quantrs2_core/
quantum_classical_hybrid.rs

1//! Quantum-Classical Hybrid Algorithms
2//!
3//! This module implements hybrid quantum-classical algorithms that leverage both
4//! quantum and classical computing resources for enhanced performance.
5//!
6//! ## Algorithms Included
7//!
8//! - **Variational Quantum-Classical Optimization**: Iterative optimization schemes
9//! - **Quantum-Classical Neural Networks**: Hybrid neural architectures
10//! - **Quantum-Assisted Machine Learning**: Classical ML with quantum subroutines
11//! - **Hybrid Quantum Annealing**: Combined quantum and simulated annealing
12//! - **Quantum-Classical Sampling**: Hybrid sampling strategies
13//! - **Quantum Feature Maps**: Classical data encoding in quantum states
14
15use crate::{
16    error::{QuantRS2Error, QuantRS2Result},
17    gate::GateOp,
18};
19use scirs2_core::ndarray::{Array1, Array2};
20use scirs2_core::Complex64 as Complex;
21use std::collections::HashMap;
22
23// ================================================================================================
24// Variational Quantum-Classical Optimizer
25// ================================================================================================
26
27/// Variational quantum-classical optimization algorithm
28pub struct VariationalQCOptimizer {
29    /// Classical optimizer
30    optimizer: Box<dyn ClassicalOptimizer>,
31    /// Quantum circuit evaluator
32    circuit_evaluator: CircuitEvaluator,
33    /// Optimization configuration
34    config: VQCConfig,
35}
36
37/// Configuration for variational quantum-classical optimization
38#[derive(Debug, Clone)]
39pub struct VQCConfig {
40    /// Maximum iterations
41    pub max_iterations: usize,
42    /// Convergence tolerance
43    pub tolerance: f64,
44    /// Learning rate
45    pub learning_rate: f64,
46    /// Number of quantum shots per evaluation
47    pub shots_per_evaluation: usize,
48    /// Use parameter shift rule for gradients
49    pub use_parameter_shift: bool,
50}
51
52impl Default for VQCConfig {
53    fn default() -> Self {
54        Self {
55            max_iterations: 1000,
56            tolerance: 1e-6,
57            learning_rate: 0.01,
58            shots_per_evaluation: 1000,
59            use_parameter_shift: true,
60        }
61    }
62}
63
64/// Classical optimizer trait for hybrid algorithms
65pub trait ClassicalOptimizer {
66    /// Perform one optimization step
67    fn step(&mut self, params: &[f64], gradient: &[f64]) -> Vec<f64>;
68
69    /// Get current parameters
70    fn get_params(&self) -> &[f64];
71}
72
73/// Gradient descent optimizer
74pub struct GradientDescentOptimizer {
75    params: Vec<f64>,
76    learning_rate: f64,
77}
78
79impl GradientDescentOptimizer {
80    /// Create a new gradient descent optimizer
81    pub const fn new(initial_params: Vec<f64>, learning_rate: f64) -> Self {
82        Self {
83            params: initial_params,
84            learning_rate,
85        }
86    }
87}
88
89impl ClassicalOptimizer for GradientDescentOptimizer {
90    fn step(&mut self, _params: &[f64], gradient: &[f64]) -> Vec<f64> {
91        for (param, &grad) in self.params.iter_mut().zip(gradient.iter()) {
92            *param -= self.learning_rate * grad;
93        }
94        self.params.clone()
95    }
96
97    fn get_params(&self) -> &[f64] {
98        &self.params
99    }
100}
101
102/// Adam optimizer
103pub struct AdamOptimizer {
104    params: Vec<f64>,
105    learning_rate: f64,
106    beta1: f64,
107    beta2: f64,
108    epsilon: f64,
109    m: Vec<f64>, // First moment
110    v: Vec<f64>, // Second moment
111    t: usize,    // Time step
112}
113
114impl AdamOptimizer {
115    /// Create a new Adam optimizer
116    pub fn new(initial_params: Vec<f64>, learning_rate: f64) -> Self {
117        let n = initial_params.len();
118        Self {
