_complexity: ComplexityClass,
155 pub space_complexity: ComplexityClass,
157 pub operation_count: u64,
159 pub memory_pattern: MemoryPattern,
161 pub parallelization_factor: f64,
163}
164
165#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
167pub enum ComplexityClass {
168 Constant,
169 Logarithmic,
170 Linear,
171 Quadratic,
172 Exponential,
173 DoubleExponential,
174}
175
176#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
178pub enum MemoryPattern {
179 Sequential,
180 Random,
181 Strided,
182 Blocked,
183 Hierarchical,
184}
185
186#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
188pub enum ProblemType {
189 Simulation,
191 VQE,
193 QAOA,
195 QML,
197 QEC,
199 QFT,
201 AmplitudeEstimation,
203 QuantumWalk,
205 Custom,
207}
208
209#[derive(Debug, Clone, Serialize, Deserialize)]
211pub struct ParallelizationPotential {
212 pub gate_parallelism: f64,
214 pub state_parallelism: f64,
216 pub batch_potential: f64,
218 pub simd_potential: f64,
220 pub gpu_potential: f64,
222 pub distributed_potential: f64,
224}
225
226#[derive(Debug, Clone, Serialize, Deserialize)]
228pub struct ResourceRequirements {
229 pub memory_gb: f64,
231 pub cpu_cores: usize,
233 pub gpu_memory_gb: f64,
235 pub network_bandwidth_mbps: f64,
237 pub storage_gb: f64,
239 pub estimated_time: Duration,
241}
242
243#[derive(Debug, Clone, Serialize, Deserialize)]
245pub struct PerformanceProfile {
246 pub backend_type: BackendType,
248 pub metrics: PerformanceMetrics,
250 pub resource_utilization: ResourceUtilization,
252 pub problem_size_limits: ProblemSizeLimits,
254 pub optimizations: Vec<OptimizationRecommendation>,
256}
257
258#[derive(Debug, Clone, Serialize, Deserialize)]
260pub struct PerformanceMetrics {
261 pub throughput: f64,
263 pub latency: f64,
265 pub memory_efficiency: f64,
267 pub cpu_utilization: f64,
269 pub gpu_utilization: f64,
271 pub energy_efficiency: f64,
273}
274
275#[derive(Debug, Clone, Serialize, Deserialize)]
277pub struct ResourceUtilization {
278 pub cpu_usage: f64,
280 pub memory_usage_gb: f64,
282 pub gpu_usage: f64,
284 pub gpu_memory_usage_gb: f64,
286 pub network_usage_mbps: f64,
288}
289
290#[derive(Debug, Clone, Serialize, Deserialize)]
292pub struct ProblemSizeLimits {
293 pub max_qubits: usize,
295 pub max_depth: usize,
297 pub max_gates: usize,
299 pub max_memory_gb: f64,
301}
302
303#[derive(Debug, Clone, Serialize, Deserialize)]
305pub struct OptimizationRecommendation {
306 pub recommendation_type: RecommendationType,
308 pub description: String,
310 pub expected_improvement: f64,
312 pub difficulty: u8,
314 pub resource_cost: ResourceCost,
316}
317
318#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
320pub enum RecommendationType {
321 BackendSwitch,
323 ParallelizationTuning,
325 MemoryOptimization,
327 AlgorithmOptimization,
329 HardwareOptimization,
331 PrecisionAdjustment,
333}
334
335#[derive(Debug, Clone, Serialize, Deserialize)]
337pub struct ResourceCost {
338 pub memory_gb: f64,
340 pub cpu_cores: usize,
342 pub gpu_memory_gb: f64,
344 pub setup_time: Duration,
346}
347
348#[derive(Debug, Clone)]
350pub struct ResourceMonitor {
351 pub cpu_history: Vec<f64>,
353 pub memory_history: Vec<f64>,
355 pub gpu_history: Vec<f64>,
357 pub network_history: Vec<f64>,
359 pub interval: Duration,
361}
362
363#[derive(Debug, Clone, Serialize, Deserialize)]
365pub struct BackendSelection {
366 pub backend_type: BackendType,
368 pub confidence: f64,
370 pub reasoning: Vec<String>,
372 pub expected_performance: PerformanceMetrics,
374 pub configuration: BackendConfiguration,
376 pub alternatives: Vec<(BackendType, f64)>,
378}
379
380#[derive(Debug, Clone, Serialize, Deserialize)]
382pub struct BackendConfiguration {
383 pub num_threads: usize,
385 pub batch_size: usize,
387 pub memory_strategy: MemoryStrategy,
389 pub precision_settings: PrecisionSettings,
391 pub gpu_config: Option<GPUConfiguration>,
393 pub distributed_config: Option<DistributedConfiguration>,
395}
396
397#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
399pub enum MemoryStrategy {
400 Heap,
402 Pool,
404 MemoryMapped,
406 Shared,
408}
409
410#[derive(Debug, Clone, Serialize, Deserialize)]
412pub struct PrecisionSettings {
413 pub float_precision: FloatPrecision,
