quantrs2_core/
resource_estimator.rs

1//! Quantum Resource Estimator with SciRS2 Complexity Analysis
2//!
3//! This module provides comprehensive resource estimation for quantum circuits
4//! using SciRS2's advanced complexity analysis and numerical methods.
5
6use crate::gate_translation::GateType;
7// use scirs2_core::memory::BufferPool;
8use crate::buffer_pool::BufferPool;
9// use scirs2_core::parallel_ops::*;
10use crate::parallel_ops_stubs::*;
11
12/// Simplified quantum gate representation for resource estimation
13#[derive(Debug, Clone)]
14pub struct QuantumGate {
15    gate_type: GateType,
16    target_qubits: Vec<usize>,
17    control_qubits: Option<Vec<usize>>,
18}
19
20impl QuantumGate {
21    pub const fn new(
22        gate_type: GateType,
23        target_qubits: Vec<usize>,
24        control_qubits: Option<Vec<usize>>,
25    ) -> Self {
26        Self {
27            gate_type,
28            target_qubits,
29            control_qubits,
30        }
31    }
32
33    pub const fn gate_type(&self) -> &GateType {
34        &self.gate_type
35    }
36
37    pub fn target_qubits(&self) -> &[usize] {
38        &self.target_qubits
39    }
40
41    pub fn control_qubits(&self) -> Option<&[usize]> {
42        self.control_qubits.as_deref()
43    }
44}
45use crate::error::QuantRS2Error;
46use std::collections::HashMap;
47
48/// Configuration for resource estimation
49#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
50pub struct ResourceEstimationConfig {
51    /// Target quantum error correction code
52    pub error_correction_code: ErrorCorrectionCode,
53    /// Physical error rate
54    pub physical_error_rate: f64,
55    /// Target logical error rate
56    pub target_logical_error_rate: f64,
57    /// Estimation mode (conservative, optimistic, realistic)
58    pub estimation_mode: EstimationMode,
59    /// Include hardware-specific overheads
60    pub include_hardware_overhead: bool,
61    /// Hardware platform for estimation
62    pub hardware_platform: HardwarePlatform,
63    /// Enable detailed analysis
64    pub detailed_analysis: bool,
65}
66
67impl Default for ResourceEstimationConfig {
68    fn default() -> Self {
69        Self {
70            error_correction_code: ErrorCorrectionCode::SurfaceCode,
71            physical_error_rate: 1e-3,
72            target_logical_error_rate: 1e-12,
73            estimation_mode: EstimationMode::Realistic,
74            include_hardware_overhead: true,
75            hardware_platform: HardwarePlatform::Superconducting,
76            detailed_analysis: true,
77        }
78    }
79}
80
81/// Supported error correction codes
82#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
83pub enum ErrorCorrectionCode {
84    SurfaceCode,
85    ColorCode,
86    ToricCode,
87    ShorCode,
88    StabilizerCode(usize), // Distance parameter
89}
90
91/// Estimation modes affecting conservativeness of estimates
92#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
93pub enum EstimationMode {
94    Conservative, // Worst-case estimates
95    Optimistic,   // Best-case estimates
96    Realistic,    // Expected estimates
97}
98
99/// Hardware platforms with different characteristics
100#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
101pub enum HardwarePlatform {
102    Superconducting,
103    TrappedIon,
104    Photonic,
105    NeutralAtom,
106    SiliconQuantumDots,
107    TopologicalQubits,
108}
109
110/// Quantum resource estimator using SciRS2 complexity analysis
111pub struct ResourceEstimator {
112    config: ResourceEstimationConfig,
113    buffer_pool: Option<BufferPool<f64>>,
114}
115
116impl ResourceEstimator {
117    /// Create a new resource estimator with default configuration
118    pub fn new() -> Self {
119        let config = ResourceEstimationConfig::default();
120        Self::with_config(config)
121    }
122
123    /// Create a new resource estimator with custom configuration
124    pub const fn with_config(config: ResourceEstimationConfig) -> Self {
125        let buffer_pool = if config.include_hardware_overhead {
126            Some(BufferPool::<f64>::new())
127        } else {
128            None
129        };
130
131        Self {
132            config,
133            buffer_pool,
134        }
135    }
136
137    /// Estimate resources for a quantum circuit
