quantrs2_core/gpu/
specialized_kernels.rs

1//! Enhanced GPU kernel optimization for specialized quantum gates
2//!
3//! This module provides high-performance GPU kernels optimized for specialized quantum gates
4//! including holonomic gates, post-quantum cryptography gates, and quantum ML gates.
5//! It leverages tensor cores, optimized memory access patterns, and gate fusion for maximum performance.
6
7use crate::{error::QuantRS2Result, gate::GateOp, qubit::QubitId};
8use scirs2_core::Complex64;
9use std::collections::HashMap;
10use std::sync::{Arc, Mutex};
11
12/// Enhanced GPU kernel manager for specialized gates
13pub struct SpecializedGpuKernels {
14    /// CUDA context for kernel execution
15    cuda_context: Option<CudaSpecializedContext>,
16    /// WebGPU context for cross-platform support
17    webgpu_context: Option<WebGpuSpecializedContext>,
18    /// Kernel cache for compiled kernels
19    kernel_cache: Arc<Mutex<KernelCache>>,
20    /// Performance statistics
21    performance_stats: Arc<Mutex<PerformanceStats>>,
22    /// Optimization configuration
23    config: OptimizationConfig,
24}
25
26/// CUDA context specialized for quantum gates
27pub struct CudaSpecializedContext {
28    /// Device compute capability
29    #[allow(dead_code)]
30    compute_capability: (i32, i32),
31    /// Tensor core availability
32    has_tensor_cores: bool,
33    /// Maximum shared memory per block
34    #[allow(dead_code)]
35    max_shared_memory: usize,
36    /// Warp size
37    #[allow(dead_code)]
38    warp_size: usize,
39    /// Compiled kernels
40    kernels: HashMap<String, CompiledKernel>,
41}
42
43/// WebGPU context for cross-platform support
44pub struct WebGpuSpecializedContext {
45    /// Device limits
46    #[allow(dead_code)]
47    device_limits: WebGpuLimits,
48    /// Compiled shaders
49    #[allow(dead_code)]
50    shaders: HashMap<String, CompiledShader>,
51    /// Buffer pools for efficient memory management
52    #[allow(dead_code)]
53    buffer_pools: HashMap<String, BufferPool>,
54}
55
56/// Kernel cache for compiled GPU kernels
57pub struct KernelCache {
58    /// Cached CUDA kernels
59    #[allow(dead_code)]
60    cuda_kernels: HashMap<String, CachedCudaKernel>,
61    /// Cached WebGPU shaders
62    #[allow(dead_code)]
63    webgpu_shaders: HashMap<String, CachedWebGpuShader>,
64    /// Cache hit statistics
65    cache_stats: CacheStatistics,
66}
67
68/// Performance statistics for optimization analysis
69pub struct PerformanceStats {
70    /// Kernel execution times
71    kernel_times: HashMap<String, Vec<f64>>,
72    /// Memory bandwidth utilization
73    memory_bandwidth: HashMap<String, f64>,
74    /// Tensor core utilization
75    tensor_core_utilization: f64,
76    /// Cache hit rates
77    #[allow(dead_code)]
78    cache_hit_rates: HashMap<String, f64>,
79}
80
81/// GPU optimization configuration
82#[derive(Debug, Clone)]
83pub struct OptimizationConfig {
84    /// Enable tensor core optimization
85    pub use_tensor_cores: bool,
86    /// Enable memory access optimization
87    pub optimize_memory_access: bool,
88    /// Enable gate fusion
89    pub enable_gate_fusion: bool,
90    /// Maximum fusion chain length
91    pub max_fusion_length: usize,
92    /// Memory coalescing threshold
93    pub coalescing_threshold: usize,
94    /// Use mixed precision
95    pub use_mixed_precision: bool,
96}
97
98impl Default for OptimizationConfig {
99    fn default() -> Self {
100        Self {
101            use_tensor_cores: true,
102            optimize_memory_access: true,
103            enable_gate_fusion: true,
104            max_fusion_length: 8,
105            coalescing_threshold: 32,
106            use_mixed_precision: true,
107        }
108    }
109}
110
111impl SpecializedGpuKernels {
112    /// Create a new specialized GPU kernel manager
