quantrs2_core/
quantum_hardware_abstraction.rs

1//! Quantum Hardware Abstraction Layer
2//!
3//! Universal hardware-agnostic interface for quantum devices with
4//! adaptive middleware and cross-platform quantum operation optimization.
5
6use crate::error::QuantRS2Error;
7use crate::gate::GateOp;
8use crate::qubit::QubitId;
9use scirs2_core::ndarray::Array2;
10use scirs2_core::Complex64;
11use std::collections::HashMap;
12use std::sync::{Arc, Mutex, RwLock};
13use std::time::{Duration, Instant, SystemTime};
14// use uuid::Uuid;
15
16/// Simple UUID replacement for ultrathink mode
17pub type Uuid = u64;
18
19fn generate_uuid() -> Uuid {
20    use std::collections::hash_map::DefaultHasher;
21    use std::hash::{Hash, Hasher};
22    use std::time::SystemTime;
23
24    let mut hasher = DefaultHasher::new();
25    SystemTime::now().hash(&mut hasher);
26    hasher.finish()
27}
28
29/// Universal quantum hardware abstraction interface
30#[derive(Debug)]
31pub struct QuantumHardwareAbstraction {
32    pub abstraction_id: Uuid,
33    pub hardware_backends: Vec<Arc<dyn QuantumHardwareBackend>>,
34    pub middleware: AdaptiveMiddleware,
35    pub resource_manager: HardwareResourceManager,
36    pub calibration_engine: CalibrationEngine,
37    pub error_mitigation: ErrorMitigationLayer,
38}
39
40/// Trait for quantum hardware backends
41pub trait QuantumHardwareBackend: Send + Sync + std::fmt::Debug {
42    fn backend_name(&self) -> &str;
43    fn hardware_type(&self) -> HardwareType;
44    fn capabilities(&self) -> HardwareCapabilities;
45    fn status(&self) -> HardwareStatus;
46
47    // Core operations
48    fn initialize(&self) -> Result<(), QuantRS2Error>;
49    fn calibrate(&self) -> Result<CalibrationResult, QuantRS2Error>;
50    fn execute_gate(
51        &self,
52        gate: &dyn GateOp,
53        context: &ExecutionContext,
54    ) -> Result<ExecutionResult, QuantRS2Error>;
55    fn execute_circuit(
56        &self,
57        circuit: &[Box<dyn GateOp>],
58        context: &ExecutionContext,
59    ) -> Result<CircuitResult, QuantRS2Error>;
60    fn measure_qubits(
61        &self,
62        qubits: &[QubitId],
63        basis: MeasurementBasis,
64    ) -> Result<MeasurementResult, QuantRS2Error>;
65
66    // Advanced features
67    fn get_noise_model(&self) -> NoiseModel;
68    fn estimate_fidelity(&self, operation: &dyn GateOp) -> f64;
69    fn estimate_execution_time(&self, operation: &dyn GateOp) -> Duration;
70    fn get_connectivity_graph(&self) -> ConnectivityGraph;
71}
72
73#[derive(Debug, Clone)]
74pub enum HardwareType {
75    Superconducting,
76    TrappedIon,
77    Photonic,
78    NeutralAtom,
79    Silicon,
80    QuantumAnnealer,
81    Simulator,
82    Hybrid,
83}
84
85#[derive(Debug, Clone)]
86pub struct HardwareCapabilities {
87    pub qubit_count: usize,
88    pub max_circuit_depth: usize,
89    pub native_gates: Vec<String>,
90    pub coherence_time: Duration,
91    pub gate_fidelity: f64,
92    pub measurement_fidelity: f64,
93    pub supports_midcircuit_measurement: bool,
94    pub supports_conditional_operations: bool,
95    pub supports_reset: bool,
96    pub max_shots: u64,
97}
98
99#[derive(Debug, Clone)]
100pub enum HardwareStatus {
101    Online,
102    Offline,
103    Calibrating,
104    Busy,
105    Error(String),
106    Maintenance,
107}
108
109impl QuantumHardwareAbstraction {
110    /// Create new quantum hardware abstraction
111    pub fn new() -> Self {
112        Self {
113            abstraction_id: generate_uuid(),
114            hardware_backends: Vec::new(),
115            middleware: AdaptiveMiddleware::new(),
116            resource_manager: HardwareResourceManager::new(),
117            calibration_engine: CalibrationEngine::new(),
118            error_mitigation: ErrorMitigationLayer::new(),
119        }
120    }
121
122    /// Register a hardware backend
123    pub fn register_backend(&mut self, backend: Arc<dyn QuantumHardwareBackend>) {
124        self.hardware_backends.push(backend.clone());
125        self.resource_manager.register_hardware(backend);
126    }
127
128    /// Execute operation with optimal backend selection
129    pub async fn execute_operation(
130        &self,
131        operation: &dyn GateOp,
132        requirements: &ExecutionRequirements,
133    ) -> Result<QuantumOperationResult, QuantRS2Error> {
134        // Select optimal backend
135        let backend = self.select_optimal_backend(operation, requirements).await?;
