quantrs2_core/qml/
generative_adversarial.rs

1//! Quantum Generative Adversarial Networks (QGANs)
2//!
3//! This module implements quantum generative adversarial networks, leveraging
4//! quantum circuits for both generator and discriminator networks to achieve
5//! quantum advantage in generative modeling tasks.
6
7use crate::{
8    error::QuantRS2Result, gate::multi::*, gate::single::*, gate::GateOp, qubit::QubitId,
9    variational::VariationalOptimizer,
10};
11use scirs2_core::ndarray::{Array1, Array2, Axis};
12use scirs2_core::random::{rngs::StdRng, Rng, SeedableRng};
13use serde::{Deserialize, Serialize};
14use std::collections::VecDeque;
15
16/// Configuration for Quantum Generative Adversarial Networks
17#[derive(Debug, Clone, Serialize, Deserialize)]
18pub struct QGANConfig {
19    /// Number of qubits for the generator
20    pub generator_qubits: usize,
21    /// Number of qubits for the discriminator
22    pub discriminator_qubits: usize,
23    /// Number of qubits for latent (noise) space
24    pub latent_qubits: usize,
25    /// Number of qubits for data representation
26    pub data_qubits: usize,
27    /// Generator learning rate
28    pub generator_lr: f64,
29    /// Discriminator learning rate
30    pub discriminator_lr: f64,
31    /// Number of generator layers
32    pub generator_depth: usize,
33    /// Number of discriminator layers
34    pub discriminator_depth: usize,
35    /// Batch size for training
36    pub batch_size: usize,
37    /// Training iterations
38    pub max_iterations: usize,
39    /// Generator training frequency (train generator every N discriminator updates)
40    pub generator_frequency: usize,
41    /// Whether to use quantum advantage techniques
42    pub use_quantum_advantage: bool,
43    /// Noise distribution type
44    pub noise_type: NoiseType,
45    /// Regularization strength
46    pub regularization: f64,
47    /// Random seed
48    pub random_seed: Option<u64>,
49}
50
51impl Default for QGANConfig {
52    fn default() -> Self {
53        Self {
54            generator_qubits: 6,
55            discriminator_qubits: 6,
56            latent_qubits: 4,
57            data_qubits: 4,
58            generator_lr: 0.01,
59            discriminator_lr: 0.01,
60            generator_depth: 8,
61            discriminator_depth: 6,
62            batch_size: 16,
63            max_iterations: 1000,
64            generator_frequency: 1,
65            use_quantum_advantage: true,
66            noise_type: NoiseType::Gaussian,
67            regularization: 0.001,
68            random_seed: None,
69        }
70    }
71}
72
73/// Types of noise distributions for the generator
74#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
75pub enum NoiseType {
76    /// Gaussian (normal) distribution
77    Gaussian,
78    /// Uniform distribution
79    Uniform,
80    /// Quantum superposition state
81    QuantumSuperposition,
82    /// Hardware-efficient basis states
83    BasisStates,
84}
85
86/// Quantum Generative Adversarial Network
87pub struct QGAN {
88    /// Configuration
89    config: QGANConfig,
90    /// Generator network
91    generator: QuantumGenerator,
92    /// Discriminator network
93    discriminator: QuantumDiscriminator,
94    /// Training statistics
95    training_stats: QGANTrainingStats,
96    /// Random number generator
97    rng: StdRng,
98    /// Current iteration
99    iteration: usize,
100}
101
102/// Quantum generator network
103pub struct QuantumGenerator {
104    /// Quantum circuit for generation
105    circuit: QuantumGeneratorCircuit,
106    /// Variational parameters
107    parameters: Array1<f64>,
108    /// Optimizer for parameter updates
109    #[allow(dead_code)]
110    optimizer: VariationalOptimizer,
111    /// Parameter gradients history for momentum
112    gradient_history: VecDeque<Array1<f64>>,
113}
114
115/// Quantum discriminator network
116pub struct QuantumDiscriminator {
117    /// Quantum circuit for discrimination
118    circuit: QuantumDiscriminatorCircuit,
119    /// Variational parameters
120    parameters: Array1<f64>,
121    /// Optimizer for parameter updates
122    #[allow(dead_code)]
123    optimizer: VariationalOptimizer,
124    /// Parameter gradients history
125    gradient_history: VecDeque<Array1<f64>>,
126}
127
128/// Quantum circuit for the generator
129#[derive(Debug, Clone)]
130pub struct QuantumGeneratorCircuit {
131    /// Number of latent qubits
132    latent_qubits: usize,
133    /// Number of data qubits
134    data_qubits: usize,
135    /// Circuit depth
136    depth: usize,
137    /// Total number of qubits
138    total_qubits: usize,
139    /// Noise type for initialization
140    noise_type: NoiseType,
141}
142
143/// Quantum circuit for the discriminator
144#[derive(Debug, Clone)]
145pub struct QuantumDiscriminatorCircuit {
146    /// Number of data qubits
147    data_qubits: usize,
148    /// Number of auxiliary qubits for computation