138    pub fn estimate_resources(
139        &self,
140        circuit: &[QuantumGate],
141        num_qubits: usize,
142    ) -> Result<ResourceEstimate, QuantRS2Error> {
143        let gate_analysis = self.analyze_gates(circuit)?;
144        let logical_analysis = self.analyze_logical_requirements(&gate_analysis, num_qubits)?;
145        let physical_analysis = self.analyze_physical_requirements(&logical_analysis)?;
146        let time_analysis = self.analyze_execution_time(&gate_analysis)?;
147
148        let detailed_analysis = if self.config.detailed_analysis {
149            Some(DetailedAnalysis {
150                bottlenecks: self.identify_bottlenecks(&gate_analysis)?,
151                optimization_suggestions: self.generate_optimization_suggestions(&gate_analysis)?,
152                scaling_analysis: self.analyze_scaling(&gate_analysis, num_qubits)?,
153                error_analysis: self.analyze_error_propagation(&gate_analysis)?,
154            })
155        } else {
156            None
157        };
158
159        Ok(ResourceEstimate {
160            logical_qubits: logical_analysis.logical_qubits,
161            physical_qubits: physical_analysis.physical_qubits,
162            total_gates: gate_analysis.total_gates,
163            gate_breakdown: gate_analysis.gate_breakdown.clone(),
164            circuit_depth: gate_analysis.circuit_depth,
165            execution_time: time_analysis.total_time,
166            time_breakdown: time_analysis.time_breakdown,
167            error_budget: physical_analysis.error_budget,
168            overhead_factor: physical_analysis.overhead_factor,
169            magic_states: logical_analysis.magic_states,
170            distillation_overhead: logical_analysis.distillation_overhead,
171            spatial_overhead: physical_analysis.spatial_overhead,
172            temporal_overhead: time_analysis.temporal_overhead,
173            detailed_analysis,
174        })
175    }
176
177    /// Analyze gate composition and complexity using SciRS2
178    fn analyze_gates(&self, circuit: &[QuantumGate]) -> Result<GateAnalysis, QuantRS2Error> {
179        let mut gate_breakdown = HashMap::new();
180        let mut depth_counter = HashMap::new();
181        let mut max_depth = 0;
182
183        // Use parallel processing for large circuits
184        if circuit.len() > 1000 {
185            // Parallel gate counting
186            let gate_counts: HashMap<String, usize> = circuit
187                .par_iter()
188                .map(|gate| format!("{:?}", gate.gate_type()))
189                .fold(HashMap::new, |mut acc, gate_type| {
190                    *acc.entry(gate_type).or_insert(0) += 1;
191                    acc
192                })
193                .reduce(HashMap::new, |mut acc1, acc2| {
194                    for (key, value) in acc2 {
195                        *acc1.entry(key).or_insert(0) += value;
196                    }
197                    acc1
198                });
199            gate_breakdown = gate_counts;
200        } else {
201            // Sequential processing for smaller circuits
202            for gate in circuit {
203                let gate_type = format!("{:?}", gate.gate_type());
204                *gate_breakdown.entry(gate_type).or_insert(0) += 1;
205            }
206        }
207
208        // Enhanced depth calculation with dependency analysis
209        for gate in circuit {
210            for &qubit in gate.target_qubits() {
211                let qubit_depth = depth_counter.entry(qubit).or_insert(0);
212                *qubit_depth += 1;
213                max_depth = max_depth.max(*qubit_depth);
214            }
215        }
216
217        // Enhanced complexity analysis with SciRS2-inspired metrics
218        let two_qubit_count = self.count_two_qubit_gates(circuit);
219        let _complexity_score =
220            self.calculate_complexity_score(circuit.len(), max_depth, two_qubit_count);
221
222        Ok(GateAnalysis {
223            total_gates: circuit.len(),
224            gate_breakdown,
225            circuit_depth: max_depth,
226            clifford_gates: self.count_clifford_gates(circuit),
227            non_clifford_gates: self.count_non_clifford_gates(circuit),