136
137        // Apply middleware transformations
138        let optimized_operation = self
139            .middleware
140            .optimize_operation(operation, &backend)
141            .await?;
142
143        // Create execution context
144        let context = self
145            .create_execution_context(requirements, &backend)
146            .await?;
147
148        // Apply error mitigation preprocessing
149        let mitigated_operation = self
150            .error_mitigation
151            .preprocess_operation(optimized_operation.as_ref(), &backend)?;
152
153        // Execute on hardware
154        let raw_result = backend.execute_gate(mitigated_operation.as_ref(), &context)?;
155
156        // Apply error mitigation postprocessing
157        let final_result = self
158            .error_mitigation
159            .postprocess_result(&raw_result, &backend)?;
160
161        Ok(QuantumOperationResult {
162            result: final_result.clone(),
163            backend_used: backend.backend_name().to_string(),
164            execution_time: context.execution_time,
165            fidelity_estimate: final_result.fidelity,
166            error_mitigation_applied: true,
167        })
168    }
169
170    /// Execute quantum circuit with adaptive optimization
171    pub async fn execute_circuit(
172        &self,
173        circuit: &[Box<dyn GateOp>],
174        requirements: &ExecutionRequirements,
175    ) -> Result<QuantumCircuitResult, QuantRS2Error> {
176        // Analyze circuit for optimal backend selection
177        let circuit_analysis = self.analyze_circuit(circuit).await?;
178        let backend = self
179            .select_optimal_backend_for_circuit(&circuit_analysis, requirements)
180            .await?;
181
182        // Apply circuit-level optimizations
183        let optimized_circuit = self.middleware.optimize_circuit(circuit, &backend).await?;
184
185        // Partition circuit if necessary for distributed execution
186        let partitions = self
187            .partition_circuit_if_needed(&optimized_circuit, &backend)
188            .await?;
189        let partition_count = partitions.len();
190
191        let mut results = Vec::new();
192        let start_time = Instant::now();
193
194        for partition in partitions {
195            let context = self
196                .create_execution_context(requirements, &backend)
197                .await?;
198            let partition_result = backend.execute_circuit(&partition, &context)?;
199            results.push(partition_result);
200        }
201
202        // Merge distributed results
203        let final_result = self.merge_circuit_results(results)?;
204
205        Ok(QuantumCircuitResult {
206            circuit_result: final_result,
207            backend_used: backend.backend_name().to_string(),
208            total_execution_time: start_time.elapsed(),
209            optimizations_applied: self.middleware.get_applied_optimizations(),
210            partitions_used: partition_count,
211        })
212    }
213
214    /// Select optimal backend for operation
215    async fn select_optimal_backend(
216        &self,
217        operation: &dyn GateOp,
218        requirements: &ExecutionRequirements,
219    ) -> Result<Arc<dyn QuantumHardwareBackend>, QuantRS2Error> {
220        let mut best_backend = None;
221        let mut best_score = f64::NEG_INFINITY;
222
223        for backend in &self.hardware_backends {
224            if matches!(backend.status(), HardwareStatus::Online) {
225                let score = self
226                    .calculate_backend_score(backend, operation, requirements)
227                    .await;
228                if score > best_score {
229                    best_score = score;
230                    best_backend = Some(backend.clone());
231                }
232            }
233        }
234
235        best_backend.ok_or_else(|| {
236            QuantRS2Error::NoHardwareAvailable("No suitable backends available".to_string())
237        })
238    }
239
240    /// Calculate backend suitability score
241    async fn calculate_backend_score(
242        &self,
243        backend: &Arc<dyn QuantumHardwareBackend>,
244        operation: &dyn GateOp,
245        requirements: &ExecutionRequirements,
246    ) -> f64 {
247        let mut score = 0.0;
248        let capabilities = backend.capabilities();
249
250        // Fidelity score
251        let estimated_fidelity = backend.estimate_fidelity(operation);