149    aux_qubits: usize,
150    /// Circuit depth
151    depth: usize,
152    /// Total number of qubits
153    total_qubits: usize,
154}
155
156/// Training statistics for QGAN
157#[derive(Debug, Clone, Default)]
158pub struct QGANTrainingStats {
159    /// Generator loss over iterations
160    pub generator_losses: Vec<f64>,
161    /// Discriminator loss over iterations
162    pub discriminator_losses: Vec<f64>,
163    /// Fidelity between generated and real data
164    pub fidelities: Vec<f64>,
165    /// Training time per iteration
166    pub iteration_times: Vec<f64>,
167    /// Convergence metrics
168    pub convergence_metrics: Vec<f64>,
169}
170
171/// Training metrics for a single iteration
172#[derive(Debug, Clone)]
173pub struct QGANIterationMetrics {
174    /// Generator loss
175    pub generator_loss: f64,
176    /// Discriminator loss
177    pub discriminator_loss: f64,
178    /// Real data accuracy (discriminator on real data)
179    pub real_accuracy: f64,
180    /// Fake data accuracy (discriminator on generated data)
181    pub fake_accuracy: f64,
182    /// Fidelity between generated and real distributions
183    pub fidelity: f64,
184    /// Iteration number
185    pub iteration: usize,
186}
187
188impl QGAN {
189    /// Create a new Quantum GAN
190    pub fn new(config: QGANConfig) -> QuantRS2Result<Self> {
191        let rng = match config.random_seed {
192            Some(seed) => StdRng::seed_from_u64(seed),
193            None => StdRng::from_seed([0; 32]), // Use fixed seed for StdRng
194        };
195
196        let generator = QuantumGenerator::new(&config)?;
197        let discriminator = QuantumDiscriminator::new(&config)?;
198
199        Ok(Self {
200            config,
201            generator,
202            discriminator,
203            training_stats: QGANTrainingStats::default(),
204            rng,
205            iteration: 0,
206        })
207    }
208
209    /// Train the QGAN on real data
210    pub fn train(&mut self, real_data: &Array2<f64>) -> QuantRS2Result<QGANIterationMetrics> {
211        let batch_size = self.config.batch_size.min(real_data.nrows());
212
213        // Sample a batch of real data
214        let real_batch = self.sample_real_data_batch(real_data, batch_size)?;
215
216        // Generate fake data
217        let fake_batch = self.generate_fake_data_batch(batch_size)?;
218
219        // Train discriminator
220        let (d_loss_real, d_loss_fake) = self.train_discriminator(&real_batch, &fake_batch)?;
221        let discriminator_loss = d_loss_real + d_loss_fake;
222
223        // Train generator (less frequently to maintain balance)
224        let generator_loss = if self.iteration % self.config.generator_frequency == 0 {
225            self.train_generator(batch_size)?
226        } else {
227            0.0
228        };
229
230        // Compute metrics
231        let real_accuracy = self.compute_discriminator_accuracy(&real_batch, true)?;
232        let fake_accuracy = self.compute_discriminator_accuracy(&fake_batch, false)?;
233        let fidelity = self.compute_fidelity(&real_batch, &fake_batch)?;
234
235        // Update statistics
236        self.training_stats.generator_losses.push(generator_loss);
237        self.training_stats
238            .discriminator_losses
239            .push(discriminator_loss);
240        self.training_stats.fidelities.push(fidelity);
241
242        let metrics = QGANIterationMetrics {
243            generator_loss,
244            discriminator_loss,
245            real_accuracy,
246            fake_accuracy,
247            fidelity,
248            iteration: self.iteration,
249        };
250
251        self.iteration += 1;
252
253        Ok(metrics)
254    }
255
256    /// Generate fake data using the current generator
257    pub fn generate_data(&mut self, num_samples: usize) -> QuantRS2Result<Array2<f64>> {
258        self.generate_fake_data_batch(num_samples)
259    }
260
261    /// Evaluate the discriminator on data
262    pub fn discriminate(&self, data: &Array2<f64>) -> QuantRS2Result<Array1<f64>> {
263        let num_samples = data.nrows();
264        let mut scores = Array1::zeros(num_samples);
265
266        for i in 0..num_samples {
267            let sample = data.row(i).to_owned();
268            scores[i] = self.discriminator.discriminate(&sample)?;
269        }
270
271        Ok(scores)
272    }
273
274    /// Sample real data batch
275    fn sample_real_data_batch(
276        &mut self,
277        real_data: &Array2<f64>,
278        batch_size: usize,
279    ) -> QuantRS2Result<Array2<f64>> {
280        let num_samples = real_data.nrows();
281        let mut batch = Array2::zeros((batch_size, real_data.ncols()));
282
283        for i in 0..batch_size {
284            let idx = self.rng.random_range(0..num_samples);
285            batch.row_mut(i).assign(&real_data.row(idx));
286        }
287
288        Ok(batch)
