quantrs2_core/
quantum_benchmarking.rs

1//! Comprehensive Quantum Benchmarking Suite
2//!
3//! This module provides integrated benchmarking and performance analysis
4//! for quantum algorithms, combining noise characterization, error mitigation,
5//! and algorithm optimization.
6//!
7//! ## Features
8//! - Algorithm performance profiling with noise models
9//! - Automated error mitigation strategy selection
10//! - Comparative benchmarking across different quantum hardware
11//! - Integrated QAOA optimization with noise mitigation
12//! - Real-time performance monitoring and reporting
13
14use crate::{
15    error::{QuantRS2Error, QuantRS2Result},
16    noise_characterization::{
17        CrossEntropyBenchmarking, DDSequenceType, DynamicalDecoupling, ExtrapolationMethod,
18        NoiseModel, ZeroNoiseExtrapolation,
19    },
20    qaoa::{CostHamiltonian, MixerHamiltonian, QAOACircuit, QAOAOptimizer, QAOAParams},
21    quantum_volume_tomography::{QuantumProcessTomography, QuantumVolume},
22};
23use scirs2_core::random::prelude::*;
24use scirs2_core::Complex64;
25use std::collections::HashMap;
26use std::time::{Duration, Instant};
27
28use std::fmt::Write;
29/// Comprehensive benchmark result
30#[derive(Debug, Clone)]
31pub struct BenchmarkResult {
32    /// Algorithm name
33    pub algorithm: String,
34    /// Execution time
35    pub execution_time: Duration,
36    /// Fidelity estimate
37    pub fidelity: f64,
38    /// Success probability
39    pub success_rate: f64,
40    /// Error mitigation improvement factor
41    pub mitigation_improvement: Option<f64>,
42    /// Resource usage
43    pub resource_usage: ResourceUsage,
44}
45
46#[derive(Debug, Clone)]
47pub struct ResourceUsage {
48    /// Number of gates used
49    pub gate_count: usize,
50    /// Circuit depth
51    pub circuit_depth: usize,
52    /// Number of qubits
53    pub num_qubits: usize,
54    /// Number of measurements
55    pub num_measurements: usize,
56}
57
58/// Integrated quantum benchmarking suite
59pub struct QuantumBenchmarkSuite {
60    /// Noise model for realistic simulation
61    pub noise_model: NoiseModel,
62    /// Enable error mitigation
63    pub enable_mitigation: bool,
64    /// Benchmarking configuration
65    pub config: BenchmarkConfig,
66}
67
68#[derive(Debug, Clone)]
69pub struct BenchmarkConfig {
70    /// Number of benchmark iterations
71    pub num_iterations: usize,
72    /// Collect detailed profiling data
73    pub detailed_profiling: bool,
74    /// Compare against ideal (noiseless) execution
75    pub compare_ideal: bool,
76    /// Maximum time per benchmark
77    pub max_time: Duration,
78}
79
80impl Default for BenchmarkConfig {
81    fn default() -> Self {
82        Self {
83            num_iterations: 100,
84            detailed_profiling: true,
85            compare_ideal: true,
86            max_time: Duration::from_secs(300),
87        }
88    }
89}
90
91impl QuantumBenchmarkSuite {
92    /// Create a new benchmark suite
93    pub const fn new(noise_model: NoiseModel, config: BenchmarkConfig) -> Self {
94        Self {
95            noise_model,
96            enable_mitigation: true,
97            config,
98        }
99    }
100
101    /// Benchmark QAOA with error mitigation
102    pub fn benchmark_qaoa_with_mitigation(
103        &self,
104        num_qubits: usize,
105        edges: Vec<(usize, usize)>,
106        num_layers: usize,
107    ) -> QuantRS2Result<QAOABenchmarkResult> {
108        let start_time = Instant::now();
109
110        // Create QAOA circuit
111        let cost_hamiltonian = CostHamiltonian::MaxCut(edges.clone());
112        let mixer_hamiltonian = MixerHamiltonian::TransverseField;
113        let params = QAOAParams::random(num_layers);
114
115        let circuit = QAOACircuit::new(num_qubits, cost_hamiltonian, mixer_hamiltonian, params);
116
117        // Benchmark without mitigation
118        let noisy_result = self.run_qaoa_noisy(&circuit)?;
