1use crate::error::QuantRS2Error;
7use crate::gate_translation::GateType;
8use scirs2_core::Complex64;
9use crate::parallel_ops_stubs::*;
11use crate::buffer_pool::BufferPool;
13
14#[derive(Debug, Clone)]
16pub struct QuantumGate {
17 gate_type: GateType,
18 target_qubits: Vec<usize>,
19 control_qubits: Option<Vec<usize>>,
20}
21
22impl QuantumGate {
23 pub const fn new(
24 gate_type: GateType,
25 target_qubits: Vec<usize>,
26 control_qubits: Option<Vec<usize>>,
27 ) -> Self {
28 Self {
29 gate_type,
30 target_qubits,
31 control_qubits,
32 }
33 }
34
35 pub const fn gate_type(&self) -> &GateType {
36 &self.gate_type
37 }
38
39 pub fn target_qubits(&self) -> &[usize] {
40 &self.target_qubits
41 }
42
43 pub fn control_qubits(&self) -> Option<&[usize]> {
44 self.control_qubits.as_deref()
45 }
46}
47
48#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
50pub struct EquivalenceConfig {
51 pub absolute_tolerance: f64,
53 pub relative_tolerance: f64,
55 pub max_exact_qubits: usize,
57 pub use_probabilistic: bool,
59 pub num_test_vectors: usize,
61 pub enable_symmetry_detection: bool,
63 pub enable_simd: bool,
65 pub enable_parallel: bool,
67 pub memory_optimization_level: u8,
69 pub matrix_comparison_method: MatrixComparisonMethod,
71}
72
73impl Default for EquivalenceConfig {
74 fn default() -> Self {
75 Self {
76 absolute_tolerance: 1e-12,
77 relative_tolerance: 1e-10,
78 max_exact_qubits: 20,
79 use_probabilistic: true,
80 num_test_vectors: 100,
81 enable_symmetry_detection: true,
82 enable_simd: true,
83 enable_parallel: true,
84 memory_optimization_level: 2,
85 matrix_comparison_method: MatrixComparisonMethod::FrobeniusNorm,
86 }
87 }
88}
89
90#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
92pub enum MatrixComparisonMethod {
93 FrobeniusNorm,
95 SpectralNorm,
97 ElementWise,
99 SvdBased,
101}
102
103pub struct EquivalenceChecker {
105 config: EquivalenceConfig,
106 buffer_pool: Option<BufferPool<Complex64>>,
107}
108
109impl EquivalenceChecker {
110 pub fn new() -> Self {
112 let config = EquivalenceConfig::default();
113 Self::with_config(config)
114 }
115
116 pub const fn with_config(config: EquivalenceConfig) -> Self {
118 let buffer_pool = if config.memory_optimization_level > 0 {
119 Some(BufferPool::<Complex64>::new()) } else {
121 None
122 };
123
124 Self {
125 config,
126 buffer_pool,
127 }
128 }
129
130 pub fn are_circuits_equivalent(
132 &self,
133 circuit1: &[QuantumGate],
134 circuit2: &[QuantumGate],
135 num_qubits: usize,
136 ) -> Result<bool, QuantRS2Error> {
137 if num_qubits <= self.config.max_exact_qubits {
138 self.exact_equivalence_check(circuit1, circuit2, num_qubits)
139 } else if self.config.use_probabilistic {
140 self.probabilistic_equivalence_check(circuit1, circuit2, num_qubits)
141 } else {
142 Err(QuantRS2Error::UnsupportedOperation(
143 "Circuit too large for exact verification and probabilistic checking disabled"
144 .into(),
145 ))
146 }
147 }
148
149 fn exact_equivalence_check(
151 &self,
152 circuit1: &[QuantumGate],
153 circuit2: &[QuantumGate],
154 num_qubits: usize,
155 ) -> Result<bool, QuantRS2Error> {
156 let matrix1 = self.compute_circuit_matrix(circuit1, num_qubits)?;
157 let matrix2 = self.compute_circuit_matrix(circuit2, num_qubits)?;
158
159 Ok(self.matrices_equivalent(&matrix1, &matrix2))
160 }
161
162 fn probabilistic_equivalence_check(
164 &self,
165 circuit1: &[QuantumGate],
166 circuit2: &[QuantumGate],
167 num_qubits: usize,
168 ) -> Result<bool, QuantRS2Error> {
169 use scirs2_core::random::prelude::*;
170 let mut rng = thread_rng();
171
172 for _ in 0..self.config.num_test_vectors {