415 pub tolerance: f64,
417 pub adaptive_precision: bool,
419}
420
421#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
423pub enum FloatPrecision {
424 Single,
426 Double,
428 Extended,
430 Quadruple,
432}
433
434#[derive(Debug, Clone, Serialize, Deserialize)]
436pub struct GPUConfiguration {
437 pub device_id: usize,
439 pub block_size: usize,
441 pub grid_size: usize,
443 pub memory_strategy: GPUMemoryStrategy,
445 pub use_unified_memory: bool,
447}
448
449#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
451pub enum GPUMemoryStrategy {
452 Standard,
454 Unified,
456 Pool,
458 Pinned,
460}
461
462#[derive(Debug, Clone, Serialize, Deserialize)]
464pub struct DistributedConfiguration {
465 pub num_nodes: usize,
467 pub comm_backend: CommunicationBackend,
469 pub load_balancing: LoadBalancingStrategy,
471 pub fault_tolerance: bool,
473}
474
475#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
477pub enum CommunicationBackend {
478 MPI,
480 TCP,
482 InfiniBand,
484 SharedMemory,
486}
487
488#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
490pub enum LoadBalancingStrategy {
491 Static,
493 Dynamic,
495 WorkStealing,
497 Hierarchical,
499}
500
501impl AutoOptimizer {
502 pub fn new(config: AutoOptimizerConfig) -> QuantRS2Result<Self> {
504 let platform_caps = Arc::new(PlatformCapabilities::detect());
505 let analysis_cache = HashMap::new();
506 let backend_profiles = Self::initialize_backend_profiles(&platform_caps)?;
507 let resource_monitor = ResourceMonitor {
508 cpu_history: Vec::new(),
509 memory_history: Vec::new(),
510 gpu_history: Vec::new(),
511 network_history: Vec::new(),
512 interval: config.monitoring_interval,
513 };
514
515 Ok(Self {
516 platform_caps,
517 config,
518 analysis_cache,
519 backend_profiles,
520 resource_monitor,
521 })
522 }
523
524 fn initialize_backend_profiles(
526 platform_caps: &PlatformCapabilities,
527 ) -> QuantRS2Result<HashMap<BackendType, PerformanceProfile>> {
528 let mut profiles = HashMap::new();
529
530 profiles.insert(
532 BackendType::CPUSingle,
533 PerformanceProfile {
534 backend_type: BackendType::CPUSingle,
535 metrics: PerformanceMetrics {
536 throughput: 1000.0,
537 latency: 0.001,
538 memory_efficiency: 0.8,
539 cpu_utilization: 0.25,
540 gpu_utilization: 0.0,
541 energy_efficiency: 100.0,
542 },
543 resource_utilization: ResourceUtilization {
544 cpu_usage: 25.0,
545 memory_usage_gb: 1.0,
546 gpu_usage: 0.0,
547 gpu_memory_usage_gb: 0.0,
548 network_usage_mbps: 0.0,
549 },
550 problem_size_limits: ProblemSizeLimits {
551 max_qubits: 20,
552 max_depth: 1000,
553 max_gates: 10000,
554 max_memory_gb: 4.0,
555 },
556 optimizations: vec![OptimizationRecommendation {
557 recommendation_type: RecommendationType::BackendSwitch,
558 description: "Consider CPU parallel for larger problems".to_string(),
559 expected_improvement: 3.0,
560 difficulty: 2,
561 resource_cost: ResourceCost {
562 memory_gb: 0.5,
563 cpu_cores: 3,
564 gpu_memory_gb: 0.0,
565 setup_time: Duration::from_millis(10),
566 },
567 }],
568 },
569 );
570
571 profiles.insert(
573 BackendType::CPUParallel,
574 PerformanceProfile {
575 backend_type: BackendType::CPUParallel,
576 metrics: PerformanceMetrics {
577 throughput: platform_caps.cpu.logical_cores as f64 * 800.0,
578 latency: 0.002,
579 memory_efficiency: 0.7,
580 cpu_utilization: 0.8,
581 gpu_utilization: 0.0,
582 energy_efficiency: 80.0,
583 },
584 resource_utilization: ResourceUtilization {
585 cpu_usage: 80.0,
586 memory_usage_gb: 2.0,
587 gpu_usage: 0.0,
588 gpu_memory_usage_gb: 0.0,
589 network_usage_mbps: 0.0,
590 },
591 problem_size_limits: ProblemSizeLimits {
592 max_qubits: 25,
593 max_depth: 2000,
594 max_gates: 50000,
595 max_memory_gb: 16.0,
596 },
597 optimizations: vec![OptimizationRecommendation {
598 recommendation_type: RecommendationType::ParallelizationTuning,
599 description: "Optimize thread count for problem size".to_string(),
600 expected_improvement: 1.5,
601 difficulty: 3,
602 resource_cost: ResourceCost {
603 memory_gb: 1.0,
604 cpu_cores: 0,
605 gpu_memory_gb: 0.0,
606 setup_time: Duration::from_millis(50),
607 },
608 }],
609 },
610 );
611
612 if platform_caps.has_gpu() {
614 profiles.insert(
615 BackendType::GPU,
616 PerformanceProfile {