228            two_qubit_gates: self.count_two_qubit_gates(circuit),
229            measurement_gates: self.count_measurement_gates(circuit),
230        })
231    }
232
233    /// Count Clifford gates in the circuit
234    fn count_clifford_gates(&self, circuit: &[QuantumGate]) -> usize {
235        use crate::gate_translation::GateType;
236
237        circuit
238            .iter()
239            .filter(|gate| {
240                matches!(
241                    gate.gate_type(),
242                    GateType::X
243                        | GateType::Y
244                        | GateType::Z
245                        | GateType::H
246                        | GateType::CNOT
247                        | GateType::CZ
248                        | GateType::S
249                )
250            })
251            .count()
252    }
253
254    /// Count non-Clifford gates in the circuit
255    fn count_non_clifford_gates(&self, circuit: &[QuantumGate]) -> usize {
256        use crate::gate_translation::GateType;
257
258        circuit
259            .iter()
260            .filter(|gate| {
261                matches!(
262                    gate.gate_type(),
263                    GateType::T
264                        | GateType::Phase(_)
265                        | GateType::Rx(_)
266                        | GateType::Ry(_)
267                        | GateType::Rz(_)
268                )
269            })
270            .count()
271    }
272
273    /// Count two-qubit gates in the circuit
274    fn count_two_qubit_gates(&self, circuit: &[QuantumGate]) -> usize {
275        circuit
276            .iter()
277            .filter(|gate| gate.target_qubits().len() >= 2)
278            .count()
279    }
280
281    /// Count measurement operations in the circuit
282    fn count_measurement_gates(&self, circuit: &[QuantumGate]) -> usize {
283        use crate::gate_translation::GateType;
284
285        circuit
286            .iter()
287            .filter(
288                |gate| matches!(gate.gate_type(), GateType::Custom(ref name) if name == "Measure"),
289            )
290            .count()
291    }
292
293    /// Analyze logical requirements
294    fn analyze_logical_requirements(
295        &self,
296        gate_analysis: &GateAnalysis,
297        num_qubits: usize,
298    ) -> Result<LogicalAnalysis, QuantRS2Error> {
299        let magic_states = self.estimate_magic_states(gate_analysis)?;
300        let distillation_overhead = self.calculate_distillation_overhead(magic_states)?;
301
302        Ok(LogicalAnalysis {
303            logical_qubits: num_qubits,
304            magic_states,
305            distillation_overhead,
306            ancilla_qubits: self.estimate_ancilla_qubits(gate_analysis)?,
307            workspace_qubits: self.estimate_workspace_qubits(gate_analysis)?,
308        })
309    }
310
311    /// Estimate number of magic states required
312    fn estimate_magic_states(&self, gate_analysis: &GateAnalysis) -> Result<usize, QuantRS2Error> {
313        // Magic states are primarily needed for T gates and arbitrary rotations
314        let t_gates = gate_analysis.non_clifford_gates;
315
316        // Additional magic states for complex operations
317        let additional = match self.config.estimation_mode {
318            EstimationMode::Conservative => (t_gates as f64 * 1.5) as usize,
319            EstimationMode::Optimistic => t_gates,
320            EstimationMode::Realistic => (t_gates as f64 * 1.2) as usize,
321        };
322
323        Ok(additional)
324    }
325
326    /// Calculate magic state distillation overhead
327    fn calculate_distillation_overhead(&self, magic_states: usize) -> Result<f64, QuantRS2Error> {
328        if magic_states == 0 {
329            return Ok(1.0);
330        }
331
332        // Distillation ratio depends on the error correction code and fidelity requirements
333        let base_ratio = match self.config.error_correction_code {
334            ErrorCorrectionCode::ColorCode => 12.0,
335            ErrorCorrectionCode::ShorCode => 20.0,
336            ErrorCorrectionCode::SurfaceCode
337            | ErrorCorrectionCode::ToricCode
338            | ErrorCorrectionCode::StabilizerCode(_) => 15.0, // Conservative estimate
339        };
340
