quantrs2_core/
variational_optimization.rs

1//! Enhanced variational parameter optimization using SciRS2
2//!
3//! This module provides advanced optimization techniques for variational quantum algorithms
4//! leveraging SciRS2's optimization capabilities including:
5//! - Gradient-based methods (BFGS, L-BFGS, Conjugate Gradient)
6//! - Gradient-free methods (Nelder-Mead, Powell, COBYLA)
7//! - Stochastic optimization (SPSA, Adam, RMSprop)
8//! - Natural gradient descent for quantum circuits
9
10use crate::{
11    error::{QuantRS2Error, QuantRS2Result},
12    variational::VariationalCircuit,
13};
14use scirs2_core::ndarray::{Array1, Array2};
15// use scirs2_core::parallel_ops::*;
16use crate::optimization_stubs::{minimize, Method, OptimizeResult, Options};
17use crate::parallel_ops_stubs::*;
18// use scirs2_core::optimization::{minimize, Method, OptimizeResult, Options};
19use rustc_hash::FxHashMap;
20use std::sync::{Arc, Mutex};
21
22// Import SciRS2 optimization
23// extern crate scirs2_optimize;
24// use scirs2_optimize::unconstrained::{minimize, Method, Options};
25
26// Import SciRS2 linear algebra for natural gradient
27// extern crate scirs2_linalg;
28
29/// Advanced optimizer for variational quantum circuits
30pub struct VariationalQuantumOptimizer {
31    /// Optimization method
32    method: OptimizationMethod,
33    /// Configuration
34    config: OptimizationConfig,
35    /// History of optimization
36    history: OptimizationHistory,
37    /// Fisher information matrix cache
38    fisher_cache: Option<FisherCache>,
39}
40
41/// Optimization methods available
42#[derive(Debug, Clone)]
43pub enum OptimizationMethod {
44    /// Standard gradient descent
45    GradientDescent { learning_rate: f64 },
46    /// Momentum-based gradient descent
47    Momentum { learning_rate: f64, momentum: f64 },
48    /// Adam optimizer
49    Adam {
50        learning_rate: f64,
51        beta1: f64,
52        beta2: f64,
53        epsilon: f64,
54    },
55    /// RMSprop optimizer
56    RMSprop {
57        learning_rate: f64,
58        decay_rate: f64,
59        epsilon: f64,
60    },
61    /// Natural gradient descent
62    NaturalGradient {
63        learning_rate: f64,
64        regularization: f64,
65    },
66    /// SciRS2 BFGS method
67    BFGS,
68    /// SciRS2 L-BFGS method
69    LBFGS { memory_size: usize },
70    /// SciRS2 Conjugate Gradient
71    ConjugateGradient,
72    /// SciRS2 Nelder-Mead simplex
73    NelderMead,
74    /// SciRS2 Powell's method
75    Powell,
76    /// Simultaneous Perturbation Stochastic Approximation
77    SPSA {
78        a: f64,
79        c: f64,
80        alpha: f64,
81        gamma: f64,
82    },
83    /// Quantum Natural SPSA
84    QNSPSA {
85        learning_rate: f64,
86        regularization: f64,
87        spsa_epsilon: f64,
88    },
89}
90
91/// Configuration for optimization
92#[derive(Clone)]
93pub struct OptimizationConfig {
94    /// Maximum iterations
95    pub max_iterations: usize,
96    /// Function tolerance
97    pub f_tol: f64,
98    /// Gradient tolerance
99    pub g_tol: f64,
100    /// Parameter tolerance
101    pub x_tol: f64,
102    /// Enable parallel gradient computation
103    pub parallel_gradients: bool,
104    /// Batch size for stochastic methods
105    pub batch_size: Option<usize>,
106    /// Random seed
107    pub seed: Option<u64>,
108    /// Callback function after each iteration
109    pub callback: Option<Arc<dyn Fn(&[f64], f64) + Send + Sync>>,
110    /// Early stopping patience
111    pub patience: Option<usize>,
112    /// Gradient clipping value
113    pub grad_clip: Option<f64>,
114}
115
116impl Default for OptimizationConfig {
117    fn default() -> Self {
118        Self {
119            max_iterations: 100,
120            f_tol: 1e-8,
121            g_tol: 1e-8,
122            x_tol: 1e-8,
123            parallel_gradients: true,
124            batch_size: None,
125            seed: None,
126            callback: None,
127            patience: None,
128            grad_clip: None,
129        }
130    }
131}
132
133/// Optimization history tracking
134#[derive(Debug, Clone)]
135pub struct OptimizationHistory {
136    /// Parameter values at each iteration
137    pub parameters: Vec<Vec<f64>>,
138    /// Loss values
139    pub loss_values: Vec<f64>,
140    /// Gradient norms
141    pub gradient_norms: Vec<f64>,
142    /// Iteration times (ms)
143    pub iteration_times: Vec<f64>,
144    /// Total iterations
145    pub total_iterations: usize,
146    /// Converged flag
147    pub converged: bool,
148}
149
150impl OptimizationHistory {
151    const fn new() -> Self {
152        Self {
153            parameters: Vec::new(),
154            loss_values: Vec::new(),
155            gradient_norms: Vec::new(),
156            iteration_times: Vec::new(),
157            total_iterations: 0,
158            converged: false,
159        }
160    }
161}
162
163/// Fisher information matrix cache
164struct FisherCache {
165    /// Cached Fisher matrix
166    matrix: Arc<Mutex<Option<Array2<f64>>>>,
167    /// Parameters for cached matrix
168    params: Arc<Mutex<Option<Vec<f64>>>>,
169    /// Cache validity threshold
170    threshold: f64,
171}
172
173/// Optimizer state for stateful methods
174struct OptimizerState {
175    /// Momentum vectors
176    momentum: FxHashMap<String, f64>,
177    /// Adam first moment
178    adam_m: FxHashMap<String, f64>,
179    /// Adam second moment
180    adam_v: FxHashMap<String, f64>,
181    /// RMSprop moving average
182    rms_avg: FxHashMap<String, f64>,