617 backend_type: BackendType::GPU,
618 metrics: PerformanceMetrics {
619 throughput: 50000.0,
620 latency: 0.005,
621 memory_efficiency: 0.9,
622 cpu_utilization: 0.2,
623 gpu_utilization: 0.8,
624 energy_efficiency: 200.0,
625 },
626 resource_utilization: ResourceUtilization {
627 cpu_usage: 20.0,
628 memory_usage_gb: 2.0,
629 gpu_usage: 80.0,
630 gpu_memory_usage_gb: 4.0,
631 network_usage_mbps: 0.0,
632 },
633 problem_size_limits: ProblemSizeLimits {
634 max_qubits: 30,
635 max_depth: 5000,
636 max_gates: 100_000,
637 max_memory_gb: 8.0,
638 },
639 optimizations: vec![OptimizationRecommendation {
640 recommendation_type: RecommendationType::HardwareOptimization,
641 description: "Optimize GPU kernel parameters".to_string(),
642 expected_improvement: 2.0,
643 difficulty: 7,
644 resource_cost: ResourceCost {
645 memory_gb: 1.0,
646 cpu_cores: 0,
647 gpu_memory_gb: 2.0,
648 setup_time: Duration::from_millis(100),
649 },
650 }],
651 },
652 );
653 }
654
655 Ok(profiles)
656 }
657
658 pub fn analyze_problem(
660 &mut self,
661 circuit_gates: &[GateType],
662 num_qubits: usize,
663 problem_type: ProblemType,
664 ) -> QuantRS2Result<ProblemAnalysis> {
665 let cache_key = format!("{:?}-{}-{}", problem_type, num_qubits, circuit_gates.len());
667
668 if self.config.enable_caching {
669 if let Some(cached) = self.analysis_cache.get(&cache_key) {
670 return Ok(cached.clone());
671 }
672 }
673
674 let circuit_depth = Self::calculate_circuit_depth(circuit_gates);
675 let gate_composition = Self::analyze_gate_composition(circuit_gates);
676 let entanglement_analysis = Self::analyze_entanglement(circuit_gates, num_qubits);
677 let memory_estimate_gb = Self::estimate_memory_requirements(num_qubits, circuit_depth);
678 let complexity_estimate = Self::estimate_complexity(circuit_gates, num_qubits);
679 let parallelization_potential =
680 Self::analyze_parallelization_potential(circuit_gates, num_qubits, &gate_composition);
681 let resource_requirements = Self::estimate_resource_requirements(
682 num_qubits,
683 circuit_depth,
684 &complexity_estimate,
685 ¶llelization_potential,
686 );
687
688 let analysis = ProblemAnalysis {
689 num_qubits,
690 circuit_depth,
691 gate_composition,
692 entanglement_analysis,
693 memory_estimate_gb,
694 complexity_estimate,
695 problem_type,
696 parallelization_potential,
697 resource_requirements,
698 };
699
700 if self.config.enable_caching {
701 self.analysis_cache.insert(cache_key, analysis.clone());
702 }
703
704 Ok(analysis)
705 }
706
707 pub fn select_backend(&self, analysis: &ProblemAnalysis) -> QuantRS2Result<BackendSelection> {
709 let mut scores = HashMap::new();
710 let mut reasoning = Vec::new();
711
712 for (backend_type, profile) in &self.backend_profiles {
714 let score = self.score_backend(analysis, profile)?;
715 scores.insert(*backend_type, score);
716
717 if score > 0.7 {
719 reasoning.push(format!(
720 "{backend_type:?} backend scores {score:.2} due to good fit for problem characteristics"
721 ));
722 }
723 }
724
725 let (best_backend, best_score) = scores
727 .iter()
728 .max_by(|a, b| a.1.partial_cmp(b.1).unwrap_or(std::cmp::Ordering::Equal))
729 .ok_or_else(|| QuantRS2Error::InvalidInput("No backends available".to_string()))?;
730
731 let mut alternatives: Vec<(BackendType, f64)> = scores
733 .iter()
734 .filter(|(backend, _)| *backend != best_backend)
735 .map(|(backend, score)| (*backend, *score))
736 .collect();
737 alternatives.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap_or(std::cmp::Ordering::Equal));
738 alternatives.truncate(3); let configuration = self.generate_backend_configuration(analysis, *best_backend)?;
742
743 let expected_performance = self.backend_profiles[best_backend].metrics.clone();
745
746 reasoning.push(format!(
748 "Selected {best_backend:?} backend with confidence {best_score:.2}"
749 ));
750
751 if analysis.num_qubits >= self.config.gpu_threshold_qubits && self.platform_caps.has_gpu() {
752 reasoning.push(
753 "Problem size exceeds GPU threshold, GPU acceleration recommended".to_string(),
754 );
755 }
756
757 if analysis.parallelization_potential.gate_parallelism > 0.5 {
758 reasoning.push("High gate parallelism potential detected".to_string());
759 }
760
761 Ok(BackendSelection {