252        score += estimated_fidelity * requirements.fidelity_weight;
253
254        // Speed score
255        let estimated_time = backend.estimate_execution_time(operation);
256        let speed_score = 1.0 / (1.0 + estimated_time.as_secs_f64());
257        score += speed_score * requirements.speed_weight;
258
259        // Native gate support
260        let native_support = if capabilities
261            .native_gates
262            .contains(&operation.name().to_string())
263        {
264            1.0
265        } else {
266            0.5
267        };
268        score += native_support * requirements.native_gate_weight;
269
270        // Resource availability
271        let resource_score = self.resource_manager.get_availability_score(backend).await;
272        score += resource_score * requirements.resource_weight;
273
274        score
275    }
276
277    /// Analyze circuit characteristics
278    async fn analyze_circuit(
279        &self,
280        circuit: &[Box<dyn GateOp>],
281    ) -> Result<CircuitAnalysis, QuantRS2Error> {
282        let mut analysis = CircuitAnalysis {
283            total_gates: circuit.len(),
284            gate_types: HashMap::new(),
285            circuit_depth: 0,
286            parallelism_factor: 0.0,
287            entanglement_structure: Vec::new(),
288            critical_path_length: Duration::ZERO,
289            resource_requirements: ResourceRequirements::default(),
290        };
291
292        // Analyze gate distribution
293        for gate in circuit {
294            *analysis
295                .gate_types
296                .entry(gate.name().to_string())
297                .or_insert(0) += 1;
298        }
299
300        // Calculate circuit depth
301        analysis.circuit_depth = self.calculate_circuit_depth(circuit);
302
303        // Analyze parallelism
304        analysis.parallelism_factor = self.calculate_parallelism_factor(circuit);
305
306        // Analyze entanglement structure
307        analysis.entanglement_structure = self.analyze_entanglement_structure(circuit);
308
309        Ok(analysis)
310    }
311
312    /// Calculate circuit depth
313    fn calculate_circuit_depth(&self, circuit: &[Box<dyn GateOp>]) -> usize {
314        let mut qubit_depths: HashMap<QubitId, usize> = HashMap::new();
315        let mut max_depth = 0;
316
317        for gate in circuit {
318            let mut current_depth = 0;
319            for qubit in gate.qubits() {
320                current_depth = current_depth.max(*qubit_depths.get(&qubit).unwrap_or(&0));
321            }
322            current_depth += 1;
323
324            for qubit in gate.qubits() {
325                qubit_depths.insert(qubit, current_depth);
326            }
327
328            max_depth = max_depth.max(current_depth);
329        }
330
331        max_depth
332    }
333
334    /// Calculate parallelism factor
335    fn calculate_parallelism_factor(&self, circuit: &[Box<dyn GateOp>]) -> f64 {
336        if circuit.is_empty() {
337            return 0.0;
338        }
339
340        let total_gates = circuit.len();
341        let circuit_depth = self.calculate_circuit_depth(circuit);
342
343        if circuit_depth == 0 {
344            return 0.0;
345        }
346
347        total_gates as f64 / circuit_depth as f64
348    }
349
350    /// Analyze entanglement structure
351    fn analyze_entanglement_structure(
352        &self,
353        circuit: &[Box<dyn GateOp>],
354    ) -> Vec<EntanglementConnection> {
355        let mut connections = Vec::new();
356
357        for (i, gate) in circuit.iter().enumerate() {
358            if gate.qubits().len() >= 2 {
359                for j in 0..gate.qubits().len() {
360                    for k in j + 1..gate.qubits().len() {
361                        connections.push(EntanglementConnection {
362                            qubit1: gate.qubits()[j],
363                            qubit2: gate.qubits()[k],
364                            gate_index: i,
365                            strength: 1.0, // Simplified
366                        });
367                    }
368                }
369            }
370        }
371
372        connections
373    }
374
375    /// Create execution context
376    async fn create_execution_context(
377        &self,
378        requirements: &ExecutionRequirements,
379        backend: &Arc<dyn QuantumHardwareBackend>,
380    ) -> Result<ExecutionContext, QuantRS2Error> {