341        let error_factor = (-self.config.target_logical_error_rate.log10() / 3.0).max(1.0);
342
343        Ok(base_ratio * error_factor)
344    }
345
346    /// Estimate ancilla qubits needed
347    fn estimate_ancilla_qubits(
348        &self,
349        gate_analysis: &GateAnalysis,
350    ) -> Result<usize, QuantRS2Error> {
351        // Ancilla qubits for syndrome extraction and error correction
352        let syndrome_qubits = match self.config.error_correction_code {
353            ErrorCorrectionCode::SurfaceCode => gate_analysis.total_gates / 10,
354            ErrorCorrectionCode::ColorCode => gate_analysis.total_gates / 12,
355            _ => gate_analysis.total_gates / 15,
356        };
357
358        Ok(syndrome_qubits.max(10)) // Minimum ancilla qubits
359    }
360
361    /// Estimate workspace qubits needed
362    fn estimate_workspace_qubits(
363        &self,
364        gate_analysis: &GateAnalysis,
365    ) -> Result<usize, QuantRS2Error> {
366        // Workspace for intermediate computations
367        let workspace = gate_analysis.two_qubit_gates / 5;
368
369        Ok(workspace.max(5)) // Minimum workspace qubits
370    }
371
372    /// Analyze physical requirements
373    fn analyze_physical_requirements(
374        &self,
375        logical_analysis: &LogicalAnalysis,
376    ) -> Result<PhysicalAnalysis, QuantRS2Error> {
377        let code_distance = self.calculate_code_distance()?;
378        let qubits_per_logical = self.calculate_qubits_per_logical(code_distance)?;
379
380        let total_logical = logical_analysis.logical_qubits
381            + logical_analysis.ancilla_qubits
382            + logical_analysis.workspace_qubits;
383
384        let physical_qubits = total_logical * qubits_per_logical;
385
386        let overhead_factor = physical_qubits as f64 / logical_analysis.logical_qubits as f64;
387
388        Ok(PhysicalAnalysis {
389            physical_qubits,
390            code_distance,
391            qubits_per_logical,
392            overhead_factor,
393            spatial_overhead: self.calculate_spatial_overhead(physical_qubits)?,
394            error_budget: self.calculate_error_budget()?,
395        })
396    }
397
398    /// Calculate required code distance
399    fn calculate_code_distance(&self) -> Result<usize, QuantRS2Error> {
400        let p = self.config.physical_error_rate;
401        let p_target = self.config.target_logical_error_rate;
402
403        // Simplified calculation based on threshold theory
404        let threshold = match self.config.error_correction_code {
405            ErrorCorrectionCode::ColorCode => 8e-3,
406            ErrorCorrectionCode::SurfaceCode | _ => 1e-2,
407        };
408
409        if p > threshold {
410            return Err(QuantRS2Error::UnsupportedOperation(
411                "Physical error rate exceeds threshold".into(),
412            ));
413        }
414
415        // Distance needed: d ~ log(p_target) / log(p/p_threshold)
416        let ratio = p / threshold;
417        let distance = (-p_target.log10() / ratio.log10()).ceil() as usize;
418
419        // Ensure odd distance for surface codes
420        Ok(if distance % 2 == 0 {
421            distance + 1
422        } else {
423            distance
424        }
425        .max(3))
426    }
427
428    /// Calculate physical qubits per logical qubit
429    const fn calculate_qubits_per_logical(&self, distance: usize) -> Result<usize, QuantRS2Error> {
430        match self.config.error_correction_code {
431            ErrorCorrectionCode::SurfaceCode => Ok(2 * distance * distance - 2 * distance + 1),
432            ErrorCorrectionCode::ColorCode => Ok(3 * distance * distance),
433            ErrorCorrectionCode::ToricCode => Ok(2 * distance * distance),
434            ErrorCorrectionCode::ShorCode => Ok(9),
435            ErrorCorrectionCode::StabilizerCode(d) => Ok(d * d),
436        }
437    }
438
439    /// Calculate spatial overhead factor
440    fn calculate_spatial_overhead(&self, physical_qubits: usize) -> Result<f64, QuantRS2Error> {
441        let base_overhead = match self.config.hardware_platform {
442            HardwarePlatform::Superconducting => 1.5,
443            HardwarePlatform::TrappedIon => 2.0,
444            HardwarePlatform::Photonic => 3.0,
445            HardwarePlatform::NeutralAtom => 1.8,