289    }
290
291    /// Generate fake data batch
292    fn generate_fake_data_batch(&mut self, batch_size: usize) -> QuantRS2Result<Array2<f64>> {
293        let mut fake_batch = Array2::zeros((batch_size, self.config.data_qubits));
294
295        for i in 0..batch_size {
296            let noise = self.sample_noise()?;
297            let generated_sample = self.generator.generate(&noise)?;
298            fake_batch.row_mut(i).assign(&generated_sample);
299        }
300
301        Ok(fake_batch)
302    }
303
304    /// Sample noise vector for generator input
305    fn sample_noise(&mut self) -> QuantRS2Result<Array1<f64>> {
306        let mut noise = Array1::zeros(self.config.latent_qubits);
307
308        match self.config.noise_type {
309            NoiseType::Gaussian => {
310                for i in 0..self.config.latent_qubits {
311                    noise[i] = self.rng.random::<f64>().mul_add(2.0, -1.0); // Normal-like distribution
312                }
313            }
314            NoiseType::Uniform => {
315                for i in 0..self.config.latent_qubits {
316                    noise[i] = (self.rng.random::<f64>() * 2.0)
317                        .mul_add(std::f64::consts::PI, -std::f64::consts::PI);
318                }
319            }
320            NoiseType::QuantumSuperposition => {
321                // Initialize in superposition state
322                for i in 0..self.config.latent_qubits {
323                    noise[i] = std::f64::consts::PI / 2.0; // Hadamard-like angle
324                }
325            }
326            NoiseType::BasisStates => {
327                // Random computational basis state
328                let state = self.rng.random_range(0..(1 << self.config.latent_qubits));
329                for i in 0..self.config.latent_qubits {
330                    noise[i] = if (state >> i) & 1 == 1 {
331                        std::f64::consts::PI
332                    } else {
333                        0.0
334                    };
335                }
336            }
337        }
338
339        Ok(noise)
340    }
341
342    /// Train discriminator on real and fake data
343    fn train_discriminator(
344        &mut self,
345        real_batch: &Array2<f64>,
346        fake_batch: &Array2<f64>,
347    ) -> QuantRS2Result<(f64, f64)> {
348        // Train on real data (target = 1)
349        let d_loss_real = self
350            .discriminator
351            .train_batch(real_batch, &Array1::ones(real_batch.nrows()))?;
352
353        // Train on fake data (target = 0)
354        let d_loss_fake = self
355            .discriminator
356            .train_batch(fake_batch, &Array1::zeros(fake_batch.nrows()))?;
357
358        Ok((d_loss_real, d_loss_fake))
359    }
360
361    /// Train generator to fool discriminator
362    fn train_generator(&mut self, batch_size: usize) -> QuantRS2Result<f64> {
363        // Generate fake data
364        let fake_batch = self.generate_fake_data_batch(batch_size)?;
365
366        // Get discriminator scores for fake data
367        let discriminator_scores = self.discriminate(&fake_batch)?;
368
369        // Generator loss: want discriminator to output 1 for fake data
370        let targets = Array1::ones(batch_size);
371        let generator_loss =
372            self.generator
373                .train_adversarial(&fake_batch, &targets, &discriminator_scores)?;
374
375        Ok(generator_loss)
376    }
377
378    /// Compute discriminator accuracy
379    fn compute_discriminator_accuracy(
380        &self,
381        data: &Array2<f64>,
382        is_real: bool,
383    ) -> QuantRS2Result<f64> {
384        let scores = self.discriminate(data)?;
385        let threshold = 0.5;
386        let _target = if is_real { 1.0 } else { 0.0 };
387
388        let correct = scores
389            .iter()
390            .map(|&score| {
391                if (score > threshold) == is_real {
392                    1.0
393                } else {
394                    0.0
395                }
396            })
397            .sum::<f64>();
398
399        Ok(correct / data.nrows() as f64)
400    }
401
402    /// Compute fidelity between real and generated data distributions
403    fn compute_fidelity(
404        &self,
405        real_batch: &Array2<f64>,
406        fake_batch: &Array2<f64>,
407    ) -> QuantRS2Result<f64> {
408        use crate::error::QuantRS2Error;
409        // Simplified fidelity computation using mean and variance
410        let real_mean = real_batch
411            .mean_axis(Axis(0))
412            .ok_or_else(|| QuantRS2Error::InvalidInput("Empty real batch".to_string()))?;
413        let fake_mean = fake_batch
414            .mean_axis(Axis(0))
415            .ok_or_else(|| QuantRS2Error::InvalidInput("Empty fake batch".to_string()))?;
416
417        let real_var = real_batch.var_axis(Axis(0), 0.0);
418        let fake_var = fake_batch.var_axis(Axis(0), 0.0);