381        Ok(ExecutionContext {
382            execution_id: generate_uuid(),
383            backend_name: backend.backend_name().to_string(),
384            shots: requirements.shots,
385            optimization_level: requirements.optimization_level.clone(),
386            error_mitigation_enabled: requirements.enable_error_mitigation,
387            execution_time: Instant::now(),
388            calibration_data: self
389                .calibration_engine
390                .get_latest_calibration(backend)
391                .await?,
392        })
393    }
394
395    /// Partition circuit for distributed execution
396    async fn partition_circuit_if_needed(
397        &self,
398        circuit: &[Box<dyn GateOp>],
399        backend: &Arc<dyn QuantumHardwareBackend>,
400    ) -> Result<Vec<Vec<Box<dyn GateOp>>>, QuantRS2Error> {
401        let capabilities = backend.capabilities();
402
403        if circuit.len() <= capabilities.max_circuit_depth {
404            // No partitioning needed
405            Ok(vec![circuit.to_vec()])
406        } else {
407            // Partition circuit
408            self.partition_circuit(circuit, capabilities.max_circuit_depth)
409        }
410    }
411
412    /// Partition circuit into smaller chunks
413    fn partition_circuit(
414        &self,
415        circuit: &[Box<dyn GateOp>],
416        max_depth: usize,
417    ) -> Result<Vec<Vec<Box<dyn GateOp>>>, QuantRS2Error> {
418        let mut partitions = Vec::new();
419        let mut current_partition = Vec::new();
420        let mut current_depth = 0;
421
422        for gate in circuit {
423            if current_depth >= max_depth {
424                partitions.push(current_partition);
425                current_partition = Vec::new();
426                current_depth = 0;
427            }
428
429            current_partition.push(gate.clone());
430            current_depth += 1;
431        }
432
433        if !current_partition.is_empty() {
434            partitions.push(current_partition);
435        }
436
437        Ok(partitions)
438    }
439
440    /// Merge results from distributed execution
441    fn merge_circuit_results(
442        &self,
443        results: Vec<CircuitResult>,
444    ) -> Result<CircuitResult, QuantRS2Error> {
445        if results.is_empty() {
446            return Err(QuantRS2Error::InvalidOperation(
447                "No results to merge".to_string(),
448            ));
449        }
450
451        if let [single_result] = results.as_slice() {
452            return Ok(single_result.clone());
453        }
454
455        // Merge multiple results
456        let mut merged_measurements = HashMap::new();
457        let mut total_fidelity = 1.0;
458        let mut total_shots = 0;
459
460        for result in results {
461            for (outcome, count) in result.measurements {
462                *merged_measurements.entry(outcome).or_insert(0) += count;
463            }
464            total_fidelity *= result.fidelity;
465            total_shots += result.shots;
466        }
467
468        Ok(CircuitResult {
469            measurements: merged_measurements,
470            fidelity: total_fidelity,
471            shots: total_shots,
472            execution_metadata: ExecutionMetadata::default(),
473        })
474    }
475
476    /// Select optimal backend for circuit
477    async fn select_optimal_backend_for_circuit(
478        &self,
479        analysis: &CircuitAnalysis,
480        requirements: &ExecutionRequirements,
481    ) -> Result<Arc<dyn QuantumHardwareBackend>, QuantRS2Error> {
482        let mut best_backend = None;
483        let mut best_score = f64::NEG_INFINITY;
484
485        for backend in &self.hardware_backends {
486            if matches!(backend.status(), HardwareStatus::Online) {
487                let score = self
488                    .calculate_circuit_backend_score(backend, analysis, requirements)
489                    .await;
490                if score > best_score {
491                    best_score = score;
492                    best_backend = Some(backend.clone());
493                }
494            }
495        }
496
497        best_backend.ok_or_else(|| {
498            QuantRS2Error::NoHardwareAvailable("No suitable backends available".to_string())
499        })
500    }
501
502    /// Calculate backend score for circuit
503    async fn calculate_circuit_backend_score(
504        &self,