173 let mut state: Vec<Complex64> = (0..(1 << num_qubits))
175 .map(|_| Complex64::new(rng.gen::<f64>() - 0.5, rng.gen::<f64>() - 0.5))
176 .collect();
177
178 let norm: f64 = state.iter().map(|c| c.norm_sqr()).sum::<f64>().sqrt();
180 state.iter_mut().for_each(|c| *c /= norm);
181
182 let result1 = self.apply_circuit_to_state(circuit1, &state, num_qubits)?;
183 let result2 = self.apply_circuit_to_state(circuit2, &state, num_qubits)?;
184
185 if !self.states_equivalent(&result1, &result2) {
186 return Ok(false);
187 }
188 }
189
190 Ok(true)
191 }
192
193 fn compute_circuit_matrix(
195 &self,
196 circuit: &[QuantumGate],
197 num_qubits: usize,
198 ) -> Result<Vec<Vec<Complex64>>, QuantRS2Error> {
199 let dim = 1 << num_qubits;
200 let mut matrix = vec![vec![Complex64::new(0.0, 0.0); dim]; dim];
201
202 for i in 0..dim {
204 matrix[i][i] = Complex64::new(1.0, 0.0);
205 }
206
207 for gate in circuit {
209 let gate_matrix = self.gate_to_matrix(gate, num_qubits)?;
210 matrix = self.multiply_matrices(&gate_matrix, &matrix);
211 }
212
213 Ok(matrix)
214 }
215
216 fn gate_to_matrix(
218 &self,
219 gate: &QuantumGate,
220 num_qubits: usize,
221 ) -> Result<Vec<Vec<Complex64>>, QuantRS2Error> {
222 use crate::gate_translation::GateType;
223
224 let dim = 1 << num_qubits;
225 let mut matrix = vec![vec![Complex64::new(0.0, 0.0); dim]; dim];
226
227 for i in 0..dim {
229 matrix[i][i] = Complex64::new(1.0, 0.0);
230 }
231
232 match gate.gate_type() {
233 GateType::X => {
234 self.apply_single_qubit_gate(
235 &mut matrix,
236 gate.target_qubits()[0],
237 &[
238 [Complex64::new(0.0, 0.0), Complex64::new(1.0, 0.0)],
239 [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)],
240 ],
241 num_qubits,
242 );
243 }
244 GateType::Y => {
245 self.apply_single_qubit_gate(
246 &mut matrix,
247 gate.target_qubits()[0],
248 &[
249 [Complex64::new(0.0, 0.0), Complex64::new(0.0, -1.0)],
250 [Complex64::new(0.0, 1.0), Complex64::new(0.0, 0.0)],
251 ],
252 num_qubits,
253 );
254 }
255 GateType::Z => {
256 self.apply_single_qubit_gate(
257 &mut matrix,
258 gate.target_qubits()[0],
259 &[
260 [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)],
261 [Complex64::new(0.0, 0.0), Complex64::new(-1.0, 0.0)],
262 ],
263 num_qubits,
264 );
265 }
266 GateType::H => {
267 let inv_sqrt2 = 1.0 / std::f64::consts::SQRT_2;
268 self.apply_single_qubit_gate(
269 &mut matrix,
270 gate.target_qubits()[0],
271 &[
272 [
273 Complex64::new(inv_sqrt2, 0.0),
274 Complex64::new(inv_sqrt2, 0.0),
275 ],
276 [
277 Complex64::new(inv_sqrt2, 0.0),
278 Complex64::new(-inv_sqrt2, 0.0),
279 ],
280 ],
281 num_qubits,
282 );
283 }
284 GateType::CNOT => {
285 if gate.target_qubits().len() >= 2 {
286 self.apply_cnot_gate(
287 &mut matrix,
288 gate.target_qubits()[0],
289 gate.target_qubits()[1],
290 num_qubits,
291 );
292 }
293 }
294 GateType::S | GateType::SqrtZ => {
295 self.apply_single_qubit_gate(
296 &mut matrix,
297 gate.target_qubits()[0],
298 &[
299 [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)],
300 [Complex64::new(0.0, 0.0), Complex64::new(0.0, 1.0)],
301 ],
302 num_qubits,
303 );
304 }
305 GateType::T => {
306 let sqrt2_inv = 1.0 / std::f64::consts::SQRT_2;
307 self.apply_single_qubit_gate(
308 &mut matrix,
309 gate.target_qubits()[0],
310 &[
311 [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)],
312 [
313 Complex64::new(0.0, 0.0),
314 Complex64::new(sqrt2_inv, sqrt2_inv),
315 ],
316 ],
317 num_qubits,
318 );
319 }
320 GateType::SqrtX => {
321 let sqrt2_inv = 1.0 / std::f64::consts::SQRT_2;
322 self.apply_single_qubit_gate(
323 &mut matrix,
324 gate.target_qubits()[0],
325 &[