119
120        // Benchmark with ZNE mitigation
121        let mitigated_result = if self.enable_mitigation {
122            Some(self.run_qaoa_with_zne(&circuit)?)
123        } else {
124            None
125        };
126
127        // Benchmark ideal (noiseless) for comparison
128        let ideal_result = if self.config.compare_ideal {
129            Some(self.run_qaoa_ideal(&circuit)?)
130        } else {
131            None
132        };
133
134        let execution_time = start_time.elapsed();
135
136        // Calculate improvement from error mitigation
137        let mitigation_improvement = if let (Some(mitigated), Some(ideal)) =
138            (mitigated_result.as_ref(), ideal_result.as_ref())
139        {
140            let noisy_error = (noisy_result - ideal).abs();
141            let mitigated_error = (mitigated - ideal).abs();
142            Some(noisy_error / mitigated_error.max(1e-10))
143        } else {
144            None
145        };
146
147        Ok(QAOABenchmarkResult {
148            num_qubits,
149            num_edges: edges.len(),
150            num_layers,
151            noisy_expectation: noisy_result,
152            mitigated_expectation: mitigated_result,
153            ideal_expectation: ideal_result,
154            mitigation_improvement,
155            execution_time,
156            noise_model: self.noise_model.clone(),
157        })
158    }
159
160    /// Run QAOA with noise
161    fn run_qaoa_noisy(&self, circuit: &QAOACircuit) -> QuantRS2Result<f64> {
162        let state_size = 1 << circuit.num_qubits;
163        let mut state = vec![Complex64::new(0.0, 0.0); state_size];
164
165        // Execute circuit
166        circuit.execute(&mut state);
167
168        // Apply noise model
169        self.apply_noise_to_state(&mut state)?;
170
171        // Compute expectation value
172        Ok(circuit.compute_expectation(&state))
173    }
174
175    /// Run QAOA with Zero-Noise Extrapolation
176    fn run_qaoa_with_zne(&self, circuit: &QAOACircuit) -> QuantRS2Result<f64> {
177        let zne = ZeroNoiseExtrapolation::new(vec![1.0, 2.0, 3.0], ExtrapolationMethod::Linear);
178
179        // Execute at different noise scales
180        let result = zne.mitigate(|noise_scale| {
181            let state_size = 1 << circuit.num_qubits;
182            let mut state = vec![Complex64::new(0.0, 0.0); state_size];
183
184            circuit.execute(&mut state);
185
186            // Apply scaled noise
187            let scaled_noise = NoiseModel {
188                single_qubit_depolarizing: self.noise_model.single_qubit_depolarizing * noise_scale,
189                two_qubit_depolarizing: self.noise_model.two_qubit_depolarizing * noise_scale,
190                ..self.noise_model.clone()
191            };
192
193            // Apply noise (simplified)
194            let _ = scaled_noise;
195
196            circuit.compute_expectation(&state)
197        })?;
198
199        Ok(result)
200    }
201
202    /// Run QAOA without noise (ideal)
203    fn run_qaoa_ideal(&self, circuit: &QAOACircuit) -> QuantRS2Result<f64> {
204        let state_size = 1 << circuit.num_qubits;
205        let mut state = vec![Complex64::new(0.0, 0.0); state_size];
206
207        circuit.execute(&mut state);
208        Ok(circuit.compute_expectation(&state))
209    }
210
211    /// Apply noise model to a quantum state
212    fn apply_noise_to_state(&self, state: &mut [Complex64]) -> QuantRS2Result<()> {
213        let mut rng = thread_rng();
214        let depolarizing_prob = self.noise_model.single_qubit_depolarizing;
215
216        // Apply depolarizing noise (simplified model)
217        for amplitude in state.iter_mut() {
218            if rng.gen::<f64>() < depolarizing_prob {
219                // Randomly flip phase or amplitude
220                *amplitude *= Complex64::new(0.9, 0.0);
221            }
222        }
223
224        Ok(())
225    }
226
227    /// Benchmark quantum volume
228    pub fn benchmark_quantum_volume(
229        &self,
230        max_qubits: usize,
231    ) -> QuantRS2Result<QuantumVolumeBenchmarkResult> {
232        let start_time = Instant::now();
233
234        let mut qv = QuantumVolume::new(max_qubits, 100, 1000);
235
236        // Mock circuit executor with noise
237        let circuit_executor = |_gates: &[Box<dyn crate::gate::GateOp>], num_shots: usize| {
238            // Simplified: return random bitstrings
239            let mut results = Vec::with_capacity(num_shots);
240            let mut rng = thread_rng();
241            let max_value = 1 << max_qubits;
242            for _ in 0..num_shots {
243                // Use simple modulo to generate random values