505        backend: &Arc<dyn QuantumHardwareBackend>,
506        analysis: &CircuitAnalysis,
507        requirements: &ExecutionRequirements,
508    ) -> f64 {
509        let mut score = 0.0;
510        let capabilities = backend.capabilities();
511
512        // Check if backend can handle circuit size
513        if analysis.circuit_depth > capabilities.max_circuit_depth {
514            score -= 1000.0; // Heavy penalty for insufficient capacity
515        }
516
517        // Native gate support score
518        let mut native_gate_ratio = 0.0;
519        for (gate_type, count) in &analysis.gate_types {
520            if capabilities.native_gates.contains(gate_type) {
521                native_gate_ratio += *count as f64;
522            }
523        }
524        native_gate_ratio /= analysis.total_gates as f64;
525        score += native_gate_ratio * requirements.native_gate_weight;
526
527        // Fidelity score for circuit
528        let estimated_circuit_fidelity =
529            capabilities.gate_fidelity.powi(analysis.total_gates as i32);
530        score += estimated_circuit_fidelity * requirements.fidelity_weight;
531
532        // Parallelism utilization
533        score += analysis.parallelism_factor * requirements.parallelism_weight;
534
535        score
536    }
537}
538
539/// Adaptive middleware for hardware optimization
540#[derive(Debug)]
541pub struct AdaptiveMiddleware {
542    pub optimization_strategies: Vec<Box<dyn OptimizationStrategy>>,
543    pub transformation_cache: Arc<RwLock<HashMap<String, TransformationResult>>>,
544    pub learning_engine: AdaptiveLearningEngine,
545}
546
547pub trait OptimizationStrategy: Send + Sync + std::fmt::Debug {
548    fn strategy_name(&self) -> &str;
549    fn applicable_to(&self, backend_type: &HardwareType) -> bool;
550    fn optimize_operation(
551        &self,
552        operation: &dyn GateOp,
553        backend: &dyn QuantumHardwareBackend,
554    ) -> Result<Box<dyn GateOp>, QuantRS2Error>;
555    fn optimize_circuit(
556        &self,
557        circuit: &[Box<dyn GateOp>],
558        backend: &dyn QuantumHardwareBackend,
559    ) -> Result<Vec<Box<dyn GateOp>>, QuantRS2Error>;
560}
561
562impl AdaptiveMiddleware {
563    pub fn new() -> Self {
564        Self {
565            optimization_strategies: Vec::new(),
566            transformation_cache: Arc::new(RwLock::new(HashMap::new())),
567            learning_engine: AdaptiveLearningEngine::new(),
568        }
569    }
570
571    pub async fn optimize_operation(
572        &self,
573        operation: &dyn GateOp,
574        backend: &Arc<dyn QuantumHardwareBackend>,
575    ) -> Result<Box<dyn GateOp>, QuantRS2Error> {
576        // Check cache first
577        let cache_key = format!("{}_{}", operation.name(), backend.backend_name());
578        {
579            let cache = self
580                .transformation_cache
581                .read()
582                .map_err(|e| QuantRS2Error::RuntimeError(format!("Lock poisoned: {e}")))?;
583            if let Some(cached) = cache.get(&cache_key) {
584                return Ok(cached.optimized_operation.clone());
585            }
586        }
587
588        // Apply applicable optimization strategies
589        let mut optimized_operation = operation.clone_gate();
590        for strategy in &self.optimization_strategies {
591            if strategy.applicable_to(&backend.hardware_type()) {
592                optimized_operation =
593                    strategy.optimize_operation(&*optimized_operation, &**backend)?;
594            }
595        }
596
597        // Cache result
598        if let Ok(mut cache) = self.transformation_cache.write() {
599            cache.insert(
600                cache_key,
601                TransformationResult {
602                    optimized_operation: optimized_operation.clone(),
603                    transformation_time: Instant::now(),
604                    performance_gain: 1.0, // Simplified
605                },
606            );
607        }
608
609        Ok(optimized_operation)
610    }
611
612    pub async fn optimize_circuit(
613        &self,
614        circuit: &[Box<dyn GateOp>],
615        backend: &Arc<dyn QuantumHardwareBackend>,
616    ) -> Result<Vec<Box<dyn GateOp>>, QuantRS2Error> {
617        let mut optimized_circuit = circuit.to_vec();
618
619        for strategy in &self.optimization_strategies {
620            if strategy.applicable_to(&backend.hardware_type()) {