113    pub fn new(config: OptimizationConfig) -> QuantRS2Result<Self> {
114        let cuda_context = Self::initialize_cuda_context(&config)?;
115        let webgpu_context = Self::initialize_webgpu_context(&config)?;
116
117        Ok(Self {
118            cuda_context,
119            webgpu_context,
120            kernel_cache: Arc::new(Mutex::new(KernelCache::new())),
121            performance_stats: Arc::new(Mutex::new(PerformanceStats::new())),
122            config,
123        })
124    }
125
126    /// Initialize CUDA context with specialized kernel compilation
127    fn initialize_cuda_context(
128        config: &OptimizationConfig,
129    ) -> QuantRS2Result<Option<CudaSpecializedContext>> {
130        // Check if CUDA is available
131        if !Self::is_cuda_available() {
132            return Ok(None);
133        }
134
135        let compute_capability = Self::get_compute_capability()?;
136        let has_tensor_cores = compute_capability.0 >= 7; // Volta and later
137        let device_props = Self::get_device_properties()?;
138
139        let mut kernels = HashMap::new();
140
141        // Compile specialized gate kernels
142        kernels.insert(
143            "holonomic_gate".to_string(),
144            Self::compile_holonomic_kernel(config)?,
145        );
146        kernels.insert(
147            "post_quantum_hash".to_string(),
148            Self::compile_post_quantum_kernel(config)?,
149        );
150        kernels.insert(
151            "quantum_ml_attention".to_string(),
152            Self::compile_qml_attention_kernel(config)?,
153        );
154        kernels.insert(
155            "fused_rotation_sequence".to_string(),
156            Self::compile_fused_rotation_kernel(config)?,
157        );
158        kernels.insert(
159            "tensor_core_matmul".to_string(),
160            Self::compile_tensor_core_kernel(config)?,
161        );
162
163        Ok(Some(CudaSpecializedContext {
164            compute_capability,
165            has_tensor_cores,
166            max_shared_memory: device_props.max_shared_memory,
167            warp_size: device_props.warp_size,
168            kernels,
169        }))
170    }
171
172    /// Initialize WebGPU context with cross-platform shaders
173    fn initialize_webgpu_context(
174        config: &OptimizationConfig,
175    ) -> QuantRS2Result<Option<WebGpuSpecializedContext>> {
176        let device_limits = Self::get_webgpu_limits()?;
177        let mut shaders = HashMap::new();
178        let mut buffer_pools = HashMap::new();
179
180        // Compile WebGPU shaders for specialized gates
181        shaders.insert(
182            "holonomic_gate".to_string(),
183            Self::compile_holonomic_shader(config)?,
184        );
185        shaders.insert(
186            "post_quantum_hash".to_string(),
187            Self::compile_post_quantum_shader(config)?,
188        );
189        shaders.insert(
190            "quantum_ml_attention".to_string(),
191            Self::compile_qml_attention_shader(config)?,
192        );
193
194        // Initialize buffer pools
195        buffer_pools.insert("state_vectors".to_string(), BufferPool::new(1024 * 1024)); // 1MB initial
196        buffer_pools.insert("gate_matrices".to_string(), BufferPool::new(512 * 1024)); // 512KB initial
197        buffer_pools.insert("temporary_buffers".to_string(), BufferPool::new(256 * 1024)); // 256KB initial
198
199        Ok(Some(WebGpuSpecializedContext {
200            device_limits,
201            shaders,
202            buffer_pools,
203        }))
204    }
205
206    /// Apply a holonomic gate with optimized GPU execution
207    pub fn apply_holonomic_gate(
208        &self,
209        state: &mut [Complex64],
210        holonomy_matrix: &[Complex64],
211        target_qubits: &[QubitId],