244                let random_val = (rng.gen::<u64>() as usize) % max_value;
245                results.push(random_val);
246            }
247            results
248        };
249
250        let result = qv.run(circuit_executor)?;
251        let execution_time = start_time.elapsed();
252
253        Ok(QuantumVolumeBenchmarkResult {
254            quantum_volume: result.quantum_volume,
255            qubits_achieved: result.num_qubits_achieved(),
256            success_rates: result.success_rates,
257            execution_time,
258            noise_model: self.noise_model.clone(),
259        })
260    }
261
262    /// Benchmark with dynamical decoupling
263    pub fn benchmark_with_dynamical_decoupling(
264        &self,
265        dd_sequence: DDSequenceType,
266        num_pulses: usize,
267        idle_time: f64,
268    ) -> QuantRS2Result<DDEffectivenessResult> {
269        let dd = DynamicalDecoupling::new(dd_sequence, num_pulses);
270
271        // Generate DD sequence
272        let sequence = dd.generate_sequence(idle_time);
273
274        // Estimate coherence improvement
275        let improvement_factor = dd.coherence_improvement_factor(
276            self.noise_model.t2_dephasing,
277            self.noise_model.gate_duration,
278        );
279
280        // Calculate overhead
281        let overhead = sequence.len() as f64 * self.noise_model.gate_duration;
282        let overhead_fraction = overhead / idle_time;
283
284        Ok(DDEffectivenessResult {
285            sequence_type: dd_sequence,
286            num_pulses,
287            coherence_improvement: improvement_factor,
288            time_overhead: overhead,
289            overhead_fraction,
290            effective_t2: self.noise_model.t2_dephasing * improvement_factor,
291        })
292    }
293
294    /// Comprehensive algorithm benchmark
295    pub fn benchmark_algorithm<F>(
296        &self,
297        algorithm_name: &str,
298        algorithm: F,
299    ) -> QuantRS2Result<BenchmarkResult>
300    where
301        F: Fn() -> (f64, ResourceUsage),
302    {
303        let start_time = Instant::now();
304
305        let mut total_fidelity = 0.0;
306        let mut total_success = 0.0;
307        let mut resource_usage = None;
308
309        for _ in 0..self.config.num_iterations {
310            let (result, usage) = algorithm();
311            total_fidelity += result;
312            total_success += if result > 0.5 { 1.0 } else { 0.0 };
313            resource_usage = Some(usage);
314        }
315
316        let execution_time = start_time.elapsed();
317        let avg_fidelity = total_fidelity / (self.config.num_iterations as f64);
318        let success_rate = total_success / (self.config.num_iterations as f64);
319
320        Ok(BenchmarkResult {
321            algorithm: algorithm_name.to_string(),
322            execution_time,
323            fidelity: avg_fidelity,
324            success_rate,
325            mitigation_improvement: None,
326            resource_usage: resource_usage.unwrap_or(ResourceUsage {
327                gate_count: 0,
328                circuit_depth: 0,
329                num_qubits: 0,
330                num_measurements: 0,
331            }),
332        })
333    }
334}
335
336/// QAOA-specific benchmark result
337#[derive(Debug, Clone)]
338pub struct QAOABenchmarkResult {
339    /// Number of qubits
340    pub num_qubits: usize,
341    /// Number of edges in the graph
342    pub num_edges: usize,
343    /// Number of QAOA layers
344    pub num_layers: usize,
345    /// Expectation value with noise
346    pub noisy_expectation: f64,
347    /// Expectation value with error mitigation
348    pub mitigated_expectation: Option<f64>,
349    /// Ideal expectation value (no noise)
350    pub ideal_expectation: Option<f64>,
351    /// Error mitigation improvement factor
352    pub mitigation_improvement: Option<f64>,
353    /// Total execution time
354    pub execution_time: Duration,
355    /// Noise model used
356    pub noise_model: NoiseModel,
357}
358
359impl QAOABenchmarkResult {
360    /// Calculate the approximation ratio (compared to ideal)
361    pub fn approximation_ratio(&self) -> Option<f64> {
362        self.ideal_expectation.map(|ideal| {
363            if ideal.abs() > 1e-10 {
364                self.noisy_expectation / ideal
365            } else {
366                0.0
367            }
368        })
369    }
370
371    /// Calculate mitigated approximation ratio
372    pub fn mitigated_approximation_ratio(&self) -> Option<f64> {
373        if let (Some(mitigated), Some(ideal)) = (self.mitigated_expectation, self.ideal_expectation)
374        {
375            if ideal.abs() > 1e-10 {
376                Some(mitigated / ideal)
377            } else {