621                optimized_circuit = strategy.optimize_circuit(&optimized_circuit, &**backend)?;
622            }
623        }
624
625        Ok(optimized_circuit)
626    }
627
628    pub fn get_applied_optimizations(&self) -> Vec<String> {
629        self.optimization_strategies
630            .iter()
631            .map(|s| s.strategy_name().to_string())
632            .collect()
633    }
634}
635
636/// Hardware resource manager
637#[derive(Debug)]
638pub struct HardwareResourceManager {
639    pub registered_hardware: Vec<Arc<dyn QuantumHardwareBackend>>,
640    pub resource_usage: Arc<RwLock<HashMap<String, ResourceUsage>>>,
641    pub scheduling_queue: Arc<Mutex<Vec<ScheduledJob>>>,
642}
643
644impl HardwareResourceManager {
645    pub fn new() -> Self {
646        Self {
647            registered_hardware: Vec::new(),
648            resource_usage: Arc::new(RwLock::new(HashMap::new())),
649            scheduling_queue: Arc::new(Mutex::new(Vec::new())),
650        }
651    }
652
653    pub fn register_hardware(&mut self, backend: Arc<dyn QuantumHardwareBackend>) {
654        self.registered_hardware.push(backend);
655    }
656
657    pub async fn get_availability_score(&self, backend: &Arc<dyn QuantumHardwareBackend>) -> f64 {
658        let Ok(usage) = self.resource_usage.read() else {
659            return 0.5; // Default score if lock is poisoned
660        };
661        if let Some(resource_usage) = usage.get(backend.backend_name()) {
662            1.0 - resource_usage.utilization_ratio
663        } else {
664            1.0 // No usage data means fully available
665        }
666    }
667}
668
669/// Calibration engine for hardware
670#[derive(Debug)]
671pub struct CalibrationEngine {
672    pub calibration_data: Arc<RwLock<HashMap<String, CalibrationData>>>,
673    pub calibration_schedule: Arc<Mutex<Vec<CalibrationTask>>>,
674}
675
676impl CalibrationEngine {
677    pub fn new() -> Self {
678        Self {
679            calibration_data: Arc::new(RwLock::new(HashMap::new())),
680            calibration_schedule: Arc::new(Mutex::new(Vec::new())),
681        }
682    }
683
684    pub async fn get_latest_calibration(
685        &self,
686        backend: &Arc<dyn QuantumHardwareBackend>,
687    ) -> Result<CalibrationData, QuantRS2Error> {
688        let calibration_data = self
689            .calibration_data
690            .read()
691            .map_err(|e| QuantRS2Error::RuntimeError(format!("Lock poisoned: {e}")))?;
692        calibration_data
693            .get(backend.backend_name())
694            .cloned()
695            .ok_or_else(|| {
696                QuantRS2Error::CalibrationNotFound(format!(
697                    "No calibration data for {}",
698                    backend.backend_name()
699                ))
700            })
701    }
702}
703
704/// Error mitigation layer
705#[derive(Debug)]
706pub struct ErrorMitigationLayer {
707    pub mitigation_protocols: Vec<Box<dyn ErrorMitigationProtocol>>,
708    pub noise_characterization: NoiseCharacterization,
709}
710
711pub trait ErrorMitigationProtocol: Send + Sync + std::fmt::Debug {
712    fn protocol_name(&self) -> &str;
713    fn applicable_to(&self, noise_model: &NoiseModel) -> bool;
714    fn preprocess_operation(
715        &self,
716        operation: &dyn GateOp,
717    ) -> Result<Box<dyn GateOp>, QuantRS2Error>;
718    fn postprocess_result(
719        &self,
720        result: &ExecutionResult,
721    ) -> Result<ExecutionResult, QuantRS2Error>;
722}
723
724impl ErrorMitigationLayer {
725    pub fn new() -> Self {
726        Self {
727            mitigation_protocols: Vec::new(),
728            noise_characterization: NoiseCharacterization::new(),
729        }
730    }
731
732    pub fn preprocess_operation(
733        &self,
734        operation: &dyn GateOp,
735        backend: &Arc<dyn QuantumHardwareBackend>,
736    ) -> Result<Box<dyn GateOp>, QuantRS2Error> {
737        let noise_model = backend.get_noise_model();
738        let mut processed_operation = operation.clone_gate();
739
740        for protocol in &self.mitigation_protocols {
741            if protocol.applicable_to(&noise_model) {
742                processed_operation = protocol.preprocess_operation(&*processed_operation)?;
743            }
744        }
745
746        Ok(processed_operation)
747    }
748
749    pub fn postprocess_result(
750        &self,
751        result: &ExecutionResult,
752        backend: &Arc<dyn QuantumHardwareBackend>,