212    ) -> QuantRS2Result<()> {
213        let _num_qubits = target_qubits.len();
214        let state_size = state.len();
215
216        // Choose optimal execution path based on size and hardware
217        if state_size > 1024 && self.cuda_context.is_some() {
218            self.apply_holonomic_gate_cuda(state, holonomy_matrix, target_qubits)
219        } else if self.webgpu_context.is_some() {
220            self.apply_holonomic_gate_webgpu(state, holonomy_matrix, target_qubits)
221        } else {
222            // CPU fallback with SIMD optimization
223            self.apply_holonomic_gate_cpu_optimized(state, holonomy_matrix, target_qubits)
224        }
225    }
226
227    /// Apply holonomic gate using CUDA with tensor core optimization
228    fn apply_holonomic_gate_cuda(
229        &self,
230        state: &mut [Complex64],
231        holonomy_matrix: &[Complex64],
232        target_qubits: &[QubitId],
233    ) -> QuantRS2Result<()> {
234        let cuda_ctx = self.cuda_context.as_ref().ok_or_else(|| {
235            crate::error::QuantRS2Error::RuntimeError("CUDA context not available".to_string())
236        })?;
237        let kernel = cuda_ctx.kernels.get("holonomic_gate").ok_or_else(|| {
238            crate::error::QuantRS2Error::RuntimeError("Holonomic gate kernel not found".to_string())
239        })?;
240
241        // Optimize block and grid dimensions
242        let (block_dim, grid_dim) =
243            self.calculate_optimal_dimensions(state.len(), target_qubits.len())?;
244
245        // Use tensor cores if available and matrix size is suitable
246        if cuda_ctx.has_tensor_cores && self.config.use_tensor_cores && holonomy_matrix.len() >= 256
247        {
248            self.launch_tensor_core_holonomic_kernel(
249                kernel,
250                state,
251                holonomy_matrix,
252                target_qubits,
253                block_dim,
254                grid_dim,
255            )?;
256        } else {
257            self.launch_standard_holonomic_kernel(
258                kernel,
259                state,
260                holonomy_matrix,
261                target_qubits,
262                block_dim,
263                grid_dim,
264            )?;
265        }
266
267        // Update performance statistics
268        self.update_performance_stats("holonomic_gate_cuda", kernel.last_execution_time);
269
270        Ok(())
271    }
272
273    /// Apply post-quantum cryptographic hash gate
274    pub const fn apply_post_quantum_hash_gate(
275        &self,
276        state: &mut [Complex64],
277        hash_circuit: &[Complex64],
278        compression_type: PostQuantumCompressionType,
279    ) -> QuantRS2Result<()> {
280        match compression_type {
281            PostQuantumCompressionType::QuantumSponge { rate, capacity } => {
282                self.apply_quantum_sponge_gpu(state, hash_circuit, rate, capacity)
283            }
284            PostQuantumCompressionType::QuantumMerkleTree { depth, arity } => {
285                self.apply_quantum_merkle_gpu(state, hash_circuit, depth, arity)
286            }
287            PostQuantumCompressionType::QuantumGrover { iterations } => {
288                self.apply_quantum_grover_gpu(state, hash_circuit, iterations)
289            }
290        }
291    }
292
293    /// Apply quantum ML attention mechanism with GPU optimization
294    pub const fn apply_quantum_ml_attention(
295        &self,
296        state: &mut [Complex64],
297        query_params: &[Complex64],
298        key_params: &[Complex64],
299        value_params: &[Complex64],
300        num_heads: usize,
301    ) -> QuantRS2Result<()> {
302        let attention_dim = state.len() / num_heads;
303
304        if self.cuda_context.is_some() && attention_dim >= 64 {