446            HardwarePlatform::SiliconQuantumDots => 2.5,
447            HardwarePlatform::TopologicalQubits => 1.2,
448        };
449
450        // Scale with number of qubits
451        let scaling_factor = (physical_qubits as f64).log10().mul_add(0.1, 1.0);
452
453        Ok(base_overhead * scaling_factor)
454    }
455
456    /// Calculate error budget allocation
457    fn calculate_error_budget(&self) -> Result<ErrorBudget, QuantRS2Error> {
458        let total_budget = self.config.target_logical_error_rate;
459
460        // Distribute error budget across different sources
461        let gate_errors = total_budget * 0.4;
462        let measurement_errors = total_budget * 0.2;
463        let memory_errors = total_budget * 0.3;
464        let correction_errors = total_budget * 0.1;
465
466        Ok(ErrorBudget {
467            total: total_budget,
468            gate_errors,
469            measurement_errors,
470            memory_errors,
471            correction_errors,
472        })
473    }
474
475    /// Analyze execution time requirements
476    fn analyze_execution_time(
477        &self,
478        gate_analysis: &GateAnalysis,
479    ) -> Result<TimeAnalysis, QuantRS2Error> {
480        let gate_times = self.get_gate_timing_parameters()?;
481
482        let mut time_breakdown = HashMap::new();
483        let mut total_time = 0.0;
484
485        for (gate_type, count) in &gate_analysis.gate_breakdown {
486            let gate_time = gate_times.get(gate_type).unwrap_or(&1e-6); // Default 1μs
487            let total_gate_time = *gate_time * (*count as f64);
488            time_breakdown.insert(gate_type.clone(), total_gate_time);
489            total_time += total_gate_time;
490        }
491
492        // Add error correction overhead
493        let correction_overhead = total_time * 0.5; // 50% overhead for error correction
494        total_time += correction_overhead;
495
496        let temporal_overhead = self.calculate_temporal_overhead(total_time)?;
497
498        Ok(TimeAnalysis {
499            total_time,
500            time_breakdown,
501            correction_overhead,
502            temporal_overhead,
503        })
504    }
505
506    /// Get gate timing parameters for different platforms
507    fn get_gate_timing_parameters(&self) -> Result<HashMap<String, f64>, QuantRS2Error> {
508        let mut timings = HashMap::new();
509
510        match self.config.hardware_platform {
511            HardwarePlatform::Superconducting => {
512                timings.insert("X".to_string(), 20e-9);
513                timings.insert("Y".to_string(), 20e-9);
514                timings.insert("Z".to_string(), 1e-9);
515                timings.insert("H".to_string(), 20e-9);
516                timings.insert("CNOT".to_string(), 40e-9);
517                timings.insert("T".to_string(), 20e-9);
518                timings.insert("Measure".to_string(), 300e-9);
519            }
520            HardwarePlatform::TrappedIon => {
521                timings.insert("X".to_string(), 10e-6);
522                timings.insert("Y".to_string(), 10e-6);
523                timings.insert("Z".to_string(), 1e-6);
524                timings.insert("H".to_string(), 10e-6);
525                timings.insert("CNOT".to_string(), 100e-6);
526                timings.insert("T".to_string(), 10e-6);
527                timings.insert("Measure".to_string(), 100e-6);
528            }
529            HardwarePlatform::Photonic => {
530                timings.insert("X".to_string(), 1e-9);
531                timings.insert("Y".to_string(), 1e-9);
532                timings.insert("Z".to_string(), 1e-9);
533                timings.insert("H".to_string(), 1e-9);
534                timings.insert("CNOT".to_string(), 10e-9);
535                timings.insert("T".to_string(), 1e-9);
536                timings.insert("Measure".to_string(), 1e-9);
537            }
538            _ => {
539                // Default timing values
540                timings.insert("X".to_string(), 1e-6);
541                timings.insert("Y".to_string(), 1e-6);
542                timings.insert("Z".to_string(), 1e-6);
543                timings.insert("H".to_string(), 1e-6);
544                timings.insert("CNOT".to_string(), 2e-6);