326 [Complex64::new(0.5, 0.5), Complex64::new(0.5, -0.5)],
327 [Complex64::new(0.5, -0.5), Complex64::new(0.5, 0.5)],
328 ],
329 num_qubits,
330 );
331 }
332 GateType::SqrtY => {
333 let sqrt2_inv = 1.0 / std::f64::consts::SQRT_2;
334 self.apply_single_qubit_gate(
335 &mut matrix,
336 gate.target_qubits()[0],
337 &[
338 [
339 Complex64::new(sqrt2_inv, 0.0),
340 Complex64::new(-sqrt2_inv, 0.0),
341 ],
342 [
343 Complex64::new(sqrt2_inv, 0.0),
344 Complex64::new(sqrt2_inv, 0.0),
345 ],
346 ],
347 num_qubits,
348 );
349 }
350 GateType::CZ => {
351 if gate.target_qubits().len() >= 2 {
352 self.apply_cz_gate(
353 &mut matrix,
354 gate.target_qubits()[0],
355 gate.target_qubits()[1],
356 num_qubits,
357 );
358 }
359 }
360 GateType::CY => {
361 if gate.target_qubits().len() >= 2 {
362 self.apply_controlled_gate(
363 &mut matrix,
364 gate.target_qubits()[0],
365 gate.target_qubits()[1],
366 &[
367 [Complex64::new(0.0, 0.0), Complex64::new(0.0, -1.0)],
368 [Complex64::new(0.0, 1.0), Complex64::new(0.0, 0.0)],
369 ],
370 num_qubits,
371 );
372 }
373 }
374 GateType::SWAP => {
375 if gate.target_qubits().len() >= 2 {
376 self.apply_swap_gate(
377 &mut matrix,
378 gate.target_qubits()[0],
379 gate.target_qubits()[1],
380 num_qubits,
381 );
382 }
383 }
384 GateType::ISwap => {
385 if gate.target_qubits().len() >= 2 {
386 self.apply_iswap_gate(
387 &mut matrix,
388 gate.target_qubits()[0],
389 gate.target_qubits()[1],
390 num_qubits,
391 );
392 }
393 }
394 _ => {
395 eprintln!(
397 "Warning: Gate type {:?} not fully implemented in equivalence checker",
398 gate.gate_type()
399 );
400 }
401 }
402
403 Ok(matrix)
404 }
405
406 fn apply_single_qubit_gate(
408 &self,
409 matrix: &mut [Vec<Complex64>],
410 target_qubit: usize,
411 gate_matrix: &[[Complex64; 2]; 2],
412 num_qubits: usize,
413 ) {
414 let dim = 1 << num_qubits;
415 let target_bit = 1 << target_qubit;
416
417 for i in 0..dim {
418 if i & target_bit == 0 {
419 let j = i | target_bit;
420 for k in 0..dim {
421 let old_i = matrix[i][k];
422 let old_j = matrix[j][k];
423 matrix[i][k] = gate_matrix[0][0] * old_i + gate_matrix[0][1] * old_j;
424 matrix[j][k] = gate_matrix[1][0] * old_i + gate_matrix[1][1] * old_j;
425 }
426 }
427 }
428 }
429
430 fn apply_cnot_gate(
432 &self,
433 matrix: &mut [Vec<Complex64>],
434 control_qubit: usize,
435 target_qubit: usize,
436 num_qubits: usize,
437 ) {
438 let dim = 1 << num_qubits;
439 let control_bit = 1 << control_qubit;
440 let target_bit = 1 << target_qubit;
441
442 for i in 0..dim {
443 if i & control_bit != 0 {
444 let j = i ^ target_bit;
445 if i != j {
446 for k in 0..dim {
447 let temp = matrix[i][k];
448 matrix[i][k] = matrix[j][k];
449 matrix[j][k] = temp;
450 }
451 }
452 }
453 }
454 }
455
456 fn apply_cz_gate(
458 &self,
459 matrix: &mut [Vec<Complex64>],
460 control_qubit: usize,
461 target_qubit: usize,
462 num_qubits: usize,
463 ) {
464 let dim = 1 << num_qubits;
465 let control_bit = 1 << control_qubit;
466 let target_bit = 1 << target_qubit;
467
468 for i in 0..dim {
469 if (i & control_bit != 0) && (i & target_bit != 0) {
470 for k in 0..dim {
471 matrix[i][k] *= -1.0;
472 }
473 }
474 }
475 }
476
477 fn apply_controlled_gate(
479 &self,
480 matrix: &mut [Vec<Complex64>],
481 control_qubit: usize,
482 target_qubit: usize,
483 gate_matrix: &[[Complex64; 2]; 2],
484 num_qubits: usize,
485 ) {
486 let dim = 1 << num_qubits;
487 let control_bit = 1 << control_qubit;
488 let target_bit = 1 << target_qubit;
489
490 for i in 0..dim {
491 if i & control_bit != 0 {
492 let j = i ^ target_bit;
493 for k in 0..dim {
494 let old_i = matrix[i][k];
495 let old_j = matrix[j][k];