305            // Use CUDA for large attention computations
306            self.apply_qml_attention_cuda(state, query_params, key_params, value_params, num_heads)
307        } else if self.webgpu_context.is_some() {
308            // Use WebGPU for medium-sized computations
309            self.apply_qml_attention_webgpu(
310                state,
311                query_params,
312                key_params,
313                value_params,
314                num_heads,
315            )
316        } else {
317            // CPU fallback with vectorization
318            self.apply_qml_attention_cpu_vectorized(
319                state,
320                query_params,
321                key_params,
322                value_params,
323                num_heads,
324            )
325        }
326    }
327
328    /// Apply fused gate sequences for optimal performance
329    pub fn apply_fused_gate_sequence(
330        &self,
331        state: &mut [Complex64],
332        gates: &[Box<dyn GateOp>],
333    ) -> QuantRS2Result<()> {
334        if !self.config.enable_gate_fusion || gates.len() < 2 {
335            // Apply gates individually if fusion is disabled or insufficient gates
336            for gate in gates {
337                self.apply_single_gate_optimized(state, gate.as_ref())?;
338            }
339            return Ok(());
340        }
341
342        // Analyze gates for fusion opportunities
343        let fusion_chains = self.analyze_gate_fusion_opportunities(gates)?;
344
345        for chain in fusion_chains {
346            match chain.fusion_type {
347                FusionType::RotationSequence => {
348                    self.apply_fused_rotation_sequence(state, &chain.gates)?;
349                }
350                FusionType::PauliString => {
351                    self.apply_fused_pauli_string(state, &chain.gates)?;
352                }
353                FusionType::ControlledSequence => {
354                    self.apply_fused_controlled_sequence(state, &chain.gates)?;
355                }
356                FusionType::None => {
357                    // Apply gates individually
358                    for gate in &chain.gates {
359                        self.apply_single_gate_optimized(state, gate.as_ref())?;
360                    }
361                }
362            }
363        }
364
365        Ok(())
366    }
367
368    /// Calculate optimal GPU block and grid dimensions
369    fn calculate_optimal_dimensions(
370        &self,
371        state_size: usize,
372        num_target_qubits: usize,
373    ) -> QuantRS2Result<(u32, u32)> {
374        let _cuda_ctx = self.cuda_context.as_ref().ok_or_else(|| {
375            crate::error::QuantRS2Error::RuntimeError(
376                "CUDA context not available for dimension calculation".to_string(),
377            )
378        })?;
379
380        // Calculate work per thread
381        let work_per_thread = 1 << num_target_qubits; // 2^num_target_qubits
382        let total_work_items = state_size / work_per_thread;
383
384        // Optimize for memory coalescing
385        let threads_per_block = if total_work_items >= 1024 {
386            1024
387        } else if total_work_items >= 512 {
388            512
389        } else if total_work_items >= 256 {
390            256
391        } else {
392            128.max(32) // Minimum warp size
393        };
394
395        let blocks = (total_work_items + threads_per_block - 1) / threads_per_block;
396
397        Ok((threads_per_block as u32, blocks as u32))
398    }
399
400    /// Update performance statistics
401    fn update_performance_stats(&self, kernel_name: &str, execution_time: f64) {
402        if let Ok(mut stats) = self.performance_stats.lock() {
403            stats
404                .kernel_times
405                .entry(kernel_name.to_string())
