1use crate::{error::QuantRS2Result, gate::GateOp, qubit::QubitId};
8use scirs2_core::Complex64;
9use std::collections::HashMap;
10use std::sync::{Arc, Mutex};
11
12pub struct SpecializedGpuKernels {
14 cuda_context: Option<CudaSpecializedContext>,
16 webgpu_context: Option<WebGpuSpecializedContext>,
18 kernel_cache: Arc<Mutex<KernelCache>>,
20 performance_stats: Arc<Mutex<PerformanceStats>>,
22 config: OptimizationConfig,
24}
25
26pub struct CudaSpecializedContext {
28 #[allow(dead_code)]
30 compute_capability: (i32, i32),
31 has_tensor_cores: bool,
33 #[allow(dead_code)]
35 max_shared_memory: usize,
36 #[allow(dead_code)]
38 warp_size: usize,
39 kernels: HashMap<String, CompiledKernel>,
41}
42
43pub struct WebGpuSpecializedContext {
45 #[allow(dead_code)]
47 device_limits: WebGpuLimits,
48 #[allow(dead_code)]
50 shaders: HashMap<String, CompiledShader>,
51 #[allow(dead_code)]
53 buffer_pools: HashMap<String, BufferPool>,
54}
55
56pub struct KernelCache {
58 #[allow(dead_code)]
60 cuda_kernels: HashMap<String, CachedCudaKernel>,
61 #[allow(dead_code)]
63 webgpu_shaders: HashMap<String, CachedWebGpuShader>,
64 cache_stats: CacheStatistics,
66}
67
68pub struct PerformanceStats {
70 kernel_times: HashMap<String, Vec<f64>>,
72 memory_bandwidth: HashMap<String, f64>,
74 tensor_core_utilization: f64,
76 #[allow(dead_code)]
78 cache_hit_rates: HashMap<String, f64>,
79}
80
81#[derive(Debug, Clone)]
83pub struct OptimizationConfig {
84 pub use_tensor_cores: bool,
86 pub optimize_memory_access: bool,
88 pub enable_gate_fusion: bool,
90 pub max_fusion_length: usize,
92 pub coalescing_threshold: usize,
94 pub use_mixed_precision: bool,
96}
97
98impl Default for OptimizationConfig {
99 fn default() -> Self {
100 Self {
101 use_tensor_cores: true,
102 optimize_memory_access: true,
103 enable_gate_fusion: true,
104 max_fusion_length: 8,
105 coalescing_threshold: 32,
106 use_mixed_precision: true,
107 }
108 }
109}
110
111impl SpecializedGpuKernels {
112 pub fn new(config: OptimizationConfig) -> QuantRS2Result<Self> {
114 let cuda_context = Self::initialize_cuda_context(&config)?;
115 let webgpu_context = Self::initialize_webgpu_context(&config)?;
116
117 Ok(Self {
118 cuda_context,
119 webgpu_context,
120 kernel_cache: Arc::new(Mutex::new(KernelCache::new())),
121 performance_stats: Arc::new(Mutex::new(PerformanceStats::new())),
122 config,
123 })
124 }
125
126 fn initialize_cuda_context(
128 config: &OptimizationConfig,
129 ) -> QuantRS2Result<Option<CudaSpecializedContext>> {
130 if !Self::is_cuda_available() {
132 return Ok(None);
133 }
134
135 let compute_capability = Self::get_compute_capability()?;
136 let has_tensor_cores = compute_capability.0 >= 7; let device_props = Self::get_device_properties()?;
138
139 let mut kernels = HashMap::new();
140
141 kernels.insert(
143 "holonomic_gate".to_string(),
144 Self::compile_holonomic_kernel(config)?,
145 );
146 kernels.insert(
147 "post_quantum_hash".to_string(),
148 Self::compile_post_quantum_kernel(config)?,
149 );
150 kernels.insert(
151 "quantum_ml_attention".to_string(),
152 Self::compile_qml_attention_kernel(config)?,
153 );
154 kernels.insert(
155 "fused_rotation_sequence".to_string(),