762 backend_type: *best_backend,
763 confidence: *best_score,
764 reasoning,
765 expected_performance,
766 configuration,
767 alternatives,
768 })
769 }
770
771 fn score_backend(
773 &self,
774 analysis: &ProblemAnalysis,
775 profile: &PerformanceProfile,
776 ) -> QuantRS2Result<f64> {
777 let mut score = 0.0;
778 let mut weight_sum = 0.0;
779
780 let size_weight = 0.3;
782 let size_score = if analysis.num_qubits <= profile.problem_size_limits.max_qubits {
783 (analysis.num_qubits as f64 / profile.problem_size_limits.max_qubits as f64)
784 .mul_add(-0.5, 1.0)
785 } else {
786 0.0 };
788 score += size_score * size_weight;
789 weight_sum += size_weight;
790
791 let perf_weight = 0.25;
793 let perf_score = match self.config.performance_bias {
794 bias if bias > 0.7 => profile.metrics.throughput / 10000.0, bias if bias < 0.3 => 1.0 / (profile.metrics.latency * 1000.0), _ => f64::midpoint(
797 profile.metrics.throughput / 10000.0,
798 1.0 / (profile.metrics.latency * 1000.0),
799 ),
800 };
801 score += perf_score.min(1.0) * perf_weight;
802 weight_sum += perf_weight;
803
804 let resource_weight = 0.2;
806 let resource_score = if analysis.memory_estimate_gb <= self.config.max_memory_gb {
807 (analysis.memory_estimate_gb / self.config.max_memory_gb).mul_add(-0.3, 1.0)
808 } else {
809 0.0 };
811 score += resource_score * resource_weight;
812 weight_sum += resource_weight;
813
814 let bonus_weight = 0.15;
816 let bonus_score = match profile.backend_type {
817 BackendType::GPU
818 if self.config.enable_gpu
819 && analysis.num_qubits >= self.config.gpu_threshold_qubits =>
820 {
821 1.0
822 }
823 BackendType::CPUParallel
824 if analysis.parallelization_potential.gate_parallelism > 0.5 =>
825 {
826 0.8
827 }
828 BackendType::Distributed
829 if self.config.enable_distributed
830 && analysis.num_qubits >= self.config.distributed_threshold_qubits =>
831 {
832 0.9
833 }
834 _ => 0.5,
835 };
836 score += bonus_score * bonus_weight;
837 weight_sum += bonus_weight;
838
839 let parallel_weight = 0.1;
841 let parallel_score = match profile.backend_type {
842 BackendType::GPU => analysis.parallelization_potential.gpu_potential,
843 BackendType::CPUParallel => analysis.parallelization_potential.gate_parallelism,
844 BackendType::Distributed => analysis.parallelization_potential.distributed_potential,
845 _ => 0.5,
846 };
847 score += parallel_score * parallel_weight;
848 weight_sum += parallel_weight;
849
850 if weight_sum > 0.0 {
852 score /= weight_sum;
853 }
854
855 Ok(score.clamp(0.0, 1.0))
856 }
857
858 fn generate_backend_configuration(
860 &self,
861 analysis: &ProblemAnalysis,
862 backend_type: BackendType,
863 ) -> QuantRS2Result<BackendConfiguration> {
864 let num_threads = match backend_type {
865 BackendType::CPUParallel | BackendType::Hybrid => {
866 (self.platform_caps.cpu.logical_cores as f64 * 0.8).round() as usize
867 }
868 _ => 1,
869 };
870
871 let batch_size = match backend_type {
872 BackendType::GPU => 1024,
873 BackendType::CPUParallel => 64,
874 _ => 1,
875 };
876
877 let memory_strategy = match backend_type {
878 BackendType::GPU => MemoryStrategy::Pool,
879 BackendType::Distributed => MemoryStrategy::Shared,
880 _ => MemoryStrategy::Heap,
881 };
882
883 let precision_settings = PrecisionSettings {
884 float_precision: if analysis.problem_type == ProblemType::QEC {
885 FloatPrecision::Quadruple
886 } else {
887 FloatPrecision::Double
888 },
889 tolerance: 1e-12,
890 adaptive_precision: true,
891 };
892
893 let gpu_config = if backend_type == BackendType::GPU || backend_type == BackendType::Hybrid
894 {
895 Some(GPUConfiguration {
896 device_id: 0,
897 block_size: 256,
898 grid_size: (analysis.num_qubits * analysis.num_qubits + 255) / 256,
899 memory_strategy: GPUMemoryStrategy::Pool,
900 use_unified_memory: false, })
902 } else {
903 None
904 };
905
906 let distributed_config = if backend_type == BackendType::Distributed {
907 Some(DistributedConfiguration {
908 num_nodes: 4,
909 comm_backend: CommunicationBackend::TCP,
910 load_balancing: LoadBalancingStrategy::Dynamic,
911 fault_tolerance: true,
912 })
913 } else {
914 None
915 };
916
917 Ok(BackendConfiguration {
918 num_threads,
919 batch_size,
920 memory_strategy,
921 precision_settings,
922 gpu_config,