183    /// Iteration counter
184    iteration: usize,
185}
186
187impl VariationalQuantumOptimizer {
188    /// Create a new optimizer
189    pub fn new(method: OptimizationMethod, config: OptimizationConfig) -> Self {
190        let fisher_cache = match &method {
191            OptimizationMethod::NaturalGradient { .. } | OptimizationMethod::QNSPSA { .. } => {
192                Some(FisherCache {
193                    matrix: Arc::new(Mutex::new(None)),
194                    params: Arc::new(Mutex::new(None)),
195                    threshold: 1e-3,
196                })
197            }
198            _ => None,
199        };
200
201        Self {
202            method,
203            config,
204            history: OptimizationHistory::new(),
205            fisher_cache,
206        }
207    }
208
209    /// Optimize a variational circuit
210    pub fn optimize(
211        &mut self,
212        circuit: &mut VariationalCircuit,
213        cost_fn: impl Fn(&VariationalCircuit) -> QuantRS2Result<f64> + Send + Sync + 'static,
214    ) -> QuantRS2Result<OptimizationResult> {
215        let cost_fn = Arc::new(cost_fn);
216
217        match &self.method {
218            OptimizationMethod::BFGS
219            | OptimizationMethod::LBFGS { .. }
220            | OptimizationMethod::ConjugateGradient
221            | OptimizationMethod::NelderMead
222            | OptimizationMethod::Powell => self.optimize_with_scirs2(circuit, cost_fn),
223            _ => self.optimize_custom(circuit, cost_fn),
224        }
225    }
226
227    /// Optimize using SciRS2 methods
228    fn optimize_with_scirs2(
229        &mut self,
230        circuit: &mut VariationalCircuit,
231        cost_fn: Arc<dyn Fn(&VariationalCircuit) -> QuantRS2Result<f64> + Send + Sync>,
232    ) -> QuantRS2Result<OptimizationResult> {
233        let param_names = circuit.parameter_names();
234        let initial_params: Vec<f64> = param_names
235            .iter()
236            .map(|name| circuit.get_parameters().get(name).copied().unwrap_or(0.0))
237            .collect();
238
239        let circuit_clone = Arc::new(Mutex::new(circuit.clone()));
240        let param_names_clone = param_names.clone();
241
242        // Create objective function for SciRS2
243        let objective = move |params: &scirs2_core::ndarray::ArrayView1<f64>| -> f64 {
244            let params_slice = match params.as_slice() {
245                Some(slice) => slice,
246                None => return f64::INFINITY, // Non-contiguous array - return infinity to skip
247            };
248            let mut param_map = FxHashMap::default();
249            for (name, &value) in param_names_clone.iter().zip(params_slice) {
250                param_map.insert(name.clone(), value);
251            }
252
253            let mut circuit = circuit_clone.lock().unwrap_or_else(|e| e.into_inner());
254            if circuit.set_parameters(&param_map).is_err() {
255                return f64::INFINITY;
256            }
257
258            cost_fn(&*circuit).unwrap_or(f64::INFINITY)
259        };
260
261        // Set up SciRS2 method
262        let method = match &self.method {
263            OptimizationMethod::BFGS | OptimizationMethod::ConjugateGradient => Method::BFGS, // CG uses BFGS fallback
264            OptimizationMethod::LBFGS { memory_size: _ } => Method::LBFGS,
265            OptimizationMethod::NelderMead => Method::NelderMead,
266            OptimizationMethod::Powell => Method::Powell,
267            _ => unreachable!(),
268        };
269
270        // Configure options
271        let options = Options {
272            max_iter: self.config.max_iterations,
273            ftol: self.config.f_tol,
274            gtol: self.config.g_tol,
275            xtol: self.config.x_tol,
276            ..Default::default()
277        };
278
279        // Run optimization
280        let start_time = std::time::Instant::now();
281        let initial_array = scirs2_core::ndarray::Array1::from_vec(initial_params);
282        let result = minimize(objective, &initial_array, method, Some(options))
283            .map_err(|e| QuantRS2Error::InvalidInput(format!("Optimization failed: {e:?}")))?;
284
285        // Update circuit with optimal parameters
286        let mut final_params = FxHashMap::default();
287        let result_slice = result.x.as_slice().ok_or_else(|| {
288            QuantRS2Error::RuntimeError("Optimization result array is non-contiguous".to_string())
289        })?;
290        for (name, &value) in param_names.iter().zip(result_slice) {
291            final_params.insert(name.clone(), value);
292        }
293        circuit.set_parameters(&final_params)?;
294
295        // Update history
296        self.history.parameters.push(result.x.to_vec());
297        self.history.loss_values.push(result.fun);
298        self.history.total_iterations = result.iterations;
299        self.history.converged = result.success;
300
301        Ok(OptimizationResult {
302            optimal_parameters: final_params,
303            final_loss: result.fun,
304            iterations: result.iterations,
305            converged: result.success,
306            optimization_time: start_time.elapsed().as_secs_f64(),
307            history: self.history.clone(),
308        })
309    }
310
311    /// Optimize using custom methods
312    fn optimize_custom(
313        &mut self,
314        circuit: &mut VariationalCircuit,
315        cost_fn: Arc<dyn Fn(&VariationalCircuit) -> QuantRS2Result<f64> + Send + Sync>,