496 matrix[i][k] = gate_matrix[0][0] * old_i + gate_matrix[0][1] * old_j;
497 matrix[j][k] = gate_matrix[1][0] * old_i + gate_matrix[1][1] * old_j;
498 }
499 }
500 }
501 }
502
503 fn apply_swap_gate(
505 &self,
506 matrix: &mut [Vec<Complex64>],
507 qubit1: usize,
508 qubit2: usize,
509 num_qubits: usize,
510 ) {
511 let dim = 1 << num_qubits;
512 let bit1 = 1 << qubit1;
513 let bit2 = 1 << qubit2;
514
515 for i in 0..dim {
516 let state1 = (i & bit1) != 0;
517 let state2 = (i & bit2) != 0;
518
519 if state1 != state2 {
520 let j = i ^ bit1 ^ bit2;
521 if i < j {
522 for k in 0..dim {
523 let temp = matrix[i][k];
524 matrix[i][k] = matrix[j][k];
525 matrix[j][k] = temp;
526 }
527 }
528 }
529 }
530 }
531
532 fn apply_iswap_gate(
534 &self,
535 matrix: &mut [Vec<Complex64>],
536 qubit1: usize,
537 qubit2: usize,
538 num_qubits: usize,
539 ) {
540 let dim = 1 << num_qubits;
541 let bit1 = 1 << qubit1;
542 let bit2 = 1 << qubit2;
543
544 for i in 0..dim {
545 let state1 = (i & bit1) != 0;
546 let state2 = (i & bit2) != 0;
547
548 if state1 != state2 {
549 let j = i ^ bit1 ^ bit2;
550 if i < j {
551 for k in 0..dim {
552 let temp = matrix[i][k];
553 matrix[i][k] = Complex64::new(0.0, 1.0) * matrix[j][k];
554 matrix[j][k] = Complex64::new(0.0, 1.0) * temp;
555 }
556 }
557 }
558 }
559 }
560
561 fn multiply_matrices(
563 &self,
564 a: &Vec<Vec<Complex64>>,
565 b: &Vec<Vec<Complex64>>,
566 ) -> Vec<Vec<Complex64>> {
567 if self.config.enable_simd || self.config.enable_parallel {
569 self.multiply_matrices_simd(a, b)
570 } else {
571 self.multiply_matrices_standard(a, b)
572 }
573 }
574
575 fn multiply_matrices_standard(
577 &self,
578 a: &[Vec<Complex64>],
579 b: &[Vec<Complex64>],
580 ) -> Vec<Vec<Complex64>> {
581 let n = a.len();
582 let mut result = vec![vec![Complex64::new(0.0, 0.0); n]; n];
583
584 for i in 0..n {
585 for j in 0..n {
586 for k in 0..n {
587 result[i][j] += a[i][k] * b[k][j];
588 }
589 }
590 }
591
592 result
593 }
594
595 fn multiply_matrices_simd(
597 &self,
598 a: &[Vec<Complex64>],
599 b: &[Vec<Complex64>],
600 ) -> Vec<Vec<Complex64>> {
601 let n = a.len();
602 let mut result = vec![vec![Complex64::new(0.0, 0.0); n]; n];
603
604 if self.config.enable_parallel && n > 64 {
606 result.par_iter_mut().enumerate().for_each(|(i, row)| {
607 for j in 0..n {
608 let mut sum = Complex64::new(0.0, 0.0);
609 for k in 0..n {
610 sum += a[i][k] * b[k][j];
611 }
612 row[j] = sum;
613 }
614 });
615 } else {
616 for i in 0..n {
618 for j in 0..n {
619 for k in 0..n {
620 result[i][j] += a[i][k] * b[k][j];
621 }
622 }
623 }
624 }
625
626 result
627 }
628
629 fn matrices_equivalent(
631 &self,
632 matrix1: &Vec<Vec<Complex64>>,
633 matrix2: &Vec<Vec<Complex64>>,
634 ) -> bool {
635 self.matrices_equivalent_enhanced(matrix1, matrix2)
637 }
638
639 fn matrices_equivalent_enhanced(
641 &self,
642 matrix1: &Vec<Vec<Complex64>>,
643 matrix2: &Vec<Vec<Complex64>>,
644 ) -> bool {
645 if matrix1.len() != matrix2.len() {
646 return false;
647 }
648
649 if self.config.enable_parallel && matrix1.len() > 32 {
650 matrix1
652 .par_iter()
653 .zip(matrix2.par_iter())
654 .all(|(row1, row2)| {
655 row1.iter().zip(row2.iter()).all(|(elem1, elem2)| {
656 self.complex_numbers_equivalent_scirs2(*elem1, *elem2)
657 })
658 })
659 } else {
660 for (row1, row2) in matrix1.iter().zip(matrix2.iter()) {
662 for (elem1, elem2) in row1.iter().zip(row2.iter()) {
663 if !self.complex_numbers_equivalent_scirs2(*elem1, *elem2) {
664 return false;
665 }
666 }
667 }
668 true
669 }
670 }
671
672 fn apply_circuit_to_state(
674 &self,
675 circuit: &[QuantumGate],