156 Self::compile_fused_rotation_kernel(config)?,
157 );
158 kernels.insert(
159 "tensor_core_matmul".to_string(),
160 Self::compile_tensor_core_kernel(config)?,
161 );
162
163 Ok(Some(CudaSpecializedContext {
164 compute_capability,
165 has_tensor_cores,
166 max_shared_memory: device_props.max_shared_memory,
167 warp_size: device_props.warp_size,
168 kernels,
169 }))
170 }
171
172 fn initialize_webgpu_context(
174 config: &OptimizationConfig,
175 ) -> QuantRS2Result<Option<WebGpuSpecializedContext>> {
176 let device_limits = Self::get_webgpu_limits()?;
177 let mut shaders = HashMap::new();
178 let mut buffer_pools = HashMap::new();
179
180 shaders.insert(
182 "holonomic_gate".to_string(),
183 Self::compile_holonomic_shader(config)?,
184 );
185 shaders.insert(
186 "post_quantum_hash".to_string(),
187 Self::compile_post_quantum_shader(config)?,
188 );
189 shaders.insert(
190 "quantum_ml_attention".to_string(),
191 Self::compile_qml_attention_shader(config)?,
192 );
193
194 buffer_pools.insert("state_vectors".to_string(), BufferPool::new(1024 * 1024)); buffer_pools.insert("gate_matrices".to_string(), BufferPool::new(512 * 1024)); buffer_pools.insert("temporary_buffers".to_string(), BufferPool::new(256 * 1024)); Ok(Some(WebGpuSpecializedContext {
200 device_limits,
201 shaders,
202 buffer_pools,
203 }))
204 }
205
206 pub fn apply_holonomic_gate(
208 &self,
209 state: &mut [Complex64],
210 holonomy_matrix: &[Complex64],
211 target_qubits: &[QubitId],
212 ) -> QuantRS2Result<()> {
213 let _num_qubits = target_qubits.len();
214 let state_size = state.len();
215
216 if state_size > 1024 && self.cuda_context.is_some() {
218 self.apply_holonomic_gate_cuda(state, holonomy_matrix, target_qubits)
219 } else if self.webgpu_context.is_some() {
220 self.apply_holonomic_gate_webgpu(state, holonomy_matrix, target_qubits)
221 } else {
222 self.apply_holonomic_gate_cpu_optimized(state, holonomy_matrix, target_qubits)
224 }
225 }
226
227 fn apply_holonomic_gate_cuda(
229 &self,
230 state: &mut [Complex64],
231 holonomy_matrix: &[Complex64],
232 target_qubits: &[QubitId],
233 ) -> QuantRS2Result<()> {
234 let cuda_ctx = self.cuda_context.as_ref().ok_or_else(|| {
235 crate::error::QuantRS2Error::RuntimeError("CUDA context not available".to_string())
236 })?;
237 let kernel = cuda_ctx.kernels.get("holonomic_gate").ok_or_else(|| {
238 crate::error::QuantRS2Error::RuntimeError("Holonomic gate kernel not found".to_string())
239 })?;
240
241 let (block_dim, grid_dim) =
243 self.calculate_optimal_dimensions(state.len(), target_qubits.len())?;
244
245 if cuda_ctx.has_tensor_cores && self.config.use_tensor_cores && holonomy_matrix.len() >= 256
247 {
248 self.launch_tensor_core_holonomic_kernel(
249 kernel,
250 state,
251 holonomy_matrix,
252 target_qubits,
253 block_dim,
254 grid_dim,
255 )?;
256 } else {
257 self.launch_standard_holonomic_kernel(
258 kernel,
259 state,
260 holonomy_matrix,
261 target_qubits,
262 block_dim,
263 grid_dim,
264 )?;
265 }
266
267 self.update_performance_stats("holonomic_gate_cuda", kernel.last_execution_time);
269
270 Ok(())
271 }
272
273 pub const fn apply_post_quantum_hash_gate(
275 &self,
276 state: &mut [Complex64],
277 hash_circuit: &[Complex64],