316    ) -> QuantRS2Result<OptimizationResult> {
317        let mut state = OptimizerState {
318            momentum: FxHashMap::default(),
319            adam_m: FxHashMap::default(),
320            adam_v: FxHashMap::default(),
321            rms_avg: FxHashMap::default(),
322            iteration: 0,
323        };
324
325        let param_names = circuit.parameter_names();
326        let start_time = std::time::Instant::now();
327        let mut best_loss = f64::INFINITY;
328        let mut patience_counter = 0;
329
330        for iter in 0..self.config.max_iterations {
331            let iter_start = std::time::Instant::now();
332
333            // Compute loss
334            let loss = cost_fn(circuit)?;
335
336            // Check for improvement
337            if loss < best_loss - self.config.f_tol {
338                best_loss = loss;
339                patience_counter = 0;
340            } else if let Some(patience) = self.config.patience {
341                patience_counter += 1;
342                if patience_counter >= patience {
343                    self.history.converged = true;
344                    break;
345                }
346            }
347
348            // Compute gradients
349            let gradients = self.compute_gradients(circuit, &cost_fn)?;
350
351            // Clip gradients if requested
352            let gradients = if let Some(max_norm) = self.config.grad_clip {
353                self.clip_gradients(gradients, max_norm)
354            } else {
355                gradients
356            };
357
358            // Update parameters based on method
359            self.update_parameters(circuit, &gradients, &mut state)?;
360
361            // Update history
362            let current_params: Vec<f64> = param_names
363                .iter()
364                .map(|name| circuit.get_parameters().get(name).copied().unwrap_or(0.0))
365                .collect();
366
367            let grad_norm = gradients.values().map(|g| g * g).sum::<f64>().sqrt();
368
369            self.history.parameters.push(current_params);
370            self.history.loss_values.push(loss);
371            self.history.gradient_norms.push(grad_norm);
372            self.history
373                .iteration_times
374                .push(iter_start.elapsed().as_secs_f64() * 1000.0);
375            self.history.total_iterations = iter + 1;
376
377            // Callback
378            if let Some(callback) = &self.config.callback {
379                let params: Vec<f64> = param_names
380                    .iter()
381                    .map(|name| circuit.get_parameters().get(name).copied().unwrap_or(0.0))
382                    .collect();
383                callback(&params, loss);
384            }
385
386            // Check convergence
387            if grad_norm < self.config.g_tol {
388                self.history.converged = true;
389                break;
390            }
391
392            state.iteration += 1;
393        }
394
395        let final_params = circuit.get_parameters();
396        let final_loss = cost_fn(circuit)?;
397
398        Ok(OptimizationResult {
399            optimal_parameters: final_params,
400            final_loss,
401            iterations: self.history.total_iterations,
402            converged: self.history.converged,
403            optimization_time: start_time.elapsed().as_secs_f64(),
404            history: self.history.clone(),
405        })
406    }
407
408    /// Compute gradients for all parameters
409    fn compute_gradients(
410        &self,
411        circuit: &VariationalCircuit,
412        cost_fn: &Arc<dyn Fn(&VariationalCircuit) -> QuantRS2Result<f64> + Send + Sync>,
413    ) -> QuantRS2Result<FxHashMap<String, f64>> {
414        let param_names = circuit.parameter_names();
415
416        if self.config.parallel_gradients {
417            // Parallel gradient computation
418            let gradients: Vec<(String, f64)> = param_names
419                .par_iter()
420                .map(|param_name| {
421                    let grad = self
422                        .compute_single_gradient(circuit, param_name, cost_fn)
423                        .unwrap_or(0.0);
424                    (param_name.clone(), grad)
425                })
426                .collect();
427
428            Ok(gradients.into_iter().collect())
429        } else {
430            // Sequential gradient computation
431            let mut gradients = FxHashMap::default();
432            for param_name in &param_names {
433                let grad = self.compute_single_gradient(circuit, param_name, cost_fn)?;
434                gradients.insert(param_name.clone(), grad);
435            }
436            Ok(gradients)
437        }
438    }
439
440    /// Compute gradient for a single parameter
441    fn compute_single_gradient(
442        &self,
443        circuit: &VariationalCircuit,
444        param_name: &str,
445        cost_fn: &Arc<dyn Fn(&VariationalCircuit) -> QuantRS2Result<f64> + Send + Sync>,
446    ) -> QuantRS2Result<f64> {
447        match &self.method {
448            OptimizationMethod::SPSA { c, .. } => {
449                // SPSA gradient approximation
450                self.spsa_gradient(circuit, param_name, cost_fn, *c)
451            }
452            _ => {
453                // Parameter shift rule
454                self.parameter_shift_gradient(circuit, param_name, cost_fn)
455            }
456        }
457    }
458
459    /// Parameter shift rule gradient
460    fn parameter_shift_gradient(