676 initial_state: &[Complex64],
677 num_qubits: usize,
678 ) -> Result<Vec<Complex64>, QuantRS2Error> {
679 let mut state = initial_state.to_vec();
680
681 for gate in circuit {
682 self.apply_gate_to_state(gate, &mut state, num_qubits)?;
683 }
684
685 Ok(state)
686 }
687
688 fn apply_gate_to_state(
690 &self,
691 gate: &QuantumGate,
692 state: &mut [Complex64],
693 num_qubits: usize,
694 ) -> Result<(), QuantRS2Error> {
695 use crate::gate_translation::GateType;
696
697 match gate.gate_type() {
698 GateType::X => {
699 let target = gate.target_qubits()[0];
700 let target_bit = 1 << target;
701 for i in 0..(1 << num_qubits) {
702 let j = i ^ target_bit;
703 if i < j {
704 state.swap(i, j);
705 }
706 }
707 }
708 GateType::Y => {
709 let target = gate.target_qubits()[0];
710 let target_bit = 1 << target;
711 for i in 0..(1 << num_qubits) {
712 let j = i ^ target_bit;
713 if i < j {
714 let temp = state[i];
715 state[i] = Complex64::new(0.0, 1.0) * state[j];
716 state[j] = Complex64::new(0.0, -1.0) * temp;
717 }
718 }
719 }
720 GateType::Z => {
721 let target = gate.target_qubits()[0];
722 let target_bit = 1 << target;
723 for i in 0..(1 << num_qubits) {
724 if i & target_bit != 0 {
725 state[i] *= -1.0;
726 }
727 }
728 }
729 GateType::H => {
730 let target = gate.target_qubits()[0];
731 let target_bit = 1 << target;
732 let inv_sqrt2 = 1.0 / std::f64::consts::SQRT_2;
733 for i in 0..(1 << num_qubits) {
734 let j = i ^ target_bit;
735 if i < j {
736 let temp = state[i];
737 state[i] = inv_sqrt2 * (temp + state[j]);
738 state[j] = inv_sqrt2 * (temp - state[j]);
739 }
740 }
741 }
742 GateType::CNOT => {
743 if gate.target_qubits().len() >= 2 {
744 let control = gate.target_qubits()[0];
745 let target = gate.target_qubits()[1];
746 let control_bit = 1 << control;
747 let target_bit = 1 << target;
748
749 for i in 0..(1 << num_qubits) {
750 if i & control_bit != 0 {
751 let j = i ^ target_bit;
752 if i != j {
753 state.swap(i, j);
754 }
755 }
756 }
757 }
758 }
759 GateType::S | GateType::SqrtZ => {
760 let target = gate.target_qubits()[0];
761 let target_bit = 1 << target;
762 for i in 0..(1 << num_qubits) {
763 if i & target_bit != 0 {
764 state[i] *= Complex64::new(0.0, 1.0);
765 }
766 }
767 }
768 GateType::T => {
769 let target = gate.target_qubits()[0];
770 let target_bit = 1 << target;
771 let sqrt2_inv = 1.0 / std::f64::consts::SQRT_2;
772 let t_phase = Complex64::new(sqrt2_inv, sqrt2_inv);
773 for i in 0..(1 << num_qubits) {
774 if i & target_bit != 0 {
775 state[i] *= t_phase;
776 }
777 }
778 }
779 GateType::SqrtX => {
780 let target = gate.target_qubits()[0];
781 let target_bit = 1 << target;
782 for i in 0..(1 << num_qubits) {
783 let j = i ^ target_bit;
784 if i < j {
785 let temp = state[i];
786 state[i] =
787 Complex64::new(0.5, 0.5) * temp + Complex64::new(0.5, -0.5) * state[j];
788 state[j] =
789 Complex64::new(0.5, -0.5) * temp + Complex64::new(0.5, 0.5) * state[j];
790 }
791 }
792 }
793 GateType::SqrtY => {
794 let target = gate.target_qubits()[0];
795 let target_bit = 1 << target;
796 let sqrt2_inv = 1.0 / std::f64::consts::SQRT_2;
797 for i in 0..(1 << num_qubits) {
798 let j = i ^ target_bit;
799 if i < j {
800 let temp = state[i];
801 state[i] = sqrt2_inv * (temp - state[j]);
802 state[j] = sqrt2_inv * (temp + state[j]);
803 }
804 }
805 }
806 GateType::CZ => {
807 if gate.target_qubits().len() >= 2 {
808 let control = gate.target_qubits()[0];
809 let target = gate.target_qubits()[1];
810 let control_bit = 1 << control;
811 let target_bit = 1 << target;
812
813 for i in 0..(1 << num_qubits) {
814 if (i & control_bit != 0) && (i & target_bit != 0) {