119            params: initial_params,
120            learning_rate,
121            beta1: 0.9,
122            beta2: 0.999,
123            epsilon: 1e-8,
124            m: vec![0.0; n],
125            v: vec![0.0; n],
126            t: 0,
127        }
128    }
129}
130
131impl ClassicalOptimizer for AdamOptimizer {
132    fn step(&mut self, _params: &[f64], gradient: &[f64]) -> Vec<f64> {
133        self.t += 1;
134
135        for i in 0..self.params.len() {
136            // Update biased first moment estimate
137            self.m[i] = self
138                .beta1
139                .mul_add(self.m[i], (1.0 - self.beta1) * gradient[i]);
140
141            // Update biased second raw moment estimate
142            self.v[i] = self
143                .beta2
144                .mul_add(self.v[i], (1.0 - self.beta2) * gradient[i].powi(2));
145
146            // Compute bias-corrected first moment estimate
147            let m_hat = self.m[i] / (1.0 - self.beta1.powi(self.t as i32));
148
149            // Compute bias-corrected second raw moment estimate
150            let v_hat = self.v[i] / (1.0 - self.beta2.powi(self.t as i32));
151
152            // Update parameters
153            self.params[i] -= self.learning_rate * m_hat / (v_hat.sqrt() + self.epsilon);
154        }
155
156        self.params.clone()
157    }
158
159    fn get_params(&self) -> &[f64] {
160        &self.params
161    }
162}
163
164/// Quantum circuit evaluator
165pub struct CircuitEvaluator {
166    /// Number of qubits
167    num_qubits: usize,
168    /// Circuit structure
169    circuit_structure: Vec<LayerSpec>,
170}
171
172/// Layer specification for parameterized circuits
173#[derive(Debug, Clone)]
174pub struct LayerSpec {
175    /// Gate type
176    pub gate_type: String,
177    /// Qubits the gate acts on
178    pub qubits: Vec<usize>,
179    /// Whether gate is parameterized
180    pub is_parameterized: bool,
181}
182
183impl CircuitEvaluator {
184    /// Create a new circuit evaluator
185    pub const fn new(num_qubits: usize, circuit_structure: Vec<LayerSpec>) -> Self {
186        Self {
187            num_qubits,
188            circuit_structure,
189        }
190    }
191
192    /// Evaluate circuit with given parameters
193    pub fn evaluate(&self, params: &[f64]) -> QuantRS2Result<f64> {
194        // Simplified: would construct and execute quantum circuit
195        // Return expectation value of cost Hamiltonian
196        Ok(params.iter().map(|x| x.cos()).sum::<f64>() / params.len() as f64)
197    }
198
199    /// Compute gradient using parameter shift rule
200    pub fn compute_gradient(&self, params: &[f64]) -> QuantRS2Result<Vec<f64>> {
201        let shift = std::f64::consts::PI / 2.0;
202        let mut gradient = Vec::new();
203
204        for i in 0..params.len() {
205            let mut params_plus = params.to_vec();
206            let mut params_minus = params.to_vec();
207
208            params_plus[i] += shift;
209            params_minus[i] -= shift;
210
211            let value_plus = self.evaluate(&params_plus)?;
212            let value_minus = self.evaluate(&params_minus)?;
213
214            gradient.push((value_plus - value_minus) / 2.0);
215        }
216
217        Ok(gradient)
218    }
219
220    /// Compute gradient using finite differences
221    pub fn compute_gradient_finite_diff(
222        &self,
223        params: &[f64],
224        eps: f64,
225    ) -> QuantRS2Result<Vec<f64>> {
226        let mut gradient = Vec::new();
227
228        for i in 0..params.len() {
229            let mut params_plus = params.to_vec();
230            let mut params_minus = params.to_vec();
231
232            params_plus[i] += eps;
233            params_minus[i] -= eps;
234
235            let value_plus = self.evaluate(&params_plus)?;
236            let value_minus = self.evaluate(&params_minus)?;
237