461        &self,
462        circuit: &VariationalCircuit,
463        param_name: &str,
464        cost_fn: &Arc<dyn Fn(&VariationalCircuit) -> QuantRS2Result<f64> + Send + Sync>,
465    ) -> QuantRS2Result<f64> {
466        let current_params = circuit.get_parameters();
467        let current_value = *current_params.get(param_name).ok_or_else(|| {
468            QuantRS2Error::InvalidInput(format!("Parameter {param_name} not found"))
469        })?;
470
471        // Shift parameter by +Ï€/2
472        let mut circuit_plus = circuit.clone();
473        let mut params_plus = current_params.clone();
474        params_plus.insert(
475            param_name.to_string(),
476            current_value + std::f64::consts::PI / 2.0,
477        );
478        circuit_plus.set_parameters(&params_plus)?;
479        let loss_plus = cost_fn(&circuit_plus)?;
480
481        // Shift parameter by -Ï€/2
482        let mut circuit_minus = circuit.clone();
483        let mut params_minus = current_params;
484        params_minus.insert(
485            param_name.to_string(),
486            current_value - std::f64::consts::PI / 2.0,
487        );
488        circuit_minus.set_parameters(&params_minus)?;
489        let loss_minus = cost_fn(&circuit_minus)?;
490
491        Ok((loss_plus - loss_minus) / 2.0)
492    }
493
494    /// SPSA gradient approximation
495    fn spsa_gradient(
496        &self,
497        circuit: &VariationalCircuit,
498        param_name: &str,
499        cost_fn: &Arc<dyn Fn(&VariationalCircuit) -> QuantRS2Result<f64> + Send + Sync>,
500        epsilon: f64,
501    ) -> QuantRS2Result<f64> {
502        use scirs2_core::random::prelude::*;
503
504        let mut rng = if let Some(seed) = self.config.seed {
505            StdRng::seed_from_u64(seed)
506        } else {
507            StdRng::from_seed(thread_rng().gen())
508        };
509
510        let current_params = circuit.get_parameters();
511        let perturbation = if rng.gen::<bool>() { epsilon } else { -epsilon };
512
513        // Positive perturbation
514        let mut circuit_plus = circuit.clone();
515        let mut params_plus = current_params.clone();
516        for (name, value) in &mut params_plus {
517            if name == param_name {
518                *value += perturbation;
519            }
520        }
521        circuit_plus.set_parameters(&params_plus)?;
522        let loss_plus = cost_fn(&circuit_plus)?;
523
524        // Negative perturbation
525        let mut circuit_minus = circuit.clone();
526        let mut params_minus = current_params;
527        for (name, value) in &mut params_minus {
528            if name == param_name {
529                *value -= perturbation;
530            }
531        }
532        circuit_minus.set_parameters(&params_minus)?;
533        let loss_minus = cost_fn(&circuit_minus)?;
534
535        Ok((loss_plus - loss_minus) / (2.0 * perturbation))
536    }
537
538    /// Clip gradients by norm
539    fn clip_gradients(
540        &self,
541        mut gradients: FxHashMap<String, f64>,
542        max_norm: f64,
543    ) -> FxHashMap<String, f64> {
544        let norm = gradients.values().map(|g| g * g).sum::<f64>().sqrt();
545
546        if norm > max_norm {
547            let scale = max_norm / norm;
548            for grad in gradients.values_mut() {
549                *grad *= scale;
550            }
551        }
552
553        gradients
554    }
555
556    /// Update parameters based on optimization method
557    fn update_parameters(
558        &self,
559        circuit: &mut VariationalCircuit,
560        gradients: &FxHashMap<String, f64>,
561        state: &mut OptimizerState,
562    ) -> QuantRS2Result<()> {
563        let mut new_params = circuit.get_parameters();
564
565        match &self.method {
566            OptimizationMethod::GradientDescent { learning_rate } => {
567                // Simple gradient descent
568                for (param_name, &grad) in gradients {
569                    if let Some(value) = new_params.get_mut(param_name) {
570                        *value -= learning_rate * grad;
571                    }
572                }
573            }
574            OptimizationMethod::Momentum {
575                learning_rate,
576                momentum,
577            } => {
578                // Momentum-based gradient descent
579                for (param_name, &grad) in gradients {
580                    let velocity = state.momentum.entry(param_name.clone()).or_insert(0.0);
581                    *velocity = momentum * *velocity - learning_rate * grad;
582
583                    if let Some(value) = new_params.get_mut(param_name) {
584                        *value += *velocity;
585                    }
586                }
587            }
588            OptimizationMethod::Adam {
589                learning_rate,
590                beta1,
591                beta2,
592                epsilon,
593            } => {
594                // Adam optimizer
595                let t = state.iteration as f64 + 1.0;
596                let lr_t = learning_rate * (1.0 - beta2.powf(t)).sqrt() / (1.0 - beta1.powf(t));
597
598                for (param_name, &grad) in gradients {
599                    let m = state.adam_m.entry(param_name.clone()).or_insert(0.0);
600                    let v = state.adam_v.entry(param_name.clone()).or_insert(0.0);
601
602                    *m = (1.0 - beta1).mul_add(grad, beta1 * *m);
603                    *v = ((1.0 - beta2) * grad).mul_add(grad, beta2 * *v);
604