815 state[i] *= -1.0;
816 }
817 }
818 }
819 }
820 GateType::CY => {
821 if gate.target_qubits().len() >= 2 {
822 let control = gate.target_qubits()[0];
823 let target = gate.target_qubits()[1];
824 let control_bit = 1 << control;
825 let target_bit = 1 << target;
826
827 for i in 0..(1 << num_qubits) {
828 if i & control_bit != 0 {
829 let j = i ^ target_bit;
830 if i < j {
831 let temp = state[i];
832 state[i] = Complex64::new(0.0, 1.0) * state[j];
833 state[j] = Complex64::new(0.0, -1.0) * temp;
834 }
835 }
836 }
837 }
838 }
839 GateType::SWAP => {
840 if gate.target_qubits().len() >= 2 {
841 let qubit1 = gate.target_qubits()[0];
842 let qubit2 = gate.target_qubits()[1];
843 let bit1 = 1 << qubit1;
844 let bit2 = 1 << qubit2;
845
846 for i in 0..(1 << num_qubits) {
847 let state1 = (i & bit1) != 0;
848 let state2 = (i & bit2) != 0;
849
850 if state1 != state2 {
851 let j = i ^ bit1 ^ bit2;
852 if i < j {
853 state.swap(i, j);
854 }
855 }
856 }
857 }
858 }
859 GateType::ISwap => {
860 if gate.target_qubits().len() >= 2 {
861 let qubit1 = gate.target_qubits()[0];
862 let qubit2 = gate.target_qubits()[1];
863 let bit1 = 1 << qubit1;
864 let bit2 = 1 << qubit2;
865
866 for i in 0..(1 << num_qubits) {
867 let state1 = (i & bit1) != 0;
868 let state2 = (i & bit2) != 0;
869
870 if state1 != state2 {
871 let j = i ^ bit1 ^ bit2;
872 if i < j {
873 let temp = state[i];
874 state[i] = Complex64::new(0.0, 1.0) * state[j];
875 state[j] = Complex64::new(0.0, 1.0) * temp;
876 }
877 }
878 }
879 }
880 }
881 _ => {
882 }
884 }
885
886 Ok(())
887 }
888
889 fn states_equivalent(&self, state1: &[Complex64], state2: &[Complex64]) -> bool {
891 state1
892 .iter()
893 .zip(state2.iter())
894 .all(|(s1, s2)| self.complex_numbers_equivalent(*s1, *s2))
895 }
896
897 fn complex_numbers_equivalent_scirs2(&self, z1: Complex64, z2: Complex64) -> bool {
899 let diff = z1 - z2;
901 let abs_error = diff.norm();
902
903 if abs_error <= self.config.absolute_tolerance {
905 return true;
906 }
907
908 let max_magnitude = z1.norm().max(z2.norm());
910 if max_magnitude > 0.0 {
911 let rel_error = abs_error / max_magnitude;
912 if rel_error <= self.config.relative_tolerance {
913 return true;
914 }
915 }
916
917 let machine_epsilon = f64::EPSILON;
919 abs_error <= 10.0 * machine_epsilon
920 }
921
922 fn complex_numbers_equivalent(&self, z1: Complex64, z2: Complex64) -> bool {
924 self.complex_numbers_equivalent_scirs2(z1, z2)
925 }
926
927 pub fn advanced_equivalence_check(
929 &self,
930 circuit1: &[QuantumGate],
931 circuit2: &[QuantumGate],
932 num_qubits: usize,
933 ) -> Result<EquivalenceResult, QuantRS2Error> {
934 let basic_equivalent = self.are_circuits_equivalent(circuit1, circuit2, num_qubits)?;
935
936 let mut result = EquivalenceResult {
937 equivalent: basic_equivalent,
938 phase_equivalent: false,
939 global_phase_difference: None,
940 symmetry_analysis: None,
941 };
942
943 if !basic_equivalent && self.config.enable_symmetry_detection {
944 result.phase_equivalent =
946 self.check_phase_equivalence(circuit1, circuit2, num_qubits)?;
947 }
948
949 Ok(result)
950 }
951
952 fn check_phase_equivalence(
954 &self,
955 circuit1: &[QuantumGate],
956 circuit2: &[QuantumGate],
957 num_qubits: usize,
958 ) -> Result<bool, QuantRS2Error> {
959 if num_qubits > self.config.max_exact_qubits {
960 return Ok(false); }
962
963 let matrix1 = self.compute_circuit_matrix(circuit1, num_qubits)?;
964 let matrix2 = self.compute_circuit_matrix(circuit2, num_qubits)?;
965
966 let mut global_phase = None;
968
969 for i in 0..matrix1.len() {
970 for j in 0..matrix1[i].len() {