923 distributed_config,
924 })
925 }
926
927 fn calculate_circuit_depth(gates: &[GateType]) -> usize {
929 (gates.len() as f64 * 0.7).round() as usize
931 }
932
933 fn analyze_gate_composition(gates: &[GateType]) -> GateComposition {
935 let mut gate_types = HashMap::new();
936 let mut single_qubit_gates = 0;
937 let mut two_qubit_gates = 0;
938 let mut multi_qubit_gates = 0;
939 let mut parameterized_gates = 0;
940
941 for gate in gates {
942 let gate_name = format!("{gate:?}");
943 *gate_types.entry(gate_name).or_insert(0) += 1;
944
945 match gate {
946 GateType::H
947 | GateType::X
948 | GateType::Y
949 | GateType::Z
950 | GateType::S
951 | GateType::T
952 | GateType::Rx(_)
953 | GateType::Ry(_)
954 | GateType::Rz(_) => {
955 single_qubit_gates += 1;
956 if matches!(gate, GateType::Rx(_) | GateType::Ry(_) | GateType::Rz(_)) {
957 parameterized_gates += 1;
958 }
959 }
960 GateType::CNOT | GateType::CZ | GateType::SWAP => {
961 two_qubit_gates += 1;
962 }
963 _ => {
964 multi_qubit_gates += 1;
965 }
966 }
967 }
968
969 let total_gates = gates.len();
970 let simd_friendly_gates = single_qubit_gates + two_qubit_gates;
971 let simd_friendly_percentage = if total_gates > 0 {
972 simd_friendly_gates as f64 / total_gates as f64
973 } else {
974 0.0
975 };
976
977 GateComposition {
978 total_gates,
979 single_qubit_gates,
980 two_qubit_gates,
981 multi_qubit_gates,
982 gate_types,
983 parameterized_gates,
984 simd_friendly_percentage,
985 }
986 }
987
988 fn analyze_entanglement(gates: &[GateType], num_qubits: usize) -> EntanglementAnalysis {
990 let mut entangling_gates = 0;
991 let mut connectivity_set = HashSet::new();
992
993 for gate in gates {
994 match gate {
995 GateType::CNOT | GateType::CZ | GateType::SWAP => {
996 entangling_gates += 1;
997 connectivity_set.insert((0, 1)); }
1000 _ => {}
1001 }
1002 }
1003
1004 let max_entanglement_depth = (entangling_gates as f64).log2().ceil() as usize;
1005 let connectivity_ratio =
1006 connectivity_set.len() as f64 / (num_qubits * (num_qubits - 1) / 2) as f64;
1007 let separable_subsystems = if entangling_gates == 0 { num_qubits } else { 1 };
1008 let entanglement_entropy = if entangling_gates > 0 {
1009 (num_qubits as f64).log2()
1010 } else {
1011 0.0
1012 };
1013
1014 EntanglementAnalysis {
1015 max_entanglement_depth,
1016 connectivity_ratio,
1017 separable_subsystems,
1018 entanglement_entropy,
1019 }
1020 }
1021
1022 fn estimate_memory_requirements(num_qubits: usize, circuit_depth: usize) -> f64 {
1024 let state_vector_size = 2_usize.pow(num_qubits as u32);
1025 let complex_size = 16; let base_memory = (state_vector_size * complex_size) as f64 / (1024.0 * 1024.0 * 1024.0);
1027 let overhead_factor = 1.5; let depth_factor = (circuit_depth as f64).mul_add(0.01, 1.0);
1029
1030 base_memory * overhead_factor * depth_factor
1031 }
1032
1033 fn estimate_complexity(gates: &[GateType], num_qubits: usize) -> ComplexityEstimate {
1035 let operation_count = gates.len() as u64 * 2_u64.pow(num_qubits as u32);
1036
1037 let time_complexity = if num_qubits <= 10 {
1038 ComplexityClass::Linear
1039 } else if num_qubits <= 20 {
1040 ComplexityClass::Quadratic
1041 } else {
1042 ComplexityClass::Exponential
1043 };
1044
1045 let space_complexity = if num_qubits <= 25 {
1046 ComplexityClass::Exponential
1047 } else {
1048 ComplexityClass::DoubleExponential
1049 };
1050
1051 let memory_pattern = if gates.len() > 1000 {
1052 MemoryPattern::Blocked
1053 } else {
1054 MemoryPattern::Sequential
1055 };
1056
1057 let parallelization_factor = if num_qubits >= 12 {
1058 (num_qubits as f64 / 4.0).min(8.0)
1059 } else {
1060 1.0
1061 };
1062
1063 ComplexityEstimate {
1064 time_complexity,
1065 space_complexity,
1066 operation_count,
1067 memory_pattern,
1068 parallelization_factor,
1069 }
1070 }
1071
1072 fn analyze_parallelization_potential(
1074 gates: &[GateType],
1075 num_qubits: usize,
1076 gate_composition: &GateComposition,
1077 ) -> ParallelizationPotential {
1078 let gate_parallelism = if gate_composition.single_qubit_gates > 0 {
1079 gate_composition.single_qubit_gates as f64 / gate_composition.total_gates as f64
1080 } else {
1081 0.0
1082 };
1083
1084 let state_parallelism = if num_qubits >= 8 {
1085 (num_qubits as f64 - 7.0) / 10.0