605                    if let Some(value) = new_params.get_mut(param_name) {
606                        *value -= lr_t * *m / (v.sqrt() + epsilon);
607                    }
608                }
609            }
610            OptimizationMethod::RMSprop {
611                learning_rate,
612                decay_rate,
613                epsilon,
614            } => {
615                // RMSprop optimizer
616                for (param_name, &grad) in gradients {
617                    let avg = state.rms_avg.entry(param_name.clone()).or_insert(0.0);
618                    *avg = ((1.0 - decay_rate) * grad).mul_add(grad, decay_rate * *avg);
619
620                    if let Some(value) = new_params.get_mut(param_name) {
621                        *value -= learning_rate * grad / (avg.sqrt() + epsilon);
622                    }
623                }
624            }
625            OptimizationMethod::NaturalGradient {
626                learning_rate,
627                regularization,
628            } => {
629                // Natural gradient descent
630                let fisher_inv =
631                    self.compute_fisher_inverse(circuit, gradients, *regularization)?;
632                let natural_grad = self.apply_fisher_inverse(&fisher_inv, gradients);
633
634                for (param_name, &nat_grad) in &natural_grad {
635                    if let Some(value) = new_params.get_mut(param_name) {
636                        *value -= learning_rate * nat_grad;
637                    }
638                }
639            }
640            OptimizationMethod::SPSA { a, alpha, .. } => {
641                // SPSA parameter update
642                let ak = a / (state.iteration as f64 + 1.0).powf(*alpha);
643
644                for (param_name, &grad) in gradients {
645                    if let Some(value) = new_params.get_mut(param_name) {
646                        *value -= ak * grad;
647                    }
648                }
649            }
650            OptimizationMethod::QNSPSA {
651                learning_rate,
652                regularization,
653                ..
654            } => {
655                // Quantum Natural SPSA
656                let fisher_inv =
657                    self.compute_fisher_inverse(circuit, gradients, *regularization)?;
658                let natural_grad = self.apply_fisher_inverse(&fisher_inv, gradients);
659
660                for (param_name, &nat_grad) in &natural_grad {
661                    if let Some(value) = new_params.get_mut(param_name) {
662                        *value -= learning_rate * nat_grad;
663                    }
664                }
665            }
666            _ => {
667                // Should not reach here for SciRS2 methods
668                return Err(QuantRS2Error::InvalidInput(
669                    "Invalid optimization method".to_string(),
670                ));
671            }
672        }
673
674        circuit.set_parameters(&new_params)
675    }
676
677    /// Compute Fisher information matrix inverse
678    fn compute_fisher_inverse(
679        &self,
680        circuit: &VariationalCircuit,
681        gradients: &FxHashMap<String, f64>,
682        regularization: f64,
683    ) -> QuantRS2Result<Array2<f64>> {
684        let param_names: Vec<_> = gradients.keys().cloned().collect();
685        let n_params = param_names.len();
686
687        // Check cache
688        if let Some(cache) = &self.fisher_cache {
689            let cached_matrix_opt = cache
690                .matrix
691                .lock()
692                .map_err(|e| QuantRS2Error::RuntimeError(format!("Lock poisoned: {e}")))?;
693            if let Some(cached_matrix) = cached_matrix_opt.as_ref() {
694                let cached_params_opt = cache
695                    .params
696                    .lock()
697                    .map_err(|e| QuantRS2Error::RuntimeError(format!("Lock poisoned: {e}")))?;
698                if let Some(cached_params) = cached_params_opt.as_ref() {
699                    let current_params: Vec<f64> = param_names
700                        .iter()
701                        .map(|name| circuit.get_parameters().get(name).copied().unwrap_or(0.0))
702                        .collect();
703
704                    let diff_norm: f64 = current_params
705                        .iter()
706                        .zip(cached_params.iter())
707                        .map(|(a, b)| (a - b).powi(2))
708                        .sum::<f64>()
709                        .sqrt();
710
711                    if diff_norm < cache.threshold {
712                        return Ok(cached_matrix.clone());
713                    }
714                }
715            }
716        }
717
718        // Compute Fisher information matrix
719        let mut fisher = Array2::zeros((n_params, n_params));
720
721        // Simplified Fisher matrix computation
722        // In practice, this would involve quantum state overlaps
723        for i in 0..n_params {
724            for j in i..n_params {
725                // Approximation: use gradient outer product
726                let value = gradients[&param_names[i]] * gradients[&param_names[j]];
727                fisher[[i, j]] = value;
728                fisher[[j, i]] = value;
729            }
730        }
731
732        // Add regularization
733        for i in 0..n_params {
734            fisher[[i, i]] += regularization;
735        }
736
737        // Compute inverse using simple matrix inversion