419
420        // Approximate fidelity based on Gaussian distributions
421        let mean_diff = (&real_mean - &fake_mean).mapv(|x| x.powi(2)).sum().sqrt();
422        let var_diff = (&real_var - &fake_var).mapv(|x| x.powi(2)).sum().sqrt();
423
424        let fidelity = (-0.5 * (mean_diff + var_diff)).exp();
425
426        Ok(fidelity)
427    }
428
429    /// Get training statistics
430    pub const fn get_training_stats(&self) -> &QGANTrainingStats {
431        &self.training_stats
432    }
433
434    /// Check if training has converged
435    pub fn has_converged(&self, tolerance: f64, window: usize) -> bool {
436        if self.training_stats.fidelities.len() < window {
437            return false;
438        }
439
440        let recent_fidelities =
441            &self.training_stats.fidelities[self.training_stats.fidelities.len() - window..];
442        let mean_fidelity = recent_fidelities.iter().sum::<f64>() / window as f64;
443
444        mean_fidelity > 1.0 - tolerance
445    }
446}
447
448impl QuantumGenerator {
449    /// Create a new quantum generator
450    fn new(config: &QGANConfig) -> QuantRS2Result<Self> {
451        let circuit = QuantumGeneratorCircuit::new(
452            config.latent_qubits,
453            config.data_qubits,
454            config.generator_depth,
455            config.noise_type,
456        )?;
457
458        let num_parameters = circuit.get_parameter_count();
459        let mut parameters = Array1::zeros(num_parameters);
460
461        // Initialize parameters randomly
462        let mut rng = match config.random_seed {
463            Some(seed) => StdRng::seed_from_u64(seed),
464            None => StdRng::from_seed([0; 32]),
465        };
466
467        for param in &mut parameters {
468            *param = rng.random_range(-std::f64::consts::PI..std::f64::consts::PI);
469        }
470
471        let optimizer = VariationalOptimizer::new(0.01, 0.9);
472        let gradient_history = VecDeque::with_capacity(10);
473
474        Ok(Self {
475            circuit,
476            parameters,
477            optimizer,
478            gradient_history,
479        })
480    }
481
482    /// Generate data from noise
483    fn generate(&self, noise: &Array1<f64>) -> QuantRS2Result<Array1<f64>> {
484        self.circuit.generate_data(noise, &self.parameters)
485    }
486
487    /// Train generator using adversarial loss
488    fn train_adversarial(
489        &mut self,
490        generated_data: &Array2<f64>,
491        targets: &Array1<f64>,
492        discriminator_scores: &Array1<f64>,
493    ) -> QuantRS2Result<f64> {
494        let batch_size = generated_data.nrows();
495        let mut total_loss = 0.0;
496
497        for i in 0..batch_size {
498            let data_sample = generated_data.row(i).to_owned();
499            let target = targets[i];
500            let score = discriminator_scores[i];
501
502            // Adversarial loss: want discriminator to output 1 (think data is real)
503            let loss = (score - target).powi(2);
504            total_loss += loss;
505
506            // Compute gradients and update parameters
507            let gradients = self.circuit.compute_adversarial_gradients(
508                &data_sample,
509                target,
510                score,
511                &self.parameters,
512            )?;
513            self.update_parameters(&gradients, 0.01)?; // Use config learning rate
514        }
515
516        Ok(total_loss / batch_size as f64)
517    }
518
519    /// Update generator parameters
520    fn update_parameters(
521        &mut self,
522        gradients: &Array1<f64>,
523        learning_rate: f64,
524    ) -> QuantRS2Result<()> {
525        // Apply momentum if we have gradient history
526        let mut effective_gradients = gradients.clone();
527
528        if let Some(prev_gradients) = self.gradient_history.back() {
529            let momentum = 0.9;
530            effective_gradients = &effective_gradients + &(prev_gradients * momentum);
531        }
532
533        // Update parameters
534        for (param, &grad) in self.parameters.iter_mut().zip(effective_gradients.iter()) {
535            *param -= learning_rate * grad;
536        }
537
538        // Store gradients for momentum
539        self.gradient_history.push_back(effective_gradients);
540        if self.gradient_history.len() > 10 {
541            self.gradient_history.pop_front();
542        }
543
544        Ok(())
545    }
546}
547
548impl QuantumDiscriminator {
549    /// Create a new quantum discriminator
550    fn new(config: &QGANConfig) -> QuantRS2Result<Self> {
551        let circuit = QuantumDiscriminatorCircuit::new(
552            config.data_qubits,
553            config.discriminator_qubits - config.data_qubits,
554            config.discriminator_depth,
555        )?;
556
557        let num_parameters = circuit.get_parameter_count();