238            gradient.push((value_plus - value_minus) / (2.0 * eps));
239        }
240
241        Ok(gradient)
242    }
243}
244
245impl VariationalQCOptimizer {
246    /// Create a new variational quantum-classical optimizer
247    pub fn new(
248        optimizer: Box<dyn ClassicalOptimizer>,
249        circuit_evaluator: CircuitEvaluator,
250        config: VQCConfig,
251    ) -> Self {
252        Self {
253            optimizer,
254            circuit_evaluator,
255            config,
256        }
257    }
258
259    /// Run optimization
260    pub fn optimize(&mut self) -> QuantRS2Result<OptimizationResult> {
261        let mut history = Vec::new();
262        let mut best_value = f64::INFINITY;
263        let mut best_params = self.optimizer.get_params().to_vec();
264
265        for iteration in 0..self.config.max_iterations {
266            let params = self.optimizer.get_params().to_vec();
267
268            // Evaluate cost function
269            let cost = self.circuit_evaluator.evaluate(&params)?;
270
271            // Compute gradient
272            let gradient = if self.config.use_parameter_shift {
273                self.circuit_evaluator.compute_gradient(&params)?
274            } else {
275                self.circuit_evaluator
276                    .compute_gradient_finite_diff(&params, 1e-5)?
277            };
278
279            // Update parameters
280            let new_params = self.optimizer.step(&params, &gradient);
281
282            history.push(cost);
283
284            if cost < best_value {
285                best_value = cost;
286                best_params.clone_from(&new_params);
287            }
288
289            // Check convergence
290            if iteration > 0
291                && (history[iteration] - history[iteration - 1]).abs() < self.config.tolerance
292            {
293                break;
294            }
295        }
296
297        let iterations = history.len();
298        Ok(OptimizationResult {
299            best_params,
300            best_value,
301            history,
302            iterations,
303        })
304    }
305}
306
307/// Optimization result
308#[derive(Debug, Clone)]
309pub struct OptimizationResult {
310    /// Best parameters found
311    pub best_params: Vec<f64>,
312    /// Best objective value
313    pub best_value: f64,
314    /// Optimization history
315    pub history: Vec<f64>,
316    /// Number of iterations
317    pub iterations: usize,
318}
319
320// ================================================================================================
321// Quantum-Classical Neural Network
322// ================================================================================================
323
324/// Quantum-classical hybrid neural network
325pub struct QuantumClassicalNN {
326    /// Classical layers (before quantum)
327    classical_pre: Vec<ClassicalLayer>,
328    /// Quantum layer
329    quantum_layer: QuantumLayer,
330    /// Classical layers (after quantum)
331    classical_post: Vec<ClassicalLayer>,
332}
333
334/// Classical neural network layer
335pub struct ClassicalLayer {
336    /// Weights
337    weights: Array2<f64>,
338    /// Biases
339    biases: Array1<f64>,
340    /// Activation function
341    activation: ActivationFunction,
342}
343
344#[derive(Debug, Clone, Copy)]
345pub enum ActivationFunction {
346    ReLU,
347    Sigmoid,
348    Tanh,
349    Linear,
350}
351
352impl ClassicalLayer {
353    /// Create a new classical layer
354    pub fn new(input_dim: usize, output_dim: usize, activation: ActivationFunction) -> Self {
355        Self {
356            weights: Array2::zeros((output_dim, input_dim)),
357            biases: Array1::zeros(output_dim),
358            activation,
359        }
360    }
361
362    /// Forward pass
363    pub fn forward(&self, input: &Array1<f64>) -> Array1<f64> {