1086 } else {
1087 0.1
1088 };
1089
1090 let batch_potential = if gate_composition.total_gates > 100 {
1091 0.8
1092 } else {
1093 0.3
1094 };
1095
1096 let simd_potential = gate_composition.simd_friendly_percentage;
1097
1098 let gpu_potential = if num_qubits >= 12 && gate_composition.total_gates > 500 {
1099 0.9
1100 } else {
1101 0.2
1102 };
1103
1104 let distributed_potential = if num_qubits >= 20 { 0.8 } else { 0.1 };
1105
1106 ParallelizationPotential {
1107 gate_parallelism,
1108 state_parallelism,
1109 batch_potential,
1110 simd_potential,
1111 gpu_potential,
1112 distributed_potential,
1113 }
1114 }
1115
1116 fn estimate_resource_requirements(
1118 num_qubits: usize,
1119 circuit_depth: usize,
1120 complexity: &ComplexityEstimate,
1121 parallelization: &ParallelizationPotential,
1122 ) -> ResourceRequirements {
1123 let memory_gb = Self::estimate_memory_requirements(num_qubits, circuit_depth);
1124
1125 let cpu_cores = if parallelization.gate_parallelism > 0.5 {
1126 (num_qubits / 2).clamp(2, 16)
1127 } else {
1128 1
1129 };
1130
1131 let gpu_memory_gb = if parallelization.gpu_potential > 0.5 {
1132 memory_gb * 1.2
1133 } else {
1134 0.0
1135 };
1136
1137 let network_bandwidth_mbps = if parallelization.distributed_potential > 0.5 {
1138 100.0 * num_qubits as f64
1139 } else {
1140 0.0
1141 };
1142
1143 let storage_gb = memory_gb * 0.1; let base_time_ms = match complexity.time_complexity {
1146 ComplexityClass::Linear => circuit_depth as f64 * 0.1,
1147 ComplexityClass::Quadratic => circuit_depth as f64 * circuit_depth as f64 * 0.001,
1148 ComplexityClass::Exponential => (num_qubits as f64 * 0.5).exp2(),
1149 _ => 1000.0,
1150 };
1151
1152 let estimated_time =
1153 Duration::from_millis((base_time_ms / complexity.parallelization_factor) as u64);
1154
1155 ResourceRequirements {
1156 memory_gb,
1157 cpu_cores,
1158 gpu_memory_gb,
1159 network_bandwidth_mbps,
1160 storage_gb,
1161 estimated_time,
1162 }
1163 }
1164
1165 pub fn get_recommendations(
1167 &self,
1168 analysis: &ProblemAnalysis,
1169 selection: &BackendSelection,
1170 ) -> Vec<OptimizationRecommendation> {
1171 let mut recommendations = Vec::new();
1172
1173 if analysis.memory_estimate_gb > self.config.max_memory_gb * 0.8 {
1175 recommendations.push(OptimizationRecommendation {
1176 recommendation_type: RecommendationType::MemoryOptimization,
1177 description:
1178 "Consider using memory-efficient state representation or chunked computation"
1179 .to_string(),
1180 expected_improvement: 0.6,
1181 difficulty: 6,
1182 resource_cost: ResourceCost {
1183 memory_gb: -analysis.memory_estimate_gb * 0.3,
1184 cpu_cores: 1,
1185 gpu_memory_gb: 0.0,
1186 setup_time: Duration::from_millis(200),
1187 },
1188 });
1189 }
1190
1191 if selection.confidence < 0.8 {
1193 for (alt_backend, score) in &selection.alternatives {
1194 if *score > selection.confidence {
1195 recommendations.push(OptimizationRecommendation {
1196 recommendation_type: RecommendationType::BackendSwitch,
1197 description: format!(
1198 "Consider switching to {alt_backend:?} backend for better performance"
1199 ),
1200 expected_improvement: score - selection.confidence,
1201 difficulty: 3,
1202 resource_cost: ResourceCost {
1203 memory_gb: 0.5,
1204 cpu_cores: 0,
1205 gpu_memory_gb: if *alt_backend == BackendType::GPU {
1206 2.0
1207 } else {
1208 0.0
1209 },
1210 setup_time: Duration::from_millis(100),
1211 },
1212 });
1213 }
1214 }
1215 }
1216
1217 if analysis.parallelization_potential.gate_parallelism > 0.7
1219 && selection.backend_type == BackendType::CPUSingle
1220 {
1221 recommendations.push(OptimizationRecommendation {
1222 recommendation_type: RecommendationType::ParallelizationTuning,
1223 description:
1224 "High parallelization potential detected - consider parallel CPU backend"
1225 .to_string(),
1226 expected_improvement: analysis.parallelization_potential.gate_parallelism,
1227 difficulty: 4,
1228 resource_cost: ResourceCost {
1229 memory_gb: 1.0,
1230 cpu_cores: self.platform_caps.cpu.logical_cores - 1,
1231 gpu_memory_gb: 0.0,
1232 setup_time: Duration::from_millis(50),
1233 },
1234 });
1235 }
1236
1237 if analysis.parallelization_potential.gpu_potential > 0.8
1239 && selection.backend_type != BackendType::GPU