545                timings.insert("T".to_string(), 1e-6);
546                timings.insert("Measure".to_string(), 10e-6);
547            }
548        }
549
550        Ok(timings)
551    }
552
553    /// Calculate temporal overhead factors
554    const fn calculate_temporal_overhead(&self, _base_time: f64) -> Result<f64, QuantRS2Error> {
555        let overhead = match self.config.hardware_platform {
556            HardwarePlatform::Superconducting => 1.3,
557            HardwarePlatform::TrappedIon => 1.8,
558            HardwarePlatform::Photonic | HardwarePlatform::TopologicalQubits => 1.1,
559            HardwarePlatform::NeutralAtom => 1.5,
560            HardwarePlatform::SiliconQuantumDots => 2.0,
561        };
562
563        Ok(overhead)
564    }
565
566    /// Identify performance bottlenecks
567    fn identify_bottlenecks(
568        &self,
569        gate_analysis: &GateAnalysis,
570    ) -> Result<Vec<String>, QuantRS2Error> {
571        let mut bottlenecks = Vec::new();
572
573        if gate_analysis.circuit_depth > 1000 {
574            bottlenecks.push("High circuit depth may lead to decoherence issues".to_string());
575        }
576
577        if gate_analysis.two_qubit_gates > gate_analysis.total_gates / 2 {
578            bottlenecks.push("High ratio of two-qubit gates increases error rates".to_string());
579        }
580
581        if gate_analysis.non_clifford_gates > 100 {
582            bottlenecks
583                .push("Large number of non-Clifford gates requires many magic states".to_string());
584        }
585
586        Ok(bottlenecks)
587    }
588
589    /// Calculate complexity score for the circuit using SciRS2-inspired metrics
590    fn calculate_complexity_score(
591        &self,
592        total_gates: usize,
593        depth: usize,
594        two_qubit_gates: usize,
595    ) -> f64 {
596        // SciRS2-inspired complexity scoring
597        let gate_complexity = total_gates as f64;
598        let depth_complexity = depth as f64 * 1.5; // Depth has higher impact
599        let two_qubit_complexity = two_qubit_gates as f64 * 2.0; // Two-qubit gates are more expensive
600
601        (gate_complexity + depth_complexity + two_qubit_complexity) / (total_gates as f64 + 1.0)
602    }
603
604    /// Generate optimization suggestions using SciRS2-enhanced analysis
605    fn generate_optimization_suggestions(
606        &self,
607        gate_analysis: &GateAnalysis,
608    ) -> Result<Vec<String>, QuantRS2Error> {
609        let mut suggestions = Vec::new();
610
611        // Calculate complexity score for adaptive suggestions
612        let complexity_score = self.calculate_complexity_score(
613            gate_analysis.total_gates,
614            gate_analysis.circuit_depth,
615            gate_analysis.two_qubit_gates,
616        );
617
618        if gate_analysis.circuit_depth > 500 {
619            suggestions.push("Consider circuit parallelization to reduce depth".to_string());
620            if complexity_score > 3.0 {
621                suggestions.push(
622                    "Use SciRS2 parallel gate scheduling for improved performance".to_string(),
623                );
624            }
625        }
626
627        if gate_analysis.non_clifford_gates > 50 {
628            suggestions.push("Apply Clifford+T optimization to reduce T-gate count".to_string());
629            if self.config.detailed_analysis {
630                suggestions.push("Consider SciRS2 magic state optimization algorithms".to_string());
631            }
632        }
633
634        if gate_analysis.two_qubit_gates > gate_analysis.total_gates / 3 {
635            suggestions.push(
636                "High two-qubit gate ratio detected - consider gate fusion optimization"
637                    .to_string(),
638            );
639        }
640
641        // Hardware-specific suggestions
642        match self.config.hardware_platform {
643            HardwarePlatform::Superconducting => {
644                suggestions.push("Optimize for superconducting hardware connectivity".to_string());
645            }
646            HardwarePlatform::TrappedIon => {
647                suggestions
648                    .push("Leverage all-to-all connectivity for trapped ion systems".to_string());
649            }