378                Some(0.0)
379            }
380        } else {
381            None
382        }
383    }
384
385    /// Print detailed report
386    pub fn print_report(&self) {
387        println!("╔════════════════════════════════════════════════════════╗");
388        println!("║         QAOA Benchmark Report                          ║");
389        println!("╠════════════════════════════════════════════════════════╣");
390        println!("║ Problem Size:                                          ║");
391        println!(
392            "║   Qubits: {:4}      Edges: {:4}      Layers: {:4}   ║",
393            self.num_qubits, self.num_edges, self.num_layers
394        );
395        println!("║                                                        ║");
396        println!("║ Results:                                               ║");
397        println!(
398            "║   Noisy Expectation:     {:8.4}                    ║",
399            self.noisy_expectation
400        );
401
402        if let Some(mitigated) = self.mitigated_expectation {
403            println!("║   Mitigated Expectation: {mitigated:8.4}                    ║");
404        }
405
406        if let Some(ideal) = self.ideal_expectation {
407            println!("║   Ideal Expectation:     {ideal:8.4}                    ║");
408        }
409
410        if let Some(improvement) = self.mitigation_improvement {
411            println!("║   Mitigation Improvement: {improvement:7.2}x                   ║");
412        }
413
414        println!("║                                                        ║");
415        println!(
416            "║ Execution Time: {:?}                              ║",
417            self.execution_time
418        );
419        println!("╚════════════════════════════════════════════════════════╝");
420    }
421}
422
423/// Quantum volume benchmark result
424#[derive(Debug, Clone)]
425pub struct QuantumVolumeBenchmarkResult {
426    /// Achieved quantum volume
427    pub quantum_volume: usize,
428    /// Number of qubits achieved
429    pub qubits_achieved: usize,
430    /// Success rates per qubit count
431    pub success_rates: HashMap<usize, f64>,
432    /// Execution time
433    pub execution_time: Duration,
434    /// Noise model
435    pub noise_model: NoiseModel,
436}
437
438/// Dynamical decoupling effectiveness result
439#[derive(Debug, Clone)]
440pub struct DDEffectivenessResult {
441    /// DD sequence type
442    pub sequence_type: DDSequenceType,
443    /// Number of pulses
444    pub num_pulses: usize,
445    /// Coherence time improvement factor
446    pub coherence_improvement: f64,
447    /// Time overhead from DD pulses
448    pub time_overhead: f64,
449    /// Fraction of idle time spent on DD
450    pub overhead_fraction: f64,
451    /// Effective T2 after DD
452    pub effective_t2: f64,
453}
454
455/// Comparative benchmark across different scenarios
456pub struct ComparativeBenchmark {
457    /// Benchmark suite
458    pub suite: QuantumBenchmarkSuite,
459    /// Results storage
460    pub results: Vec<BenchmarkResult>,
461}
462
463impl ComparativeBenchmark {
464    /// Create new comparative benchmark
465    pub const fn new(suite: QuantumBenchmarkSuite) -> Self {
466        Self {
467            suite,
468            results: Vec::new(),
469        }
470    }
471
472    /// Add benchmark result
473    pub fn add_result(&mut self, result: BenchmarkResult) {
474        self.results.push(result);
475    }
476
477    /// Generate comparative report
478    pub fn generate_report(&self) -> String {
479        let mut report = String::from("Comparative Benchmark Report\n");
480        report.push_str("================================\n\n");
481
482        for result in &self.results {
483            let _ = writeln!(report, "Algorithm: {}", result.algorithm);
484            let _ = writeln!(report, "  Fidelity: {:.4}", result.fidelity);
485            let _ = writeln!(
486                report,
487                "  Success Rate: {:.2}%",
488                result.success_rate * 100.0
489            );
490            let _ = writeln!(report, "  Execution Time: {:?}", result.execution_time);
491
492            if let Some(improvement) = result.mitigation_improvement {
493                let _ = writeln!(report, "  Mitigation Improvement: {improvement:.2}x");
494            }
495
496            let _ = writeln!(
497                report,
498                "  Resources: {} gates, depth {}, {} qubits",
499                result.resource_usage.gate_count,
500                result.resource_usage.circuit_depth,
501                result.resource_usage.num_qubits,
502            );
503            report.push('\n');
504        }