738        // For now, use a simple inversion approach
739        // TODO: Use ndarray-linalg when trait import issues are resolved
740        let n = fisher.nrows();
741        let mut fisher_inv = Array2::eye(n);
742
743        // Simple inversion using Gaussian elimination (placeholder)
744        // In practice, should use proper numerical methods
745        if n == 1 {
746            fisher_inv[[0, 0]] = 1.0 / fisher[[0, 0]];
747        } else if n == 2 {
748            let det = fisher[[0, 0]].mul_add(fisher[[1, 1]], -(fisher[[0, 1]] * fisher[[1, 0]]));
749            if det.abs() < 1e-10 {
750                return Err(QuantRS2Error::InvalidInput(
751                    "Fisher matrix is singular".to_string(),
752                ));
753            }
754            fisher_inv[[0, 0]] = fisher[[1, 1]] / det;
755            fisher_inv[[0, 1]] = -fisher[[0, 1]] / det;
756            fisher_inv[[1, 0]] = -fisher[[1, 0]] / det;
757            fisher_inv[[1, 1]] = fisher[[0, 0]] / det;
758        } else {
759            // For larger matrices, return identity as placeholder
760            // TODO: Implement proper inversion
761        }
762
763        // Update cache
764        if let Some(cache) = &self.fisher_cache {
765            let current_params: Vec<f64> = param_names
766                .iter()
767                .map(|name| circuit.get_parameters().get(name).copied().unwrap_or(0.0))
768                .collect();
769
770            *cache
771                .matrix
772                .lock()
773                .map_err(|e| QuantRS2Error::RuntimeError(format!("Lock poisoned: {e}")))? =
774                Some(fisher_inv.clone());
775            *cache
776                .params
777                .lock()
778                .map_err(|e| QuantRS2Error::RuntimeError(format!("Lock poisoned: {e}")))? =
779                Some(current_params);
780        }
781
782        Ok(fisher_inv)
783    }
784
785    /// Apply Fisher information matrix inverse to gradients
786    fn apply_fisher_inverse(
787        &self,
788        fisher_inv: &Array2<f64>,
789        gradients: &FxHashMap<String, f64>,
790    ) -> FxHashMap<String, f64> {
791        let param_names: Vec<_> = gradients.keys().cloned().collect();
792        let grad_vec: Vec<f64> = param_names.iter().map(|name| gradients[name]).collect();
793
794        let grad_array = Array1::from_vec(grad_vec);
795        let natural_grad = fisher_inv.dot(&grad_array);
796
797        let mut result = FxHashMap::default();
798        for (i, name) in param_names.iter().enumerate() {
799            result.insert(name.clone(), natural_grad[i]);
800        }
801
802        result
803    }
804}
805
806/// Optimization result
807#[derive(Debug, Clone)]
808pub struct OptimizationResult {
809    /// Optimal parameters
810    pub optimal_parameters: FxHashMap<String, f64>,
811    /// Final loss value
812    pub final_loss: f64,
813    /// Number of iterations
814    pub iterations: usize,
815    /// Whether optimization converged
816    pub converged: bool,
817    /// Total optimization time (seconds)
818    pub optimization_time: f64,
819    /// Full optimization history
820    pub history: OptimizationHistory,
821}
822
823/// Create optimized VQE optimizer
824pub fn create_vqe_optimizer() -> VariationalQuantumOptimizer {
825    let config = OptimizationConfig {
826        max_iterations: 200,
827        f_tol: 1e-10,
828        g_tol: 1e-10,
829        parallel_gradients: true,
830        grad_clip: Some(1.0),
831        ..Default::default()
832    };
833
834    VariationalQuantumOptimizer::new(OptimizationMethod::LBFGS { memory_size: 10 }, config)
835}
836
837/// Create optimized QAOA optimizer
838pub fn create_qaoa_optimizer() -> VariationalQuantumOptimizer {
839    let config = OptimizationConfig {
840        max_iterations: 100,
841        parallel_gradients: true,
842        ..Default::default()
843    };
844
845    VariationalQuantumOptimizer::new(OptimizationMethod::BFGS, config)
846}
847
848/// Create natural gradient optimizer
849pub fn create_natural_gradient_optimizer(learning_rate: f64) -> VariationalQuantumOptimizer {
850    let config = OptimizationConfig {
851        max_iterations: 100,
852        parallel_gradients: true,
853        ..Default::default()
854    };
855
856    VariationalQuantumOptimizer::new(
857        OptimizationMethod::NaturalGradient {
858            learning_rate,
859            regularization: 1e-4,
860        },
861        config,
862    )
863}
864
865/// Create SPSA optimizer for noisy quantum devices
866pub fn create_spsa_optimizer() -> VariationalQuantumOptimizer {
867    let config = OptimizationConfig {
868        max_iterations: 500,
869        seed: Some(42),
870        ..Default::default()
871    };
872
873    VariationalQuantumOptimizer::new(
874        OptimizationMethod::SPSA {
875            a: 0.1,
876            c: 0.1,
877            alpha: 0.602,
878            gamma: 0.101,
879        },
880        config,
881    )
882}
883
884/// Constrained optimization for variational circuits
885pub struct ConstrainedVariationalOptimizer {
886    /// Base optimizer
887    base_optimizer: VariationalQuantumOptimizer,
888    /// Constraints
889    constraints: Vec<Constraint>,
890}
891
892/// Constraint for optimization
893#[derive(Clone)]
894pub struct Constraint {
895    /// Constraint function
896    pub function: Arc<dyn Fn(&FxHashMap<String, f64>) -> f64 + Send + Sync>,
897    /// Constraint type
898    pub constraint_type: ConstraintType,
899    /// Constraint value
900    pub value: f64,