650            _ => {
651                suggestions.push("Consider hardware-specific gate set optimization".to_string());
652            }
653        }
654
655        suggestions.push("Consider using error mitigation techniques".to_string());
656        suggestions.push("Apply SciRS2 memory-efficient state vector simulation".to_string());
657
658        Ok(suggestions)
659    }
660
661    /// Analyze scaling behavior
662    fn analyze_scaling(
663        &self,
664        gate_analysis: &GateAnalysis,
665        num_qubits: usize,
666    ) -> Result<ScalingAnalysis, QuantRS2Error> {
667        let time_complexity = if gate_analysis.two_qubit_gates > 0 {
668            format!(
669                "O(n^{})",
670                (gate_analysis.two_qubit_gates as f64 / num_qubits as f64)
671                    .log2()
672                    .ceil()
673            )
674        } else {
675            "O(n)".to_string()
676        };
677
678        let space_complexity = "O(2^n)".to_string(); // Exponential in number of qubits
679
680        Ok(ScalingAnalysis {
681            time_complexity,
682            space_complexity,
683            predicted_scaling: self.predict_scaling_factors(num_qubits)?,
684        })
685    }
686
687    /// Predict scaling factors for larger problems
688    fn predict_scaling_factors(
689        &self,
690        _num_qubits: usize,
691    ) -> Result<HashMap<String, f64>, QuantRS2Error> {
692        let mut factors = HashMap::new();
693
694        factors.insert("10_qubits".to_string(), 1.0);
695        factors.insert("20_qubits".to_string(), 4.0);
696        factors.insert("50_qubits".to_string(), 100.0);
697        factors.insert("100_qubits".to_string(), 10000.0);
698
699        Ok(factors)
700    }
701
702    /// Analyze error propagation through the circuit
703    fn analyze_error_propagation(
704        &self,
705        gate_analysis: &GateAnalysis,
706    ) -> Result<ErrorPropagationAnalysis, QuantRS2Error> {
707        let error_accumulation = gate_analysis.total_gates as f64 * self.config.physical_error_rate;
708        let error_amplification = (gate_analysis.two_qubit_gates as f64).mul_add(0.1, 1.0);
709
710        Ok(ErrorPropagationAnalysis {
711            error_accumulation,
712            error_amplification,
713            critical_paths: vec!["Long sequences of two-qubit gates".to_string()],
714        })
715    }
716}
717
718/// Complete resource estimation result
719#[derive(Debug, Clone)]
720pub struct ResourceEstimate {
721    /// Number of logical qubits required
722    pub logical_qubits: usize,
723    /// Number of physical qubits required
724    pub physical_qubits: usize,
725    /// Total number of gates
726    pub total_gates: usize,
727    /// Breakdown of gates by type
728    pub gate_breakdown: HashMap<String, usize>,
729    /// Circuit depth
730    pub circuit_depth: usize,
731    /// Total execution time (seconds)
732    pub execution_time: f64,
733    /// Time breakdown by operation type
734    pub time_breakdown: HashMap<String, f64>,
735    /// Error budget allocation
736    pub error_budget: ErrorBudget,
737    /// Physical to logical qubit overhead factor
738    pub overhead_factor: f64,
739    /// Number of magic states required
740    pub magic_states: usize,
741    /// Magic state distillation overhead
742    pub distillation_overhead: f64,
743    /// Spatial overhead factor
744    pub spatial_overhead: f64,
745    /// Temporal overhead factor
746    pub temporal_overhead: f64,
747    /// Detailed analysis (optional)
748    pub detailed_analysis: Option<DetailedAnalysis>,
749}
750
751/// Gate analysis results
752#[derive(Debug, Clone)]
753struct GateAnalysis {
754    total_gates: usize,
755    gate_breakdown: HashMap<String, usize>,
756    circuit_depth: usize,
757    clifford_gates: usize,
758    non_clifford_gates: usize,
759    two_qubit_gates: usize,
760    measurement_gates: usize,
761}
762
763/// Logical requirements analysis
764#[derive(Debug, Clone)]
765struct LogicalAnalysis {
766    logical_qubits: usize,
767    magic_states: usize,
768    distillation_overhead: f64,
769    ancilla_qubits: usize,
770    workspace_qubits: usize,
771}
772
773/// Physical requirements analysis
774#[derive(Debug, Clone)]
775struct PhysicalAnalysis {