278 compression_type: PostQuantumCompressionType,
279 ) -> QuantRS2Result<()> {
280 match compression_type {
281 PostQuantumCompressionType::QuantumSponge { rate, capacity } => {
282 self.apply_quantum_sponge_gpu(state, hash_circuit, rate, capacity)
283 }
284 PostQuantumCompressionType::QuantumMerkleTree { depth, arity } => {
285 self.apply_quantum_merkle_gpu(state, hash_circuit, depth, arity)
286 }
287 PostQuantumCompressionType::QuantumGrover { iterations } => {
288 self.apply_quantum_grover_gpu(state, hash_circuit, iterations)
289 }
290 }
291 }
292
293 pub const fn apply_quantum_ml_attention(
295 &self,
296 state: &mut [Complex64],
297 query_params: &[Complex64],
298 key_params: &[Complex64],
299 value_params: &[Complex64],
300 num_heads: usize,
301 ) -> QuantRS2Result<()> {
302 let attention_dim = state.len() / num_heads;
303
304 if self.cuda_context.is_some() && attention_dim >= 64 {
305 self.apply_qml_attention_cuda(state, query_params, key_params, value_params, num_heads)
307 } else if self.webgpu_context.is_some() {
308 self.apply_qml_attention_webgpu(
310 state,
311 query_params,
312 key_params,
313 value_params,
314 num_heads,
315 )
316 } else {
317 self.apply_qml_attention_cpu_vectorized(
319 state,
320 query_params,
321 key_params,
322 value_params,
323 num_heads,
324 )
325 }
326 }
327
328 pub fn apply_fused_gate_sequence(
330 &self,
331 state: &mut [Complex64],
332 gates: &[Box<dyn GateOp>],
333 ) -> QuantRS2Result<()> {
334 if !self.config.enable_gate_fusion || gates.len() < 2 {
335 for gate in gates {
337 self.apply_single_gate_optimized(state, gate.as_ref())?;
338 }
339 return Ok(());
340 }
341
342 let fusion_chains = self.analyze_gate_fusion_opportunities(gates)?;
344
345 for chain in fusion_chains {
346 match chain.fusion_type {
347 FusionType::RotationSequence => {
348 self.apply_fused_rotation_sequence(state, &chain.gates)?;
349 }
350 FusionType::PauliString => {
351 self.apply_fused_pauli_string(state, &chain.gates)?;
352 }
353 FusionType::ControlledSequence => {
354 self.apply_fused_controlled_sequence(state, &chain.gates)?;
355 }
356 FusionType::None => {
357 for gate in &chain.gates {
359 self.apply_single_gate_optimized(state, gate.as_ref())?;
360 }
361 }
362 }
363 }
364
365 Ok(())
366 }
367
368 fn calculate_optimal_dimensions(
370 &self,
371 state_size: usize,
372 num_target_qubits: usize,
373 ) -> QuantRS2Result<(u32, u32)> {
374 let _cuda_ctx = self.cuda_context.as_ref().ok_or_else(|| {
375 crate::error::QuantRS2Error::RuntimeError(
376 "CUDA context not available for dimension calculation".to_string(),
377 )
378 })?;
379
380 let work_per_thread = 1 << num_target_qubits; let total_work_items = state_size / work_per_thread;
383
384 let threads_per_block = if total_work_items >= 1024 {
386 1024
387 } else if total_work_items >= 512 {
388 512
389 } else if total_work_items >= 256 {
390 256
391 } else {
392 128.max(32) };
394
395 let blocks = (total_work_items + threads_per_block - 1) / threads_per_block;
396
397 Ok((threads_per_block as u32, blocks as u32))
398 }
399
400 fn update_performance_stats(&self, kernel_name: &str, execution_time: f64) {
402 if let Ok(mut stats) = self.performance_stats.lock() {
403 stats
404 .kernel_times