1240 && self.platform_caps.has_gpu()
1241 {
1242 recommendations.push(OptimizationRecommendation {
1243 recommendation_type: RecommendationType::HardwareOptimization,
1244 description: "Problem shows high GPU acceleration potential".to_string(),
1245 expected_improvement: analysis.parallelization_potential.gpu_potential,
1246 difficulty: 7,
1247 resource_cost: ResourceCost {
1248 memory_gb: 1.0,
1249 cpu_cores: 0,
1250 gpu_memory_gb: analysis.memory_estimate_gb,
1251 setup_time: Duration::from_millis(300),
1252 },
1253 });
1254 }
1255
1256 match analysis.problem_type {
1258 ProblemType::VQE => {
1259 recommendations.push(OptimizationRecommendation {
1260 recommendation_type: RecommendationType::AlgorithmOptimization,
1261 description: "Consider using gradient-free optimization methods for VQE"
1262 .to_string(),
1263 expected_improvement: 0.3,
1264 difficulty: 5,
1265 resource_cost: ResourceCost {
1266 memory_gb: 0.5,
1267 cpu_cores: 0,
1268 gpu_memory_gb: 0.0,
1269 setup_time: Duration::from_millis(100),
1270 },
1271 });
1272 }
1273 ProblemType::QAOA => {
1274 recommendations.push(OptimizationRecommendation {
1275 recommendation_type: RecommendationType::AlgorithmOptimization,
1276 description: "Consider using warm-start initialization for QAOA parameters"
1277 .to_string(),
1278 expected_improvement: 0.4,
1279 difficulty: 4,
1280 resource_cost: ResourceCost {
1281 memory_gb: 0.2,
1282 cpu_cores: 0,
1283 gpu_memory_gb: 0.0,
1284 setup_time: Duration::from_millis(50),
1285 },
1286 });
1287 }
1288 _ => {}
1289 }
1290
1291 if analysis.problem_type == ProblemType::Simulation
1293 && selection.configuration.precision_settings.float_precision == FloatPrecision::Double
1294 {
1295 recommendations.push(OptimizationRecommendation {
1296 recommendation_type: RecommendationType::PrecisionAdjustment,
1297 description: "Consider single precision for simulation if acceptable accuracy"
1298 .to_string(),
1299 expected_improvement: 0.5,
1300 difficulty: 2,
1301 resource_cost: ResourceCost {
1302 memory_gb: -analysis.memory_estimate_gb * 0.5,
1303 cpu_cores: 0,
1304 gpu_memory_gb: 0.0,
1305 setup_time: Duration::from_millis(10),
1306 },
1307 });
1308 }
1309
1310 recommendations
1311 }
1312
1313 pub fn monitor_and_update(
1315 &mut self,
1316 current_selection: &BackendSelection,
1317 current_performance: &PerformanceMetrics,
1318 ) -> QuantRS2Result<Option<BackendSelection>> {
1319 if !self.config.enable_auto_switching {
1320 return Ok(None);
1321 }
1322
1323 self.update_resource_monitoring(current_performance)?;
1325
1326 let expected_performance = ¤t_selection.expected_performance;
1328 let performance_ratio = current_performance.throughput / expected_performance.throughput;
1329
1330 if performance_ratio < 0.7 {
1331 return Ok(None);
1336 }
1337
1338 if current_performance.memory_efficiency < 0.5 {
1340 return Ok(None);
1342 }
1343
1344 Ok(None)
1345 }
1346
1347 fn update_resource_monitoring(
1349 &mut self,
1350 current_performance: &PerformanceMetrics,
1351 ) -> QuantRS2Result<()> {
1352 self.resource_monitor
1353 .cpu_history
1354 .push(current_performance.cpu_utilization);
1355 self.resource_monitor
1356 .memory_history
1357 .push(current_performance.memory_efficiency);
1358 self.resource_monitor
1359 .gpu_history
1360 .push(current_performance.gpu_utilization);
1361
1362 let max_history = 100;
1364 if self.resource_monitor.cpu_history.len() > max_history {
1365 self.resource_monitor.cpu_history.remove(0);
1366 }
1367 if self.resource_monitor.memory_history.len() > max_history {
1368 self.resource_monitor.memory_history.remove(0);
1369 }
1370 if self.resource_monitor.gpu_history.len() > max_history {
1371 self.resource_monitor.gpu_history.remove(0);
1372 }
1373
1374 Ok(())
1375 }
1376}
1377
1378#[cfg(test)]
1379mod tests {
1380 use super::*;
1381
1382 #[test]
1383 fn test_auto_optimizer_creation() {
1384 let config = AutoOptimizerConfig::default();
1385 let optimizer = AutoOptimizer::new(config);
1386 assert!(optimizer.is_ok());
1387 }
1388
1389 #[test]
1390 fn test_problem_analysis() {
1391 let config = AutoOptimizerConfig::default();
1392 let mut optimizer = AutoOptimizer::new(config).expect("Failed to create AutoOptimizer");
1393
1394 let gates = vec![
1395 GateType::H,