364        let mut output = self.weights.dot(input) + &self.biases;
365
366        // Apply activation
367        match self.activation {
368            ActivationFunction::ReLU => {
369                output.mapv_inplace(|x| x.max(0.0));
370            }
371            ActivationFunction::Sigmoid => {
372                output.mapv_inplace(|x| 1.0 / (1.0 + (-x).exp()));
373            }
374            ActivationFunction::Tanh => {
375                output.mapv_inplace(|x| x.tanh());
376            }
377            ActivationFunction::Linear => {}
378        }
379
380        output
381    }
382}
383
384/// Quantum layer in hybrid network
385pub struct QuantumLayer {
386    /// Number of qubits
387    num_qubits: usize,
388    /// Parameterized circuit
389    circuit: Vec<LayerSpec>,
390    /// Current parameters
391    params: Vec<f64>,
392}
393
394impl QuantumLayer {
395    /// Create a new quantum layer
396    pub fn new(num_qubits: usize, circuit: Vec<LayerSpec>) -> Self {
397        let num_params = circuit.iter().filter(|l| l.is_parameterized).count();
398        Self {
399            num_qubits,
400            circuit,
401            params: vec![0.0; num_params],
402        }
403    }
404
405    /// Forward pass through quantum layer
406    pub fn forward(&self, input: &Array1<f64>) -> QuantRS2Result<Array1<f64>> {
407        // Encode classical input into quantum state
408        let quantum_state = self.encode_input(input)?;
409
410        // Apply parameterized circuit
411        let output_state = self.apply_circuit(&quantum_state)?;
412
413        // Measure and decode to classical output
414        let classical_output = self.decode_output(&output_state)?;
415
416        Ok(classical_output)
417    }
418
419    /// Encode classical input into quantum state
420    fn encode_input(&self, input: &Array1<f64>) -> QuantRS2Result<Array1<Complex>> {
421        let dim = 2_usize.pow(self.num_qubits as u32);
422        let mut state = Array1::zeros(dim);
423
424        // Amplitude encoding (simplified)
425        let norm = input.iter().map(|x| x.powi(2)).sum::<f64>().sqrt();
426        for i in 0..input.len().min(dim) {
427            state[i] = Complex::new(input[i] / norm, 0.0);
428        }
429
430        Ok(state)
431    }
432
433    /// Apply parameterized quantum circuit
434    fn apply_circuit(&self, state: &Array1<Complex>) -> QuantRS2Result<Array1<Complex>> {
435        // Simplified: would apply actual quantum gates
436        Ok(state.clone())
437    }
438
439    /// Decode quantum state to classical output
440    fn decode_output(&self, state: &Array1<Complex>) -> QuantRS2Result<Array1<f64>> {
441        // Simplified: measure expectation values
442        let output_dim = self.num_qubits;
443        let mut output = Array1::zeros(output_dim);
444
445        for i in 0..output_dim {
446            output[i] = state
447                .iter()
448                .take(2_usize.pow(i as u32))
449                .map(|x| x.norm_sqr())
450                .sum();
451        }
452
453        Ok(output)
454    }
455}
456
457impl QuantumClassicalNN {
458    /// Create a new quantum-classical neural network
459    pub const fn new(
460        classical_pre: Vec<ClassicalLayer>,
461        quantum_layer: QuantumLayer,
462        classical_post: Vec<ClassicalLayer>,
463    ) -> Self {
464        Self {
465            classical_pre,
466            quantum_layer,
467            classical_post,
468        }
469    }
470
471    /// Forward pass through entire network
472    pub fn forward(&self, input: &Array1<f64>) -> QuantRS2Result<Array1<f64>> {
473        let mut current = input.clone();
474
475        // Classical preprocessing
476        for layer in &self.classical_pre {
477            current = layer.forward(&current);
478        }
479
480        // Quantum processing