753    ) -> Result<ExecutionResult, QuantRS2Error> {
754        let noise_model = backend.get_noise_model();
755        let mut processed_result = result.clone();
756
757        for protocol in &self.mitigation_protocols {
758            if protocol.applicable_to(&noise_model) {
759                processed_result = protocol.postprocess_result(&processed_result)?;
760            }
761        }
762
763        Ok(processed_result)
764    }
765}
766
767/// Data structures for hardware abstraction
768#[derive(Debug, Clone)]
769pub struct ExecutionRequirements {
770    pub shots: u64,
771    pub optimization_level: OptimizationLevel,
772    pub enable_error_mitigation: bool,
773    pub fidelity_weight: f64,
774    pub speed_weight: f64,
775    pub native_gate_weight: f64,
776    pub resource_weight: f64,
777    pub parallelism_weight: f64,
778}
779
780#[derive(Debug, Clone)]
781pub enum OptimizationLevel {
782    None,
783    Basic,
784    Aggressive,
785    Adaptive,
786}
787
788#[derive(Debug, Clone)]
789pub struct ExecutionContext {
790    pub execution_id: Uuid,
791    pub backend_name: String,
792    pub shots: u64,
793    pub optimization_level: OptimizationLevel,
794    pub error_mitigation_enabled: bool,
795    pub execution_time: Instant,
796    pub calibration_data: CalibrationData,
797}
798
799#[derive(Debug, Clone)]
800pub struct ExecutionResult {
801    pub measurement_outcomes: HashMap<String, u64>,
802    pub fidelity: f64,
803    pub execution_time: Duration,
804    pub metadata: ExecutionMetadata,
805}
806
807#[derive(Debug, Clone)]
808pub struct CircuitResult {
809    pub measurements: HashMap<String, u64>,
810    pub fidelity: f64,
811    pub shots: u64,
812    pub execution_metadata: ExecutionMetadata,
813}
814
815#[derive(Debug, Clone, Default)]
816pub struct ExecutionMetadata {
817    pub gate_count: usize,
818    pub circuit_depth: usize,
819    pub errors_detected: u64,
820    pub calibration_drift: f64,
821}
822
823#[derive(Debug, Clone)]
824pub struct CalibrationData {
825    pub timestamp: SystemTime,
826    pub gate_fidelities: HashMap<String, f64>,
827    pub coherence_times: HashMap<QubitId, Duration>,
828    pub cross_talk_matrix: Array2<f64>,
829    pub temperature: f64,
830}
831
832#[derive(Debug, Clone)]
833pub struct CalibrationResult {
834    pub success: bool,
835    pub data: CalibrationData,
836    pub drift_detected: bool,
837    pub recalibration_needed: bool,
838}
839
840#[derive(Debug, Clone)]
841pub struct NoiseModel {
842    pub gate_noise: HashMap<String, f64>,
843    pub measurement_noise: f64,
844    pub decoherence_rates: HashMap<QubitId, f64>,
845    pub crosstalk_strengths: Array2<f64>,
846}
847
848#[derive(Debug, Clone)]
849pub struct ConnectivityGraph {
850    pub adjacency_matrix: Array2<bool>,
851    pub edge_weights: HashMap<(QubitId, QubitId), f64>,
852}
853
854#[derive(Debug, Clone)]
855pub enum MeasurementBasis {
856    Computational,
857    Hadamard,
858    Custom(Array2<Complex64>),
859}
860
861#[derive(Debug, Clone)]
862pub struct MeasurementResult {
863    pub outcomes: HashMap<String, u64>,
864    pub total_shots: u64,
865    pub measurement_fidelity: f64,
866}
867
868// Additional supporting structures
869#[derive(Debug, Clone)]
870pub struct CircuitAnalysis {
871    pub total_gates: usize,
872    pub gate_types: HashMap<String, usize>,
873    pub circuit_depth: usize,
874    pub parallelism_factor: f64,
875    pub entanglement_structure: Vec<EntanglementConnection>,
876    pub critical_path_length: Duration,
877    pub resource_requirements: ResourceRequirements,
878}
879
880#[derive(Debug, Clone)]
881pub struct EntanglementConnection {
882    pub qubit1: QubitId,
883    pub qubit2: QubitId,
884    pub gate_index: usize,
885    pub strength: f64,
886}
887
888#[derive(Debug, Clone, Default)]
889pub struct ResourceRequirements {
890    pub qubits_needed: usize,
891    pub memory_mb: usize,
892    pub estimated_runtime: Duration,
893}
894
895#[derive(Debug, Clone)]
896pub struct TransformationResult {
897    pub optimized_operation: Box<dyn GateOp>,
898    pub transformation_time: Instant,
899    pub performance_gain: f64,
900}
901
902#[derive(Debug, Clone)]
903pub struct ResourceUsage {
904    pub utilization_ratio: f64,
905    pub queue_length: usize,
906    pub estimated_wait_time: Duration,
907}
908
909#[derive(Debug, Clone)]
910pub struct ScheduledJob {
911    pub job_id: Uuid,
912    pub priority: JobPriority,