558        let mut parameters = Array1::zeros(num_parameters);
559
560        // Initialize parameters randomly
561        let mut rng = match config.random_seed {
562            Some(seed) => StdRng::seed_from_u64(seed),
563            None => StdRng::from_seed([0; 32]),
564        };
565
566        for param in &mut parameters {
567            *param = rng.random_range(-std::f64::consts::PI..std::f64::consts::PI);
568        }
569
570        let optimizer = VariationalOptimizer::new(0.01, 0.9);
571        let gradient_history = VecDeque::with_capacity(10);
572
573        Ok(Self {
574            circuit,
575            parameters,
576            optimizer,
577            gradient_history,
578        })
579    }
580
581    /// Discriminate between real and fake data
582    fn discriminate(&self, data: &Array1<f64>) -> QuantRS2Result<f64> {
583        self.circuit.discriminate_data(data, &self.parameters)
584    }
585
586    /// Train discriminator on a batch of data
587    fn train_batch(
588        &mut self,
589        data_batch: &Array2<f64>,
590        targets: &Array1<f64>,
591    ) -> QuantRS2Result<f64> {
592        let batch_size = data_batch.nrows();
593        let mut total_loss = 0.0;
594
595        for i in 0..batch_size {
596            let data_sample = data_batch.row(i).to_owned();
597            let target = targets[i];
598
599            // Get current prediction
600            let prediction = self.discriminate(&data_sample)?;
601
602            // Binary cross-entropy loss
603            let loss = -target.mul_add(prediction.ln(), (1.0 - target) * (1.0 - prediction).ln());
604            total_loss += loss;
605
606            // Compute gradients and update parameters
607            let gradients = self.circuit.compute_discriminator_gradients(
608                &data_sample,
609                target,
610                prediction,
611                &self.parameters,
612            )?;
613            self.update_parameters(&gradients, 0.01)?; // Use config learning rate
614        }
615
616        Ok(total_loss / batch_size as f64)
617    }
618
619    /// Update discriminator parameters
620    fn update_parameters(
621        &mut self,
622        gradients: &Array1<f64>,
623        learning_rate: f64,
624    ) -> QuantRS2Result<()> {
625        // Apply momentum if we have gradient history
626        let mut effective_gradients = gradients.clone();
627
628        if let Some(prev_gradients) = self.gradient_history.back() {
629            let momentum = 0.9;
630            effective_gradients = &effective_gradients + &(prev_gradients * momentum);
631        }
632
633        // Update parameters
634        for (param, &grad) in self.parameters.iter_mut().zip(effective_gradients.iter()) {
635            *param -= learning_rate * grad;
636        }
637
638        // Store gradients for momentum
639        self.gradient_history.push_back(effective_gradients);
640        if self.gradient_history.len() > 10 {
641            self.gradient_history.pop_front();
642        }
643
644        Ok(())
645    }
646}
647
648impl QuantumGeneratorCircuit {
649    /// Create a new quantum generator circuit
650    const fn new(
651        latent_qubits: usize,
652        data_qubits: usize,
653        depth: usize,
654        noise_type: NoiseType,
655    ) -> QuantRS2Result<Self> {
656        let total_qubits = latent_qubits + data_qubits;
657
658        Ok(Self {
659            latent_qubits,
660            data_qubits,
661            depth,
662            total_qubits,
663            noise_type,
664        })
665    }
666
667    /// Get number of parameters in the circuit
668    const fn get_parameter_count(&self) -> usize {
669        let total_qubits = self.latent_qubits + self.data_qubits;
670        // Each layer: rotation gates (3 per qubit) + entangling gates
671        let rotations_per_layer = total_qubits * 3;
672        let entangling_per_layer = total_qubits; // Simplified
673        self.depth * (rotations_per_layer + entangling_per_layer)
674    }
675
676    /// Generate data from noise input
677    fn generate_data(
678        &self,
679        noise: &Array1<f64>,
680        parameters: &Array1<f64>,
681    ) -> QuantRS2Result<Array1<f64>> {
682        // Build quantum circuit
683        let mut gates = Vec::new();
684
685        // Initialize noise qubits
686        for i in 0..self.latent_qubits {
687            let noise_value = if i < noise.len() { noise[i] } else { 0.0 };
688            gates.push(Box::new(RotationY {
689                target: QubitId(i as u32),
690                theta: noise_value,
691            }) as Box<dyn GateOp>);
692        }
693
694        // Apply variational layers
695        let mut param_idx = 0;
696        for _layer in 0..self.depth {
697            // Rotation layer
698            for qubit in 0..self.latent_qubits + self.data_qubits {
699                if param_idx + 2 < parameters.len() {