971 if matrix1[i][j].norm() > self.config.absolute_tolerance
972 && matrix2[i][j].norm() > self.config.absolute_tolerance
973 {
974 let phase = matrix2[i][j] / matrix1[i][j];
975 if let Some(existing_phase) = global_phase {
976 if !self.complex_numbers_equivalent(phase, existing_phase) {
977 return Ok(false);
978 }
979 } else {
980 global_phase = Some(phase);
981 }
982 }
983 }
984 }
985
986 if let Some(phase) = global_phase {
988 for i in 0..matrix1.len() {
989 for j in 0..matrix1[i].len() {
990 let expected = matrix1[i][j] * phase;
991 if !self.complex_numbers_equivalent(expected, matrix2[i][j]) {
992 return Ok(false);
993 }
994 }
995 }
996 Ok(true)
997 } else {
998 Ok(true) }
1000 }
1001}
1002
1003#[derive(Debug, Clone)]
1005pub struct EquivalenceResult {
1006 pub equivalent: bool,
1008 pub phase_equivalent: bool,
1010 pub global_phase_difference: Option<Complex64>,
1012 pub symmetry_analysis: Option<SymmetryAnalysis>,
1014}
1015
1016#[derive(Debug, Clone)]
1018pub struct SymmetryAnalysis {
1019 pub symmetries: Vec<String>,
1021 pub canonical_form: Option<Vec<QuantumGate>>,
1023}
1024
1025#[cfg(test)]
1026mod tests {
1027 use super::*;
1028 use super::{GateType, QuantumGate};
1029
1030 #[test]
1031 fn test_identity_equivalence() {
1032 let checker = EquivalenceChecker::new();
1033 let circuit1 = vec![];
1034 let circuit2 = vec![];
1035
1036 assert!(checker
1037 .are_circuits_equivalent(&circuit1, &circuit2, 2)
1038 .expect("empty circuits should be equivalent"));
1039 }
1040
1041 #[test]
1042 fn test_single_gate_equivalence() {
1043 let checker = EquivalenceChecker::new();
1044 let gate1 = QuantumGate::new(GateType::X, vec![0], None);
1045 let gate2 = QuantumGate::new(GateType::X, vec![0], None);
1046
1047 let circuit1 = vec![gate1];
1048 let circuit2 = vec![gate2];
1049
1050 assert!(checker
1051 .are_circuits_equivalent(&circuit1, &circuit2, 2)
1052 .expect("same X gates should be equivalent"));
1053 }
1054
1055 #[test]
1056 fn test_different_gates_not_equivalent() {
1057 let checker = EquivalenceChecker::new();
1058 let gate1 = QuantumGate::new(GateType::X, vec![0], None);
1059 let gate2 = QuantumGate::new(GateType::Y, vec![0], None);
1060
1061 let circuit1 = vec![gate1];
1062 let circuit2 = vec![gate2];
1063
1064 assert!(!checker
1065 .are_circuits_equivalent(&circuit1, &circuit2, 2)
1066 .expect("equivalence check should succeed"));
1067 }
1068
1069 #[test]
1070 fn test_complex_number_equivalence() {
1071 let checker = EquivalenceChecker::new();
1072
1073 let z1 = Complex64::new(1.0, 0.0);
1074 let z2 = Complex64::new(1.0 + 1e-11, 0.0); assert!(checker.complex_numbers_equivalent(z1, z2));
1077
1078 let z3 = Complex64::new(1.0, 0.0);
1079 let z4 = Complex64::new(2.0, 0.0);
1080
1081 assert!(!checker.complex_numbers_equivalent(z3, z4));
1082 }
1083
1084 #[test]
1085 fn test_hadamard_equivalence() {
1086 let checker = EquivalenceChecker::new();
1087 let h_gate = QuantumGate::new(GateType::H, vec![0], None);
1088
1089 let circuit1 = vec![h_gate.clone(), h_gate.clone()];
1090 let circuit2 = vec![];
1091
1092 assert!(checker
1094 .are_circuits_equivalent(&circuit1, &circuit2, 1)
1095 .expect("H*H should equal identity"));
1096 }
1097
1098 #[test]
1099 fn test_s_gate_equivalence() {
1100 let checker = EquivalenceChecker::new();
1101 let s_gate = QuantumGate::new(GateType::S, vec![0], None);
1102
1103 let circuit1 = vec![
1104 s_gate.clone(),
1105 s_gate.clone(),
1106 s_gate.clone(),
1107 s_gate.clone(),
1108 ];
1109 let circuit2 = vec![];
1110
1111 assert!(checker
1113 .are_circuits_equivalent(&circuit1, &circuit2, 1)
1114 .expect("S^4 should equal identity"));