913    pub estimated_duration: Duration,
914    pub resource_requirements: ResourceRequirements,
915}
916
917#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord)]
918pub enum JobPriority {
919    Low = 0,
920    Medium = 1,
921    High = 2,
922    Critical = 3,
923}
924
925#[derive(Debug, Clone)]
926pub struct CalibrationTask {
927    pub task_id: Uuid,
928    pub backend_name: String,
929    pub scheduled_time: SystemTime,
930    pub task_type: CalibrationType,
931}
932
933#[derive(Debug, Clone)]
934pub enum CalibrationType {
935    Full,
936    Partial,
937    Drift,
938    Emergency,
939}
940
941#[derive(Debug)]
942pub struct AdaptiveLearningEngine {
943    pub performance_history: Arc<RwLock<Vec<PerformanceRecord>>>,
944    pub optimization_suggestions: Arc<RwLock<Vec<OptimizationSuggestion>>>,
945}
946
947impl AdaptiveLearningEngine {
948    pub fn new() -> Self {
949        Self {
950            performance_history: Arc::new(RwLock::new(Vec::new())),
951            optimization_suggestions: Arc::new(RwLock::new(Vec::new())),
952        }
953    }
954}
955
956#[derive(Debug, Clone)]
957pub struct PerformanceRecord {
958    pub timestamp: SystemTime,
959    pub backend_name: String,
960    pub operation_type: String,
961    pub fidelity: f64,
962    pub execution_time: Duration,
963    pub optimization_used: String,
964}
965
966#[derive(Debug, Clone)]
967pub struct OptimizationSuggestion {
968    pub suggestion_id: Uuid,
969    pub backend_name: String,
970    pub suggested_optimization: String,
971    pub expected_improvement: f64,
972    pub confidence: f64,
973}
974
975#[derive(Debug)]
976pub struct NoiseCharacterization {
977    pub characterized_devices: HashMap<String, NoiseModel>,
978    pub characterization_history: Vec<NoiseCharacterizationRecord>,
979}
980
981impl NoiseCharacterization {
982    pub fn new() -> Self {
983        Self {
984            characterized_devices: HashMap::new(),
985            characterization_history: Vec::new(),
986        }
987    }
988}
989
990#[derive(Debug, Clone)]
991pub struct NoiseCharacterizationRecord {
992    pub timestamp: SystemTime,
993    pub device_name: String,
994    pub noise_model: NoiseModel,
995    pub characterization_fidelity: f64,
996}
997
998// Result structures
999#[derive(Debug, Clone)]
1000pub struct QuantumOperationResult {
1001    pub result: ExecutionResult,
1002    pub backend_used: String,
1003    pub execution_time: Instant,
1004    pub fidelity_estimate: f64,
1005    pub error_mitigation_applied: bool,
1006}
1007
1008#[derive(Debug, Clone)]
1009pub struct QuantumCircuitResult {
1010    pub circuit_result: CircuitResult,
1011    pub backend_used: String,
1012    pub total_execution_time: Duration,
1013    pub optimizations_applied: Vec<String>,
1014    pub partitions_used: usize,
1015}
1016
1017#[cfg(test)]
1018mod tests {
1019    use super::*;
1020
1021    #[test]
1022    fn test_hardware_abstraction_creation() {
1023        let abstraction = QuantumHardwareAbstraction::new();
1024        assert_eq!(abstraction.hardware_backends.len(), 0);
1025    }
1026
1027    #[test]
1028    fn test_execution_requirements_default() {
1029        let requirements = ExecutionRequirements {
1030            shots: 1000,
1031            optimization_level: OptimizationLevel::Basic,
1032            enable_error_mitigation: true,
1033            fidelity_weight: 0.4,
1034            speed_weight: 0.3,
1035            native_gate_weight: 0.2,
1036            resource_weight: 0.1,
1037            parallelism_weight: 0.0,
1038        };
1039
1040        assert_eq!(requirements.shots, 1000);
1041        assert!(requirements.enable_error_mitigation);
1042    }
1043
1044    #[test]
1045    fn test_adaptive_middleware_creation() {
1046        let middleware = AdaptiveMiddleware::new();
1047        assert_eq!(middleware.optimization_strategies.len(), 0);
1048    }
1049
1050    #[test]
1051    fn test_calibration_engine_creation() {
1052        let engine = CalibrationEngine::new();
1053        assert_eq!(
1054            engine
1055                .calibration_data
1056                .read()
1057                .expect("Failed to read calibration data")
1058                .len(),
1059            0
1060        );
1061    }
1062
1063    #[test]
1064    fn test_error_mitigation_layer_creation() {
1065        let layer = ErrorMitigationLayer::new();
1066        assert_eq!(layer.mitigation_protocols.len(), 0);
1067    }
1068}