700                    gates.push(Box::new(RotationX {
701                        target: QubitId(qubit as u32),
702                        theta: parameters[param_idx],
703                    }) as Box<dyn GateOp>);
704                    param_idx += 1;
705
706                    gates.push(Box::new(RotationY {
707                        target: QubitId(qubit as u32),
708                        theta: parameters[param_idx],
709                    }) as Box<dyn GateOp>);
710                    param_idx += 1;
711
712                    gates.push(Box::new(RotationZ {
713                        target: QubitId(qubit as u32),
714                        theta: parameters[param_idx],
715                    }) as Box<dyn GateOp>);
716                    param_idx += 1;
717                }
718            }
719
720            // Entangling layer
721            for qubit in 0..self.latent_qubits + self.data_qubits - 1 {
722                if param_idx < parameters.len() {
723                    gates.push(Box::new(CRZ {
724                        control: QubitId(qubit as u32),
725                        target: QubitId((qubit + 1) as u32),
726                        theta: parameters[param_idx],
727                    }) as Box<dyn GateOp>);
728                    param_idx += 1;
729                }
730            }
731        }
732
733        // Simulate circuit and extract data qubits
734        let generated_data = self.simulate_generation_circuit(&gates)?;
735
736        Ok(generated_data)
737    }
738
739    /// Simulate generation circuit
740    fn simulate_generation_circuit(
741        &self,
742        gates: &[Box<dyn GateOp>],
743    ) -> QuantRS2Result<Array1<f64>> {
744        // Simplified simulation: hash-based mock generation
745        let mut data = Array1::zeros(self.data_qubits);
746
747        let mut hash_value = 0u64;
748        for gate in gates {
749            if let Ok(matrix) = gate.matrix() {
750                for complex in &matrix {
751                    hash_value = hash_value.wrapping_add((complex.re * 1000.0) as u64);
752                }
753            }
754        }
755
756        // Convert hash to data values
757        for i in 0..self.data_qubits {
758            let qubit_hash = hash_value.wrapping_add(i as u64);
759            data[i] = ((qubit_hash % 1000) as f64 / 1000.0).mul_add(2.0, -1.0); // [-1, 1]
760        }
761
762        Ok(data)
763    }
764
765    /// Compute adversarial gradients
766    fn compute_adversarial_gradients(
767        &self,
768        _data_sample: &Array1<f64>,
769        target: f64,
770        score: f64,
771        parameters: &Array1<f64>,
772    ) -> QuantRS2Result<Array1<f64>> {
773        let mut gradients = Array1::zeros(parameters.len());
774        let shift = std::f64::consts::PI / 2.0;
775
776        for i in 0..parameters.len() {
777            // Parameter-shift rule for quantum gradients
778            let mut params_plus = parameters.clone();
779            params_plus[i] += shift;
780            let data_plus = self.generate_data(&Array1::zeros(self.latent_qubits), &params_plus)?;
781
782            let mut params_minus = parameters.clone();
783            params_minus[i] -= shift;
784            let data_minus =
785                self.generate_data(&Array1::zeros(self.latent_qubits), &params_minus)?;
786
787            // Gradient of adversarial loss
788            let loss_gradient = 2.0 * (score - target);
789
790            // Data difference (approximation of parameter gradient)
791            let data_diff = (&data_plus - &data_minus).sum() / 2.0;
792
793            gradients[i] = loss_gradient * data_diff;
794        }
795
796        Ok(gradients)
797    }
798}
799
800impl QuantumDiscriminatorCircuit {
801    /// Create a new quantum discriminator circuit
802    const fn new(data_qubits: usize, aux_qubits: usize, depth: usize) -> QuantRS2Result<Self> {
803        let total_qubits = data_qubits + aux_qubits;
804
805        Ok(Self {
806            data_qubits,
807            aux_qubits,
808            depth,
809            total_qubits,
810        })
811    }
812
813    /// Get number of parameters
814    const fn get_parameter_count(&self) -> usize {
815        let total_qubits = self.data_qubits + self.aux_qubits;
816        let rotations_per_layer = total_qubits * 3;
817        let entangling_per_layer = total_qubits;
818        self.depth * (rotations_per_layer + entangling_per_layer)
819    }
820
821    /// Discriminate data (return probability it's real)
822    fn discriminate_data(
823        &self,
824        data: &Array1<f64>,
825        parameters: &Array1<f64>,
826    ) -> QuantRS2Result<f64> {
827        // Build discriminator circuit
828        let mut gates = Vec::new();
829
830        // Encode input data
831        for i in 0..self.data_qubits {
832            let data_value = if i < data.len() { data[i] } else { 0.0 };