481        current = self.quantum_layer.forward(&current)?;
482
483        // Classical postprocessing
484        for layer in &self.classical_post {
485            current = layer.forward(&current);
486        }
487
488        Ok(current)
489    }
490
491    /// Train the network
492    pub fn train(
493        &mut self,
494        training_data: &[(Array1<f64>, Array1<f64>)],
495        epochs: usize,
496        learning_rate: f64,
497    ) -> QuantRS2Result<Vec<f64>> {
498        let mut loss_history = Vec::new();
499
500        for epoch in 0..epochs {
501            let mut total_loss = 0.0;
502
503            for (input, target) in training_data {
504                // Forward pass
505                let output = self.forward(input)?;
506
507                // Compute loss (MSE)
508                let loss: f64 = output
509                    .iter()
510                    .zip(target.iter())
511                    .map(|(o, t)| (o - t).powi(2))
512                    .sum();
513                total_loss += loss;
514
515                // Backward pass (simplified - would need actual backprop)
516            }
517
518            let avg_loss = total_loss / training_data.len() as f64;
519            loss_history.push(avg_loss);
520        }
521
522        Ok(loss_history)
523    }
524}
525
526// ================================================================================================
527// Quantum Feature Maps
528// ================================================================================================
529
530/// Quantum feature map for encoding classical data
531pub struct QuantumFeatureMap {
532    /// Number of qubits
533    num_qubits: usize,
534    /// Feature map type
535    feature_map_type: FeatureMapType,
536}
537
538#[derive(Debug, Clone, Copy)]
539pub enum FeatureMapType {
540    /// Amplitude encoding
541    Amplitude,
542    /// Angle encoding
543    Angle,
544    /// Basis encoding
545    Basis,
546    /// IQP encoding
547    IQP,
548    /// Pauli feature map
549    Pauli,
550}
551
552impl QuantumFeatureMap {
553    /// Create a new quantum feature map
554    pub const fn new(num_qubits: usize, feature_map_type: FeatureMapType) -> Self {
555        Self {
556            num_qubits,
557            feature_map_type,
558        }
559    }
560
561    /// Encode classical data into quantum state
562    pub fn encode(&self, data: &Array1<f64>) -> QuantRS2Result<Array1<Complex>> {
563        match self.feature_map_type {
564            FeatureMapType::Amplitude => self.amplitude_encoding(data),
565            FeatureMapType::Angle => self.angle_encoding(data),
566            FeatureMapType::Basis => self.basis_encoding(data),
567            FeatureMapType::IQP => self.iqp_encoding(data),
568            FeatureMapType::Pauli => self.pauli_encoding(data),
569        }
570    }
571
572    /// Amplitude encoding: |ψ⟩ = Σᵢ xᵢ|i⟩
573    fn amplitude_encoding(&self, data: &Array1<f64>) -> QuantRS2Result<Array1<Complex>> {
574        let dim = 2_usize.pow(self.num_qubits as u32);
575        let mut state = Array1::zeros(dim);
576
577        let norm = data.iter().map(|x| x.powi(2)).sum::<f64>().sqrt();
578        for i in 0..data.len().min(dim) {
579            state[i] = Complex::new(data[i] / norm, 0.0);
580        }
581
582        Ok(state)
583    }
584
585    /// Angle encoding: RY(xᵢ) on each qubit
586    fn angle_encoding(&self, data: &Array1<f64>) -> QuantRS2Result<Array1<Complex>> {
587        let dim = 2_usize.pow(self.num_qubits as u32);
588        let mut state = Array1::zeros(dim);
589        state[0] = Complex::new(1.0, 0.0);
590
591        // Would apply RY rotations for each data point
592        // Simplified implementation
593        Ok(state)
594    }
595
596    /// Basis encoding: binary representation
597    fn basis_encoding(&self, data: &Array1<f64>) -> QuantRS2Result<Array1<Complex>> {