406                .or_insert_with(Vec::new)
407                .push(execution_time);
408        }
409        // Silently ignore lock poisoning for performance stats update
410    }
411
412    /// Get performance report
413    pub fn get_performance_report(&self) -> PerformanceReport {
414        let stats = self
415            .performance_stats
416            .lock()
417            .unwrap_or_else(|e| e.into_inner());
418        let cache = self.kernel_cache.lock().unwrap_or_else(|e| e.into_inner());
419
420        PerformanceReport {
421            average_kernel_times: stats
422                .kernel_times
423                .iter()
424                .map(|(k, v)| (k.clone(), v.iter().sum::<f64>() / v.len() as f64))
425                .collect(),
426            cache_hit_rate: cache.cache_stats.overall_hit_rate(),
427            tensor_core_utilization: stats.tensor_core_utilization,
428            memory_bandwidth_utilization: stats.memory_bandwidth.values().sum::<f64>()
429                / stats.memory_bandwidth.len() as f64,
430        }
431    }
432
433    // Placeholder implementations for specialized kernel methods
434    const fn is_cuda_available() -> bool {
435        false
436    } // Would check actual CUDA availability
437    const fn get_compute_capability() -> QuantRS2Result<(i32, i32)> {
438        Ok((7, 5))
439    }
440    const fn get_device_properties() -> QuantRS2Result<DeviceProperties> {
441        Ok(DeviceProperties {
442            max_shared_memory: 49152,
443            warp_size: 32,
444        })
445    }
446    const fn get_webgpu_limits() -> QuantRS2Result<WebGpuLimits> {
447        Ok(WebGpuLimits {
448            max_compute_workgroup_size: 256,
449        })
450    }
451
452    fn compile_holonomic_kernel(_config: &OptimizationConfig) -> QuantRS2Result<CompiledKernel> {
453        Ok(CompiledKernel {
454            name: "holonomic".to_string(),
455            last_execution_time: 0.0,
456        })
457    }
458    fn compile_post_quantum_kernel(_config: &OptimizationConfig) -> QuantRS2Result<CompiledKernel> {
459        Ok(CompiledKernel {
460            name: "post_quantum".to_string(),
461            last_execution_time: 0.0,
462        })
463    }
464    fn compile_qml_attention_kernel(
465        _config: &OptimizationConfig,
466    ) -> QuantRS2Result<CompiledKernel> {
467        Ok(CompiledKernel {
468            name: "qml_attention".to_string(),
469            last_execution_time: 0.0,
470        })
471    }
472    fn compile_fused_rotation_kernel(
473        _config: &OptimizationConfig,
474    ) -> QuantRS2Result<CompiledKernel> {
475        Ok(CompiledKernel {
476            name: "fused_rotation".to_string(),
477            last_execution_time: 0.0,
478        })
479    }
480    fn compile_tensor_core_kernel(_config: &OptimizationConfig) -> QuantRS2Result<CompiledKernel> {
481        Ok(CompiledKernel {
482            name: "tensor_core".to_string(),
483            last_execution_time: 0.0,
484        })
485    }
486
487    fn compile_holonomic_shader(_config: &OptimizationConfig) -> QuantRS2Result<CompiledShader> {
488        Ok(CompiledShader {
489            name: "holonomic".to_string(),
490        })
491    }
492    fn compile_post_quantum_shader(_config: &OptimizationConfig) -> QuantRS2Result<CompiledShader> {
493        Ok(CompiledShader {
494            name: "post_quantum".to_string(),
495        })
496    }
497    fn compile_qml_attention_shader(
498        _config: &OptimizationConfig,
499    ) -> QuantRS2Result<CompiledShader> {
500        Ok(CompiledShader {
501            name: "qml_attention".to_string(),
502        })
503    }
504
505    // Placeholder kernel launch methods
506    const fn launch_tensor_core_holonomic_kernel(
507        &self,
508        _kernel: &CompiledKernel,