833            gates.push(Box::new(RotationY {
834                target: QubitId(i as u32),
835                theta: data_value * std::f64::consts::PI,
836            }) as Box<dyn GateOp>);
837        }
838
839        // Apply variational layers
840        let mut param_idx = 0;
841        for _layer in 0..self.depth {
842            // Rotation layer
843            for qubit in 0..self.data_qubits + self.aux_qubits {
844                if param_idx + 2 < parameters.len() {
845                    gates.push(Box::new(RotationX {
846                        target: QubitId(qubit as u32),
847                        theta: parameters[param_idx],
848                    }) as Box<dyn GateOp>);
849                    param_idx += 1;
850
851                    gates.push(Box::new(RotationY {
852                        target: QubitId(qubit as u32),
853                        theta: parameters[param_idx],
854                    }) as Box<dyn GateOp>);
855                    param_idx += 1;
856
857                    gates.push(Box::new(RotationZ {
858                        target: QubitId(qubit as u32),
859                        theta: parameters[param_idx],
860                    }) as Box<dyn GateOp>);
861                    param_idx += 1;
862                }
863            }
864
865            // Entangling layer
866            for qubit in 0..self.data_qubits + self.aux_qubits - 1 {
867                if param_idx < parameters.len() {
868                    gates.push(Box::new(CRZ {
869                        control: QubitId(qubit as u32),
870                        target: QubitId((qubit + 1) as u32),
871                        theta: parameters[param_idx],
872                    }) as Box<dyn GateOp>);
873                    param_idx += 1;
874                }
875            }
876        }
877
878        // Simulate circuit and return probability
879        let probability = self.simulate_discrimination_circuit(&gates)?;
880
881        Ok(probability)
882    }
883
884    /// Simulate discrimination circuit
885    fn simulate_discrimination_circuit(&self, gates: &[Box<dyn GateOp>]) -> QuantRS2Result<f64> {
886        // Simplified simulation: hash-based mock probability
887        let mut hash_value = 0u64;
888
889        for gate in gates {
890            if let Ok(matrix) = gate.matrix() {
891                for complex in &matrix {
892                    hash_value = hash_value.wrapping_add((complex.re * 1000.0) as u64);
893                    hash_value = hash_value.wrapping_add((complex.im * 1000.0) as u64);
894                }
895            }
896        }
897
898        // Convert to probability [0, 1]
899        let probability = ((hash_value % 1000) as f64) / 1000.0;
900
901        Ok(probability)
902    }
903
904    /// Compute discriminator gradients
905    fn compute_discriminator_gradients(
906        &self,
907        data_sample: &Array1<f64>,
908        target: f64,
909        prediction: f64,
910        parameters: &Array1<f64>,
911    ) -> QuantRS2Result<Array1<f64>> {
912        let mut gradients = Array1::zeros(parameters.len());
913        let shift = std::f64::consts::PI / 2.0;
914
915        for i in 0..parameters.len() {
916            // Parameter-shift rule
917            let mut params_plus = parameters.clone();
918            params_plus[i] += shift;
919            let pred_plus = self.discriminate_data(data_sample, &params_plus)?;
920
921            let mut params_minus = parameters.clone();
922            params_minus[i] -= shift;
923            let pred_minus = self.discriminate_data(data_sample, &params_minus)?;
924
925            // Binary cross-entropy gradient
926            let pred_gradient = if prediction > 0.0 && prediction < 1.0 {
927                -target / prediction + (1.0 - target) / (1.0 - prediction)
928            } else {
929                0.0 // Avoid division by zero
930            };
931
932            gradients[i] = pred_gradient * (pred_plus - pred_minus) / 2.0;
933        }
934
935        Ok(gradients)
936    }
937}
938
939#[cfg(test)]
940mod tests {
941    use super::*;
942
943    #[test]
944    fn test_qgan_creation() {
945        let config = QGANConfig::default();
946        let qgan = QGAN::new(config).expect("failed to create QGAN");
947
948        assert_eq!(qgan.iteration, 0);
949        assert_eq!(qgan.training_stats.generator_losses.len(), 0);
950    }
951
952    #[test]
953    fn test_noise_generation() {
954        let config = QGANConfig::default();
955        let mut qgan = QGAN::new(config).expect("failed to create QGAN");
956
957        let noise = qgan.sample_noise().expect("failed to sample noise");
958        assert_eq!(noise.len(), qgan.config.latent_qubits);
959
960        // Test different noise types
961        qgan.config.noise_type = NoiseType::Uniform;
962        let uniform_noise = qgan.sample_noise().expect("failed to sample uniform noise");