1115 }
1116
1117 #[test]
1118 fn test_t_gate_equivalence() {
1119 let checker = EquivalenceChecker::new();
1120 let t_gate = QuantumGate::new(GateType::T, vec![0], None);
1121
1122 let circuit1 = vec![
1123 t_gate.clone(),
1124 t_gate.clone(),
1125 t_gate.clone(),
1126 t_gate.clone(),
1127 t_gate.clone(),
1128 t_gate.clone(),
1129 t_gate.clone(),
1130 t_gate.clone(),
1131 ];
1132 let circuit2 = vec![];
1133
1134 assert!(checker
1136 .are_circuits_equivalent(&circuit1, &circuit2, 1)
1137 .expect("T^8 should equal identity"));
1138 }
1139
1140 #[test]
1141 fn test_sqrt_gate_equivalence() {
1142 let checker = EquivalenceChecker::new();
1143 let sqrt_x_gate = QuantumGate::new(GateType::SqrtX, vec![0], None);
1144
1145 let circuit1 = vec![sqrt_x_gate.clone(), sqrt_x_gate.clone()];
1146 let x_gate = QuantumGate::new(GateType::X, vec![0], None);
1147 let circuit2 = vec![x_gate];
1148
1149 assert!(checker
1151 .are_circuits_equivalent(&circuit1, &circuit2, 1)
1152 .expect("sqrt(X)^2 should equal X"));
1153 }
1154
1155 #[test]
1156 fn test_cz_gate_equivalence() {
1157 let checker = EquivalenceChecker::new();
1158 let cz_gate = QuantumGate::new(GateType::CZ, vec![0, 1], None);
1159
1160 let circuit1 = vec![cz_gate.clone(), cz_gate.clone()];
1161 let circuit2 = vec![];
1162
1163 assert!(checker
1165 .are_circuits_equivalent(&circuit1, &circuit2, 2)
1166 .expect("CZ*CZ should equal identity"));
1167 }
1168
1169 #[test]
1170 fn test_swap_gate_equivalence() {
1171 let checker = EquivalenceChecker::new();
1172 let swap_gate = QuantumGate::new(GateType::SWAP, vec![0, 1], None);
1173
1174 let circuit1 = vec![swap_gate.clone(), swap_gate.clone()];
1175 let circuit2 = vec![];
1176
1177 assert!(checker
1179 .are_circuits_equivalent(&circuit1, &circuit2, 2)
1180 .expect("SWAP*SWAP should equal identity"));
1181 }
1182
1183 #[test]
1184 fn test_iswap_gate_equivalence() {
1185 let checker = EquivalenceChecker::new();
1186 let iswap_gate = QuantumGate::new(GateType::ISwap, vec![0, 1], None);
1187
1188 let circuit1 = vec![
1190 iswap_gate.clone(),
1191 iswap_gate.clone(),
1192 iswap_gate.clone(),
1193 iswap_gate.clone(),
1194 ];
1195 let circuit2 = vec![];
1196
1197 assert!(checker
1199 .are_circuits_equivalent(&circuit1, &circuit2, 2)
1200 .expect("iSWAP^4 should equal identity"));
1201 }
1202
1203 #[test]
1204 fn test_cnot_cz_hadamard_equivalence() {
1205 let checker = EquivalenceChecker::new();
1206
1207 let cnot1 = QuantumGate::new(GateType::CNOT, vec![0, 1], None);
1209 let cnot2 = QuantumGate::new(GateType::CNOT, vec![0, 1], None);
1210
1211 let circuit1 = vec![cnot1.clone(), cnot2.clone()];
1212 let circuit2 = vec![];
1213
1214 assert!(checker
1216 .are_circuits_equivalent(&circuit1, &circuit2, 2)
1217 .expect("CNOT*CNOT should equal identity"));
1218 }
1219
1220 #[test]
1221 fn test_advanced_equivalence_features() {
1222 let checker = EquivalenceChecker::new();
1223 let x_gate = QuantumGate::new(GateType::X, vec![0], None);
1224 let y_gate = QuantumGate::new(GateType::Y, vec![0], None);
1225
1226 let circuit1 = vec![x_gate.clone()];
1227 let circuit2 = vec![y_gate];
1228
1229 let result = checker
1230 .advanced_equivalence_check(&circuit1, &circuit2, 1)
1231 .expect("advanced equivalence check should succeed");
1232
1233 assert!(!result.equivalent);
1235
1236 let x_circuit = vec![x_gate.clone()];
1238 let xx_circuit = vec![x_gate.clone(), x_gate.clone()];
1239
1240 let result2 = checker
1241 .advanced_equivalence_check(&x_circuit, &xx_circuit, 1)
1242 .expect("advanced equivalence check should succeed");
1243
1244 assert!(!result2.equivalent);
1246 }
1247}