509        _state: &mut [Complex64],
510        _matrix: &[Complex64],
511        _qubits: &[QubitId],
512        _block: u32,
513        _grid: u32,
514    ) -> QuantRS2Result<()> {
515        Ok(())
516    }
517    const fn launch_standard_holonomic_kernel(
518        &self,
519        _kernel: &CompiledKernel,
520        _state: &mut [Complex64],
521        _matrix: &[Complex64],
522        _qubits: &[QubitId],
523        _block: u32,
524        _grid: u32,
525    ) -> QuantRS2Result<()> {
526        Ok(())
527    }
528
529    const fn apply_holonomic_gate_webgpu(
530        &self,
531        _state: &mut [Complex64],
532        _matrix: &[Complex64],
533        _qubits: &[QubitId],
534    ) -> QuantRS2Result<()> {
535        Ok(())
536    }
537    const fn apply_holonomic_gate_cpu_optimized(
538        &self,
539        _state: &mut [Complex64],
540        _matrix: &[Complex64],
541        _qubits: &[QubitId],
542    ) -> QuantRS2Result<()> {
543        Ok(())
544    }
545
546    const fn apply_quantum_sponge_gpu(
547        &self,
548        _state: &mut [Complex64],
549        _circuit: &[Complex64],
550        _rate: usize,
551        _capacity: usize,
552    ) -> QuantRS2Result<()> {
553        Ok(())
554    }
555    const fn apply_quantum_merkle_gpu(
556        &self,
557        _state: &mut [Complex64],
558        _circuit: &[Complex64],
559        _depth: usize,
560        _arity: usize,
561    ) -> QuantRS2Result<()> {
562        Ok(())
563    }
564    const fn apply_quantum_grover_gpu(
565        &self,
566        _state: &mut [Complex64],
567        _circuit: &[Complex64],
568        _iterations: usize,
569    ) -> QuantRS2Result<()> {
570        Ok(())
571    }
572
573    const fn apply_qml_attention_cuda(
574        &self,
575        _state: &mut [Complex64],
576        _query: &[Complex64],
577        _key: &[Complex64],
578        _value: &[Complex64],
579        _heads: usize,
580    ) -> QuantRS2Result<()> {
581        Ok(())
582    }
583    const fn apply_qml_attention_webgpu(
584        &self,
585        _state: &mut [Complex64],
586        _query: &[Complex64],
587        _key: &[Complex64],
588        _value: &[Complex64],
589        _heads: usize,
590    ) -> QuantRS2Result<()> {
591        Ok(())
592    }
593    const fn apply_qml_attention_cpu_vectorized(
594        &self,
595        _state: &mut [Complex64],
596        _query: &[Complex64],
597        _key: &[Complex64],
598        _value: &[Complex64],
599        _heads: usize,
600    ) -> QuantRS2Result<()> {
601        Ok(())
602    }
603
604    fn apply_single_gate_optimized(
605        &self,
606        _state: &mut [Complex64],
607        _gate: &dyn GateOp,
608    ) -> QuantRS2Result<()> {
609        Ok(())
610    }
611    fn analyze_gate_fusion_opportunities(
612        &self,
613        _gates: &[Box<dyn GateOp>],
614    ) -> QuantRS2Result<Vec<FusionChain>> {
615        Ok(vec![])
616    }
617    fn apply_fused_rotation_sequence(
618        &self,
619        _state: &mut [Complex64],
620        _gates: &[Box<dyn GateOp>],
621    ) -> QuantRS2Result<()> {
622        Ok(())
623    }
624    fn apply_fused_pauli_string(
625        &self,
626        _state: &mut [Complex64],
627        _gates: &[Box<dyn GateOp>],
628    ) -> QuantRS2Result<()> {
629        Ok(())
630    }
631    fn apply_fused_controlled_sequence(
632        &self,
633        _state: &mut [Complex64],
634        _gates: &[Box<dyn GateOp>],
635    ) -> QuantRS2Result<()> {
636        Ok(())
637    }
638}
639
640/// Supporting types and structures
641
642#[derive(Debug, Clone)]
643pub enum PostQuantumCompressionType {
644    QuantumSponge { rate: usize, capacity: usize },
645    QuantumMerkleTree { depth: usize, arity: usize },
646    QuantumGrover { iterations: usize },
647}
648