963        assert_eq!(uniform_noise.len(), qgan.config.latent_qubits);
964
965        qgan.config.noise_type = NoiseType::QuantumSuperposition;
966        let quantum_noise = qgan.sample_noise().expect("failed to sample quantum noise");
967        assert_eq!(quantum_noise.len(), qgan.config.latent_qubits);
968    }
969
970    #[test]
971    fn test_data_generation() {
972        let config = QGANConfig::default();
973        let mut qgan = QGAN::new(config).expect("failed to create QGAN");
974
975        let generated_data = qgan.generate_data(5).expect("failed to generate data");
976        assert_eq!(generated_data.nrows(), 5);
977        assert_eq!(generated_data.ncols(), qgan.config.data_qubits);
978    }
979
980    #[test]
981    fn test_discrimination() {
982        let config = QGANConfig::default();
983        let qgan = QGAN::new(config).expect("failed to create QGAN");
984
985        // Create some mock data
986        let data = Array2::from_shape_fn((3, qgan.config.data_qubits), |(i, j)| {
987            (i as f64 + j as f64) / 10.0
988        });
989
990        let scores = qgan.discriminate(&data).expect("failed to discriminate");
991        assert_eq!(scores.len(), 3);
992
993        // Check scores are in [0, 1]
994        for &score in scores.iter() {
995            assert!(score >= 0.0 && score <= 1.0);
996        }
997    }
998
999    #[test]
1000    fn test_qgan_training_step() {
1001        let config = QGANConfig {
1002            batch_size: 4,
1003            ..Default::default()
1004        };
1005        let mut qgan = QGAN::new(config).expect("failed to create QGAN");
1006
1007        // Create some mock real data
1008        let real_data = Array2::from_shape_fn((10, qgan.config.data_qubits), |(i, j)| {
1009            ((i + j) as f64).sin()
1010        });
1011
1012        let metrics = qgan.train(&real_data).expect("failed to train QGAN");
1013
1014        assert_eq!(metrics.iteration, 0);
1015        assert!(metrics.fidelity >= 0.0 && metrics.fidelity <= 1.0);
1016        assert_eq!(qgan.iteration, 1);
1017        assert_eq!(qgan.training_stats.generator_losses.len(), 1);
1018        assert_eq!(qgan.training_stats.discriminator_losses.len(), 1);
1019    }
1020
1021    #[test]
1022    fn test_convergence_check() {
1023        let config = QGANConfig::default();
1024        let mut qgan = QGAN::new(config).expect("failed to create QGAN");
1025
1026        // Simulate high fidelity values for convergence
1027        for _ in 0..10 {
1028            qgan.training_stats.fidelities.push(0.95);
1029        }
1030
1031        assert!(qgan.has_converged(0.1, 5)); // Should converge with tolerance 0.1
1032        assert!(!qgan.has_converged(0.01, 5)); // Should not converge with stricter tolerance
1033    }
1034
1035    #[test]
1036    fn test_quantum_generator_circuit() {
1037        let circuit = QuantumGeneratorCircuit::new(3, 2, 4, NoiseType::Gaussian)
1038            .expect("failed to create generator circuit");
1039        let param_count = circuit.get_parameter_count();
1040        assert!(param_count > 0);
1041
1042        let noise = Array1::from_vec(vec![0.5, -0.5, 0.0]);
1043        let parameters = Array1::zeros(param_count);
1044
1045        let generated_data = circuit
1046            .generate_data(&noise, &parameters)
1047            .expect("failed to generate data");
1048        assert_eq!(generated_data.len(), 2);
1049    }
1050
1051    #[test]
1052    fn test_quantum_discriminator_circuit() {
1053        let circuit = QuantumDiscriminatorCircuit::new(3, 2, 4)
1054            .expect("failed to create discriminator circuit");
1055        let param_count = circuit.get_parameter_count();
1056        assert!(param_count > 0);
1057
1058        let data = Array1::from_vec(vec![0.5, -0.5, 0.0]);
1059        let parameters = Array1::zeros(param_count);
1060
1061        let score = circuit
1062            .discriminate_data(&data, &parameters)
1063            .expect("failed to discriminate data");
1064        assert!(score >= 0.0 && score <= 1.0);
1065    }
1066
1067    #[test]
1068    fn test_fidelity_computation() {
1069        let config = QGANConfig::default();
1070        let qgan = QGAN::new(config).expect("failed to create QGAN");
1071
1072        // Identical distributions should have high fidelity
1073        let data1 = Array2::ones((5, 3));
1074        let data2 = Array2::ones((5, 3));
1075        let fidelity = qgan
1076            .compute_fidelity(&data1, &data2)
1077            .expect("failed to compute fidelity");
1078        assert!(fidelity > 0.9);
1079
1080        // Very different distributions should have low fidelity
1081        let data3 = Array2::zeros((5, 3));
1082        let fidelity2 = qgan
1083            .compute_fidelity(&data1, &data3)
1084            .expect("failed to compute fidelity");
1085        assert!(fidelity2 < fidelity);
1086    }
1087}