901}
902
903/// Constraint type
904#[derive(Debug, Clone, Copy)]
905pub enum ConstraintType {
906    /// Equality constraint
907    Eq,
908    /// Inequality constraint
909    Ineq,
910}
911
912impl ConstrainedVariationalOptimizer {
913    /// Create a new constrained optimizer
914    pub const fn new(base_optimizer: VariationalQuantumOptimizer) -> Self {
915        Self {
916            base_optimizer,
917            constraints: Vec::new(),
918        }
919    }
920
921    /// Add an equality constraint
922    pub fn add_equality_constraint(
923        &mut self,
924        constraint_fn: impl Fn(&FxHashMap<String, f64>) -> f64 + Send + Sync + 'static,
925        value: f64,
926    ) {
927        self.constraints.push(Constraint {
928            function: Arc::new(constraint_fn),
929            constraint_type: ConstraintType::Eq,
930            value,
931        });
932    }
933
934    /// Add an inequality constraint
935    pub fn add_inequality_constraint(
936        &mut self,
937        constraint_fn: impl Fn(&FxHashMap<String, f64>) -> f64 + Send + Sync + 'static,
938        value: f64,
939    ) {
940        self.constraints.push(Constraint {
941            function: Arc::new(constraint_fn),
942            constraint_type: ConstraintType::Ineq,
943            value,
944        });
945    }
946
947    /// Optimize with constraints
948    pub fn optimize(
949        &mut self,
950        circuit: &mut VariationalCircuit,
951        cost_fn: impl Fn(&VariationalCircuit) -> QuantRS2Result<f64> + Send + Sync + 'static,
952    ) -> QuantRS2Result<OptimizationResult> {
953        if self.constraints.is_empty() {
954            return self.base_optimizer.optimize(circuit, cost_fn);
955        }
956
957        // For constrained optimization, use penalty method
958        let cost_fn = Arc::new(cost_fn);
959        let constraints = self.constraints.clone();
960        let penalty_weight = 1000.0;
961
962        let penalized_cost = move |circuit: &VariationalCircuit| -> QuantRS2Result<f64> {
963            let base_cost = cost_fn(circuit)?;
964            let params = circuit.get_parameters();
965
966            let mut penalty = 0.0;
967            for constraint in &constraints {
968                let constraint_value = (constraint.function)(&params);
969                match constraint.constraint_type {
970                    ConstraintType::Eq => {
971                        penalty += penalty_weight * (constraint_value - constraint.value).powi(2);
972                    }
973                    ConstraintType::Ineq => {
974                        if constraint_value > constraint.value {
975                            penalty +=
976                                penalty_weight * (constraint_value - constraint.value).powi(2);
977                        }
978                    }
979                }
980            }
981
982            Ok(base_cost + penalty)
983        };
984
985        self.base_optimizer.optimize(circuit, penalized_cost)
986    }
987}
988
989/// Hyperparameter optimization for variational circuits
990pub struct HyperparameterOptimizer {
991    /// Search space for hyperparameters
992    search_space: FxHashMap<String, (f64, f64)>,
993    /// Number of trials
994    n_trials: usize,
995    /// Optimization method for inner loop
996    inner_method: OptimizationMethod,
997}
998
999impl HyperparameterOptimizer {
1000    /// Create a new hyperparameter optimizer
1001    pub fn new(n_trials: usize) -> Self {
1002        Self {
1003            search_space: FxHashMap::default(),
1004            n_trials,
1005            inner_method: OptimizationMethod::BFGS,
1006        }
1007    }
1008
1009    /// Add a hyperparameter to search
1010    pub fn add_hyperparameter(&mut self, name: String, min_value: f64, max_value: f64) {
1011        self.search_space.insert(name, (min_value, max_value));
1012    }
1013
1014    /// Optimize hyperparameters
1015    pub fn optimize(
1016        &self,
1017        circuit_builder: impl Fn(&FxHashMap<String, f64>) -> VariationalCircuit + Send + Sync,
1018        cost_fn: impl Fn(&VariationalCircuit) -> QuantRS2Result<f64> + Send + Sync + Clone + 'static,
1019    ) -> QuantRS2Result<HyperparameterResult> {
1020        use scirs2_core::random::prelude::*;
1021
1022        let mut rng = StdRng::from_seed(thread_rng().gen());
1023        let mut best_hyperparams = FxHashMap::default();
1024        let mut best_loss = f64::INFINITY;
1025        let mut all_trials = Vec::new();
1026
1027        for _trial in 0..self.n_trials {
1028            // Sample hyperparameters
1029            let mut hyperparams = FxHashMap::default();
1030            for (name, &(min_val, max_val)) in &self.search_space {
1031                let value = rng.gen_range(min_val..max_val);
1032                hyperparams.insert(name.clone(), value);
1033            }
1034
1035            // Build circuit with hyperparameters
1036            let mut circuit = circuit_builder(&hyperparams);
1037
1038            // Optimize circuit
1039            let config = OptimizationConfig {
1040                max_iterations: 50,
1041                ..Default::default()
1042            };
1043
1044            let mut optimizer = VariationalQuantumOptimizer::new(self.inner_method.clone(), config);
1045
1046            let result = optimizer.optimize(&mut circuit, cost_fn.clone())?;
1047
1048            all_trials.push(HyperparameterTrial {
1049                hyperparameters: hyperparams.clone(),
1050                final_loss: result.final_loss,