649#[derive(Debug, Clone)]
650pub enum FusionType {
651    RotationSequence,
652    PauliString,
653    ControlledSequence,
654    None,
655}
656
657pub struct FusionChain {
658    pub gates: Vec<Box<dyn GateOp>>,
659    pub fusion_type: FusionType,
660}
661
662pub struct CompiledKernel {
663    pub name: String,
664    pub last_execution_time: f64,
665}
666
667pub struct CompiledShader {
668    pub name: String,
669}
670
671pub struct CachedCudaKernel {
672    pub kernel: CompiledKernel,
673    pub compilation_time: f64,
674}
675
676pub struct CachedWebGpuShader {
677    pub shader: CompiledShader,
678    pub compilation_time: f64,
679}
680
681pub struct CacheStatistics {
682    pub hits: usize,
683    pub misses: usize,
684}
685
686impl CacheStatistics {
687    pub fn overall_hit_rate(&self) -> f64 {
688        if self.hits + self.misses == 0 {
689            0.0
690        } else {
691            self.hits as f64 / (self.hits + self.misses) as f64
692        }
693    }
694}
695
696pub struct BufferPool {
697    pub initial_size: usize,
698}
699
700impl BufferPool {
701    pub const fn new(initial_size: usize) -> Self {
702        Self { initial_size }
703    }
704}
705
706pub struct DeviceProperties {
707    pub max_shared_memory: usize,
708    pub warp_size: usize,
709}
710
711pub struct WebGpuLimits {
712    pub max_compute_workgroup_size: u32,
713}
714
715pub struct PerformanceReport {
716    pub average_kernel_times: HashMap<String, f64>,
717    pub cache_hit_rate: f64,
718    pub tensor_core_utilization: f64,
719    pub memory_bandwidth_utilization: f64,
720}
721
722impl KernelCache {
723    pub fn new() -> Self {
724        Self {
725            cuda_kernels: HashMap::new(),
726            webgpu_shaders: HashMap::new(),
727            cache_stats: CacheStatistics { hits: 0, misses: 0 },
728        }
729    }
730}
731
732impl Default for KernelCache {
733    fn default() -> Self {
734        Self::new()
735    }
736}
737
738impl PerformanceStats {
739    pub fn new() -> Self {
740        Self {
741            kernel_times: HashMap::new(),
742            memory_bandwidth: HashMap::new(),
743            tensor_core_utilization: 0.0,
744            cache_hit_rates: HashMap::new(),
745        }
746    }
747}
748
749impl Default for PerformanceStats {
750    fn default() -> Self {
751        Self::new()
752    }
753}
754
755#[cfg(test)]
756mod tests {
757    use super::*;
758
759    #[test]
760    fn test_specialized_gpu_kernels_creation() {
761        let config = OptimizationConfig::default();
762        let kernels = SpecializedGpuKernels::new(config);
763        assert!(kernels.is_ok());
764    }
765
766    #[test]
767    fn test_holonomic_gate_application() {
768        let config = OptimizationConfig::default();
769        let kernels =
770            SpecializedGpuKernels::new(config).expect("Failed to create specialized GPU kernels");
771
772        let mut state = vec![Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)];
773        let holonomy_matrix = vec![
774            Complex64::new(1.0, 0.0),
775            Complex64::new(0.0, 0.0),
776            Complex64::new(0.0, 0.0),
777            Complex64::new(1.0, 0.0),
778        ];
779        let target_qubits = vec![QubitId(0)];
780
781        let result = kernels.apply_holonomic_gate(&mut state, &holonomy_matrix, &target_qubits);
782        assert!(result.is_ok());
783    }
784
785    #[test]
786    fn test_performance_reporting() {
787        let config = OptimizationConfig::default();
788        let kernels = SpecializedGpuKernels::new(config)
789            .expect("Failed to create specialized GPU kernels for performance reporting");
790
791        let report = kernels.get_performance_report();
792        assert!(report.cache_hit_rate >= 0.0 && report.cache_hit_rate <= 1.0);
793    }
794}