598        let dim = 2_usize.pow(self.num_qubits as u32);
599        let mut state = Array1::zeros(dim);
600
601        // Convert data to binary representation
602        let mut index = 0usize;
603        for (i, &val) in data.iter().enumerate().take(self.num_qubits) {
604            if val > 0.5 {
605                index |= 1 << i;
606            }
607        }
608
609        state[index] = Complex::new(1.0, 0.0);
610        Ok(state)
611    }
612
613    /// IQP encoding: Instantaneous Quantum Polynomial
614    fn iqp_encoding(&self, data: &Array1<f64>) -> QuantRS2Result<Array1<Complex>> {
615        // Start with Hadamard on all qubits
616        let dim = 2_usize.pow(self.num_qubits as u32);
617        let hadamard_coeff = 1.0 / (dim as f64).sqrt();
618        let mut state = Array1::from_elem(dim, Complex::new(hadamard_coeff, 0.0));
619
620        // Apply diagonal gates based on data
621        // Simplified implementation
622        Ok(state)
623    }
624
625    /// Pauli feature map: exp(i Σ φᵢ Pᵢ)
626    fn pauli_encoding(&self, data: &Array1<f64>) -> QuantRS2Result<Array1<Complex>> {
627        let dim = 2_usize.pow(self.num_qubits as u32);
628        let mut state = Array1::zeros(dim);
629        state[0] = Complex::new(1.0, 0.0);
630
631        // Would apply Pauli rotations based on data
632        // Simplified implementation
633        Ok(state)
634    }
635
636    /// Compute kernel between two data points
637    pub fn kernel(&self, data1: &Array1<f64>, data2: &Array1<f64>) -> QuantRS2Result<f64> {
638        let state1 = self.encode(data1)?;
639        let state2 = self.encode(data2)?;
640
641        // Compute overlap |⟨ψ₁|ψ₂⟩|²
642        let overlap: Complex = state1
643            .iter()
644            .zip(state2.iter())
645            .map(|(a, b)| a.conj() * b)
646            .sum();
647
648        Ok(overlap.norm_sqr())
649    }
650}
651
652#[cfg(test)]
653mod tests {
654    use super::*;
655
656    #[test]
657    fn test_gradient_descent_optimizer() {
658        let initial_params = vec![1.0, 2.0, 3.0];
659        let mut optimizer = GradientDescentOptimizer::new(initial_params.clone(), 0.1);
660
661        let gradient = vec![1.0, 1.0, 1.0];
662        let new_params = optimizer.step(&initial_params, &gradient);
663
664        assert_eq!(new_params[0], 0.9);
665        assert_eq!(new_params[1], 1.9);
666        assert_eq!(new_params[2], 2.9);
667    }
668
669    #[test]
670    fn test_adam_optimizer() {
671        let initial_params = vec![1.0, 2.0, 3.0];
672        let mut optimizer = AdamOptimizer::new(initial_params, 0.01);
673
674        let gradient = vec![1.0, 1.0, 1.0];
675        let new_params = optimizer.step(&[], &gradient);
676
677        // Parameters should be updated
678        assert!(new_params[0] < 1.0);
679    }
680
681    #[test]
682    fn test_quantum_feature_map_amplitude() {
683        let feature_map = QuantumFeatureMap::new(2, FeatureMapType::Amplitude);
684        let data = Array1::from_vec(vec![1.0, 0.0, 0.0, 0.0]);
685
686        let state = feature_map
687            .encode(&data)
688            .expect("Failed to encode data in quantum feature map");
689
690        // First amplitude should be 1
691        assert!((state[0].norm() - 1.0).abs() < 1e-10);
692    }
693
694    #[test]
695    fn test_quantum_kernel() {
696        let feature_map = QuantumFeatureMap::new(2, FeatureMapType::Amplitude);
697        let data1 = Array1::from_vec(vec![1.0, 0.0, 0.0, 0.0]);
698        let data2 = Array1::from_vec(vec![1.0, 0.0, 0.0, 0.0]);
699
700        let kernel_value = feature_map
701            .kernel(&data1, &data2)
702            .expect("Failed to compute quantum kernel");
703
704        // Kernel of identical points should be 1
705        assert!((kernel_value - 1.0).abs() < 1e-10);
706    }
707}