1051                optimal_parameters: result.optimal_parameters,
1052            });
1053
1054            if result.final_loss < best_loss {
1055                best_loss = result.final_loss;
1056                best_hyperparams = hyperparams;
1057            }
1058        }
1059
1060        Ok(HyperparameterResult {
1061            best_hyperparameters: best_hyperparams,
1062            best_loss,
1063            all_trials,
1064        })
1065    }
1066}
1067
1068/// Hyperparameter optimization result
1069#[derive(Debug, Clone)]
1070pub struct HyperparameterResult {
1071    /// Best hyperparameters found
1072    pub best_hyperparameters: FxHashMap<String, f64>,
1073    /// Best loss achieved
1074    pub best_loss: f64,
1075    /// All trials
1076    pub all_trials: Vec<HyperparameterTrial>,
1077}
1078
1079/// Single hyperparameter trial
1080#[derive(Debug, Clone)]
1081pub struct HyperparameterTrial {
1082    /// Hyperparameters used
1083    pub hyperparameters: FxHashMap<String, f64>,
1084    /// Final loss achieved
1085    pub final_loss: f64,
1086    /// Optimal variational parameters
1087    pub optimal_parameters: FxHashMap<String, f64>,
1088}
1089
1090// Clone implementation for VariationalCircuit
1091impl Clone for VariationalCircuit {
1092    fn clone(&self) -> Self {
1093        Self {
1094            gates: self.gates.clone(),
1095            param_map: self.param_map.clone(),
1096            num_qubits: self.num_qubits,
1097        }
1098    }
1099}
1100
1101#[cfg(test)]
1102mod tests {
1103    use super::*;
1104    use crate::qubit::QubitId;
1105    use crate::variational::VariationalGate;
1106
1107    #[test]
1108    fn test_gradient_descent_optimizer() {
1109        let mut circuit = VariationalCircuit::new(1);
1110        circuit.add_gate(VariationalGate::rx(QubitId(0), "theta".to_string(), 0.0));
1111
1112        let config = OptimizationConfig {
1113            max_iterations: 10,
1114            ..Default::default()
1115        };
1116
1117        let mut optimizer = VariationalQuantumOptimizer::new(
1118            OptimizationMethod::GradientDescent { learning_rate: 0.1 },
1119            config,
1120        );
1121
1122        // Simple cost function
1123        let cost_fn = |circuit: &VariationalCircuit| -> QuantRS2Result<f64> {
1124            let theta = circuit
1125                .get_parameters()
1126                .get("theta")
1127                .copied()
1128                .unwrap_or(0.0);
1129            Ok((theta - 1.0).powi(2))
1130        };
1131
1132        let result = optimizer
1133            .optimize(&mut circuit, cost_fn)
1134            .expect("Optimization should succeed");
1135
1136        assert!(result.converged || result.iterations == 10);
1137        assert!((result.optimal_parameters["theta"] - 1.0).abs() < 0.1);
1138    }
1139
1140    #[test]
1141    fn test_adam_optimizer() {
1142        let mut circuit = VariationalCircuit::new(2);
1143        circuit.add_gate(VariationalGate::ry(QubitId(0), "alpha".to_string(), 0.5));
1144        circuit.add_gate(VariationalGate::rz(QubitId(1), "beta".to_string(), 0.5));
1145
1146        let config = OptimizationConfig {
1147            max_iterations: 100,
1148            f_tol: 1e-6,
1149            g_tol: 1e-6,
1150            ..Default::default()
1151        };
1152
1153        let mut optimizer = VariationalQuantumOptimizer::new(
1154            OptimizationMethod::Adam {
1155                learning_rate: 0.1,
1156                beta1: 0.9,
1157                beta2: 0.999,
1158                epsilon: 1e-8,
1159            },
1160            config,
1161        );
1162
1163        // Cost function with multiple parameters
1164        let cost_fn = |circuit: &VariationalCircuit| -> QuantRS2Result<f64> {
1165            let params = circuit.get_parameters();
1166            let alpha = params.get("alpha").copied().unwrap_or(0.0);
1167            let beta = params.get("beta").copied().unwrap_or(0.0);
1168            Ok(alpha.powi(2) + beta.powi(2))
1169        };
1170
1171        let result = optimizer
1172            .optimize(&mut circuit, cost_fn)
1173            .expect("Optimization should succeed");
1174
1175        assert!(result.optimal_parameters["alpha"].abs() < 0.1);
1176        assert!(result.optimal_parameters["beta"].abs() < 0.1);
1177    }
1178
1179    #[test]
1180    fn test_constrained_optimization() {
1181        let mut circuit = VariationalCircuit::new(1);
1182        circuit.add_gate(VariationalGate::rx(QubitId(0), "x".to_string(), 2.0));
1183
1184        let base_optimizer =
1185            VariationalQuantumOptimizer::new(OptimizationMethod::BFGS, Default::default());
1186
1187        let mut constrained_opt = ConstrainedVariationalOptimizer::new(base_optimizer);
1188
1189        // Add constraint: x >= 1.0
1190        constrained_opt
1191            .add_inequality_constraint(|params| 1.0 - params.get("x").copied().unwrap_or(0.0), 0.0);
1192
1193        // Minimize x^2
1194        let cost_fn = |circuit: &VariationalCircuit| -> QuantRS2Result<f64> {
1195            let x = circuit.get_parameters().get("x").copied().unwrap_or(0.0);
1196            Ok(x.powi(2))
1197        };
1198
1199        let result = constrained_opt
1200            .optimize(&mut circuit, cost_fn)
1201            .expect("Constrained optimization should succeed");
1202
1203        let optimized_x = result.optimal_parameters["x"];
1204        assert!(optimized_x >= 1.0 - 1e-6);
1205        assert!(optimized_x <= 2.0 + 1e-6);
1206    }
1207}