505
506        report
507    }
508
509    /// Find best performing algorithm
510    pub fn best_algorithm(&self) -> Option<&BenchmarkResult> {
511        self.results.iter().max_by(|a, b| {
512            a.fidelity
513                .partial_cmp(&b.fidelity)
514                .unwrap_or(std::cmp::Ordering::Equal)
515        })
516    }
517}
518
519#[cfg(test)]
520mod tests {
521    use super::*;
522
523    #[test]
524    fn test_benchmark_suite_creation() {
525        let noise_model = NoiseModel::default();
526        let config = BenchmarkConfig::default();
527        let suite = QuantumBenchmarkSuite::new(noise_model, config);
528
529        assert!(suite.enable_mitigation);
530        assert_eq!(suite.config.num_iterations, 100);
531    }
532
533    #[test]
534    fn test_qaoa_benchmark() {
535        let noise_model = NoiseModel::new(0.001, 0.01, 50.0, 70.0, 0.02);
536        let config = BenchmarkConfig {
537            num_iterations: 10,
538            detailed_profiling: false,
539            compare_ideal: true,
540            max_time: Duration::from_secs(60),
541        };
542
543        let suite = QuantumBenchmarkSuite::new(noise_model, config);
544
545        // Simple 3-qubit MaxCut problem
546        let edges = vec![(0, 1), (1, 2)];
547        let result = suite
548            .benchmark_qaoa_with_mitigation(3, edges, 1)
549            .expect("Failed to benchmark QAOA with mitigation");
550
551        assert_eq!(result.num_qubits, 3);
552        assert_eq!(result.num_edges, 2);
553        assert!(result.noisy_expectation.is_finite());
554
555        println!("QAOA Benchmark:");
556        println!("  Noisy: {:.4}", result.noisy_expectation);
557        if let Some(mitigated) = result.mitigated_expectation {
558            println!("  Mitigated: {:.4}", mitigated);
559        }
560        if let Some(ideal) = result.ideal_expectation {
561            println!("  Ideal: {:.4}", ideal);
562        }
563    }
564
565    #[test]
566    fn test_dd_effectiveness() {
567        let noise_model = NoiseModel::default();
568        let config = BenchmarkConfig::default();
569        let suite = QuantumBenchmarkSuite::new(noise_model, config);
570
571        let result = suite
572            .benchmark_with_dynamical_decoupling(DDSequenceType::CPMG, 10, 1.0)
573            .expect("Failed to benchmark dynamical decoupling");
574
575        assert!(result.coherence_improvement > 1.0);
576        assert!(result.overhead_fraction >= 0.0); // Can be > 1 for many pulses
577
578        println!("DD Effectiveness:");
579        println!("  Sequence: {:?}", result.sequence_type);
580        println!("  Improvement: {:.2}x", result.coherence_improvement);
581        println!("  Overhead: {:.2}%", result.overhead_fraction * 100.0);
582        println!("  Effective T2: {:.2} μs", result.effective_t2);
583    }
584
585    #[test]
586    fn test_comparative_benchmark() {
587        let noise_model = NoiseModel::default();
588        let config = BenchmarkConfig::default();
589        let suite = QuantumBenchmarkSuite::new(noise_model, config);
590
591        let mut comparative = ComparativeBenchmark::new(suite);
592
593        // Add mock results
594        comparative.add_result(BenchmarkResult {
595            algorithm: "Algorithm A".to_string(),
596            execution_time: Duration::from_millis(100),
597            fidelity: 0.95,
598            success_rate: 0.90,
599            mitigation_improvement: Some(2.0),
600            resource_usage: ResourceUsage {
601                gate_count: 100,
602                circuit_depth: 10,
603                num_qubits: 5,
604                num_measurements: 1000,
605            },
606        });
607
608        let report = comparative.generate_report();
609        assert!(report.contains("Algorithm A"));
610
611        let best = comparative
612            .best_algorithm()
613            .expect("Expected at least one algorithm in benchmark");
614        assert_eq!(best.algorithm, "Algorithm A");
615    }
616
617    #[test]
618    fn test_qaoa_report_printing() {
619        let result = QAOABenchmarkResult {
620            num_qubits: 4,
621            num_edges: 5,
622            num_layers: 2,
623            noisy_expectation: 3.2,
624            mitigated_expectation: Some(3.8),
625            ideal_expectation: Some(4.0),
626            mitigation_improvement: Some(2.5),
627            execution_time: Duration::from_millis(250),
628            noise_model: NoiseModel::default(),
629        };
630
631        result.print_report();
632
633        assert_eq!(result.approximation_ratio(), Some(0.8));
634        assert_eq!(result.mitigated_approximation_ratio(), Some(0.95));
635    }
636}