776    physical_qubits: usize,
777    code_distance: usize,
778    qubits_per_logical: usize,
779    overhead_factor: f64,
780    spatial_overhead: f64,
781    error_budget: ErrorBudget,
782}
783
784/// Time analysis results
785#[derive(Debug, Clone)]
786struct TimeAnalysis {
787    total_time: f64,
788    time_breakdown: HashMap<String, f64>,
789    correction_overhead: f64,
790    temporal_overhead: f64,
791}
792
793/// Error budget allocation
794#[derive(Debug, Clone)]
795pub struct ErrorBudget {
796    pub total: f64,
797    pub gate_errors: f64,
798    pub measurement_errors: f64,
799    pub memory_errors: f64,
800    pub correction_errors: f64,
801}
802
803/// Detailed analysis results
804#[derive(Debug, Clone)]
805pub struct DetailedAnalysis {
806    pub bottlenecks: Vec<String>,
807    pub optimization_suggestions: Vec<String>,
808    pub scaling_analysis: ScalingAnalysis,
809    pub error_analysis: ErrorPropagationAnalysis,
810}
811
812/// Scaling analysis results
813#[derive(Debug, Clone)]
814pub struct ScalingAnalysis {
815    pub time_complexity: String,
816    pub space_complexity: String,
817    pub predicted_scaling: HashMap<String, f64>,
818}
819
820/// Error propagation analysis
821#[derive(Debug, Clone)]
822pub struct ErrorPropagationAnalysis {
823    pub error_accumulation: f64,
824    pub error_amplification: f64,
825    pub critical_paths: Vec<String>,
826}
827
828#[cfg(test)]
829mod tests {
830    use super::*;
831    use super::{GateType, QuantumGate};
832
833    #[test]
834    fn test_resource_estimator_creation() {
835        let estimator = ResourceEstimator::new();
836        assert!(matches!(
837            estimator.config.error_correction_code,
838            ErrorCorrectionCode::SurfaceCode
839        ));
840    }
841
842    #[test]
843    fn test_gate_analysis() {
844        let estimator = ResourceEstimator::new();
845        let circuit = vec![
846            QuantumGate::new(GateType::H, vec![0], None),
847            QuantumGate::new(GateType::CNOT, vec![0, 1], None),
848            QuantumGate::new(GateType::T, vec![0], None),
849        ];
850
851        let analysis = estimator
852            .analyze_gates(&circuit)
853            .expect("Gate analysis should succeed");
854        assert_eq!(analysis.total_gates, 3);
855        assert_eq!(analysis.clifford_gates, 2);
856        assert_eq!(analysis.non_clifford_gates, 1);
857    }
858
859    #[test]
860    fn test_magic_state_estimation() {
861        let estimator = ResourceEstimator::new();
862        let gate_analysis = GateAnalysis {
863            total_gates: 10,
864            gate_breakdown: HashMap::new(),
865            circuit_depth: 5,
866            clifford_gates: 7,
867            non_clifford_gates: 3,
868            two_qubit_gates: 2,
869            measurement_gates: 0,
870        };
871
872        let magic_states = estimator
873            .estimate_magic_states(&gate_analysis)
874            .expect("Magic state estimation should succeed");
875        assert!(magic_states >= 3); // At least as many as non-Clifford gates
876    }
877
878    #[test]
879    fn test_code_distance_calculation() {
880        let mut config = ResourceEstimationConfig::default();
881        config.physical_error_rate = 1e-3;
882        config.target_logical_error_rate = 1e-12;
883
884        let estimator = ResourceEstimator::with_config(config);
885        let distance = estimator
886            .calculate_code_distance()
887            .expect("Code distance calculation should succeed");
888        assert!(distance >= 3);
889        assert!(distance % 2 == 1); // Should be odd for surface codes
890    }
891
892    #[test]
893    fn test_resource_estimation_small_circuit() {
894        let estimator = ResourceEstimator::new();
895        let circuit = vec![
896            QuantumGate::new(GateType::H, vec![0], None),
897            QuantumGate::new(GateType::CNOT, vec![0, 1], None),
898        ];
899
900        let estimate = estimator
901            .estimate_resources(&circuit, 2)
902            .expect("Resource estimation should succeed");
903        assert!(estimate.logical_qubits > 0);
904        assert!(estimate.physical_qubits > estimate.logical_qubits);
905        assert!(estimate.execution_time > 0.0);
906    }
907}