1396 GateType::CNOT,
1397 GateType::Rz("0.5".to_string()),
1398 GateType::X,
1399 ];
1400
1401 let analysis = optimizer.analyze_problem(&gates, 5, ProblemType::Simulation);
1402 assert!(analysis.is_ok());
1403
1404 let analysis = analysis.expect("Failed to analyze problem");
1405 assert_eq!(analysis.num_qubits, 5);
1406 assert_eq!(analysis.gate_composition.total_gates, 4);
1407 assert_eq!(analysis.problem_type, ProblemType::Simulation);
1408 }
1409
1410 #[test]
1411 fn test_backend_selection() {
1412 let config = AutoOptimizerConfig::default();
1413 let optimizer = AutoOptimizer::new(config).expect("Failed to create AutoOptimizer");
1414
1415 let analysis = ProblemAnalysis {
1416 num_qubits: 10,
1417 circuit_depth: 50,
1418 gate_composition: GateComposition {
1419 total_gates: 100,
1420 single_qubit_gates: 60,
1421 two_qubit_gates: 30,
1422 multi_qubit_gates: 10,
1423 gate_types: HashMap::new(),
1424 parameterized_gates: 20,
1425 simd_friendly_percentage: 0.9,
1426 },
1427 entanglement_analysis: EntanglementAnalysis {
1428 max_entanglement_depth: 5,
1429 connectivity_ratio: 0.3,
1430 separable_subsystems: 2,
1431 entanglement_entropy: 3.0,
1432 },
1433 memory_estimate_gb: 2.0,
1434 complexity_estimate: ComplexityEstimate {
1435 time_complexity: ComplexityClass::Quadratic,
1436 space_complexity: ComplexityClass::Exponential,
1437 operation_count: 1000000,
1438 memory_pattern: MemoryPattern::Sequential,
1439 parallelization_factor: 4.0,
1440 },
1441 problem_type: ProblemType::Simulation,
1442 parallelization_potential: ParallelizationPotential {
1443 gate_parallelism: 0.8,
1444 state_parallelism: 0.6,
1445 batch_potential: 0.7,
1446 simd_potential: 0.9,
1447 gpu_potential: 0.5,
1448 distributed_potential: 0.2,
1449 },
1450 resource_requirements: ResourceRequirements {
1451 memory_gb: 2.0,
1452 cpu_cores: 4,
1453 gpu_memory_gb: 0.0,
1454 network_bandwidth_mbps: 0.0,
1455 storage_gb: 0.2,
1456 estimated_time: Duration::from_secs(60),
1457 },
1458 };
1459
1460 let selection = optimizer.select_backend(&analysis);
1461 assert!(selection.is_ok());
1462
1463 let selection = selection.expect("Failed to select backend");
1464 assert!(selection.confidence > 0.0);
1465 assert!(!selection.reasoning.is_empty());
1466 }
1467
1468 #[test]
1469 fn test_recommendations() {
1470 let config = AutoOptimizerConfig::default();
1471 let optimizer = AutoOptimizer::new(config).expect("Failed to create AutoOptimizer");
1472
1473 let analysis = ProblemAnalysis {
1474 num_qubits: 15,
1475 circuit_depth: 100,
1476 gate_composition: GateComposition {
1477 total_gates: 200,
1478 single_qubit_gates: 120,
1479 two_qubit_gates: 60,
1480 multi_qubit_gates: 20,
1481 gate_types: HashMap::new(),
1482 parameterized_gates: 40,
1483 simd_friendly_percentage: 0.85,
1484 },
1485 entanglement_analysis: EntanglementAnalysis {
1486 max_entanglement_depth: 8,
1487 connectivity_ratio: 0.4,
1488 separable_subsystems: 1,
1489 entanglement_entropy: 4.0,
1490 },
1491 memory_estimate_gb: 8.0,
1492 complexity_estimate: ComplexityEstimate {
1493 time_complexity: ComplexityClass::Exponential,
1494 space_complexity: ComplexityClass::Exponential,
1495 operation_count: 10000000,
1496 memory_pattern: MemoryPattern::Blocked,
1497 parallelization_factor: 6.0,
1498 },
1499 problem_type: ProblemType::VQE,
1500 parallelization_potential: ParallelizationPotential {
1501 gate_parallelism: 0.85,
1502 state_parallelism: 0.7,
1503 batch_potential: 0.8,
1504 simd_potential: 0.85,
1505 gpu_potential: 0.9,
1506 distributed_potential: 0.3,
1507 },
1508 resource_requirements: ResourceRequirements {
1509 memory_gb: 8.0,
1510 cpu_cores: 6,
1511 gpu_memory_gb: 4.0,
1512 network_bandwidth_mbps: 0.0,
1513 storage_gb: 0.8,
1514 estimated_time: Duration::from_secs(300),
1515 },
1516 };
1517
1518 let selection = optimizer
1519 .select_backend(&analysis)
1520 .expect("Failed to select backend");
1521 let recommendations = optimizer.get_recommendations(&analysis, &selection);
1522
1523 assert!(!recommendations.is_empty());
1524
1525 let has_memory_rec = recommendations
1527 .iter()
1528 .any(|r| r.recommendation_type == RecommendationType::MemoryOptimization);
1529
1530 assert!(has_memory_rec || !recommendations.is_empty());
1531 }
1532}