405 .entry(kernel_name.to_string())
406 .or_insert_with(Vec::new)
407 .push(execution_time);
408 }
409 }
411
412 pub fn get_performance_report(&self) -> PerformanceReport {
414 let stats = self
415 .performance_stats
416 .lock()
417 .unwrap_or_else(|e| e.into_inner());
418 let cache = self.kernel_cache.lock().unwrap_or_else(|e| e.into_inner());
419
420 PerformanceReport {
421 average_kernel_times: stats
422 .kernel_times
423 .iter()
424 .map(|(k, v)| (k.clone(), v.iter().sum::<f64>() / v.len() as f64))
425 .collect(),
426 cache_hit_rate: cache.cache_stats.overall_hit_rate(),
427 tensor_core_utilization: stats.tensor_core_utilization,
428 memory_bandwidth_utilization: stats.memory_bandwidth.values().sum::<f64>()
429 / stats.memory_bandwidth.len() as f64,
430 }
431 }
432
433 const fn is_cuda_available() -> bool {
435 false
436 } const fn get_compute_capability() -> QuantRS2Result<(i32, i32)> {
438 Ok((7, 5))
439 }
440 const fn get_device_properties() -> QuantRS2Result<DeviceProperties> {
441 Ok(DeviceProperties {
442 max_shared_memory: 49152,
443 warp_size: 32,
444 })
445 }
446 const fn get_webgpu_limits() -> QuantRS2Result<WebGpuLimits> {
447 Ok(WebGpuLimits {
448 max_compute_workgroup_size: 256,
449 })
450 }
451
452 fn compile_holonomic_kernel(_config: &OptimizationConfig) -> QuantRS2Result<CompiledKernel> {
453 Ok(CompiledKernel {
454 name: "holonomic".to_string(),
455 last_execution_time: 0.0,
456 })
457 }
458 fn compile_post_quantum_kernel(_config: &OptimizationConfig) -> QuantRS2Result<CompiledKernel> {
459 Ok(CompiledKernel {
460 name: "post_quantum".to_string(),
461 last_execution_time: 0.0,
462 })
463 }
464 fn compile_qml_attention_kernel(
465 _config: &OptimizationConfig,
466 ) -> QuantRS2Result<CompiledKernel> {
467 Ok(CompiledKernel {
468 name: "qml_attention".to_string(),
469 last_execution_time: 0.0,
470 })
471 }
472 fn compile_fused_rotation_kernel(
473 _config: &OptimizationConfig,
474 ) -> QuantRS2Result<CompiledKernel> {
475 Ok(CompiledKernel {
476 name: "fused_rotation".to_string(),
477 last_execution_time: 0.0,
478 })
479 }
480 fn compile_tensor_core_kernel(_config: &OptimizationConfig) -> QuantRS2Result<CompiledKernel> {
481 Ok(CompiledKernel {
482 name: "tensor_core".to_string(),
483 last_execution_time: 0.0,
484 })
485 }
486
487 fn compile_holonomic_shader(_config: &OptimizationConfig) -> QuantRS2Result<CompiledShader> {
488 Ok(CompiledShader {
489 name: "holonomic".to_string(),
490 })
491 }
492 fn compile_post_quantum_shader(_config: &OptimizationConfig) -> QuantRS2Result<CompiledShader> {
493 Ok(CompiledShader {
494 name: "post_quantum".to_string(),
495 })
496 }
497 fn compile_qml_attention_shader(
498 _config: &OptimizationConfig,
499 ) -> QuantRS2Result<CompiledShader> {
500 Ok(CompiledShader {
501 name: "qml_attention".to_string(),
502 })
503 }
504
505 const fn launch_tensor_core_holonomic_kernel(
507 &self,
508 _kernel: &CompiledKernel,
509 _state: &mut [Complex64],
510 _matrix: &[Complex64],
511 _qubits: &[QubitId],
512 _block: u32,
513 _grid: u32,
514 ) -> QuantRS2Result<()> {
515 Ok(())
516 }
517 const fn launch_standard_holonomic_kernel(
518 &self,
519 _kernel: &CompiledKernel,
520 _state: &mut [Complex64],
521 _matrix: &[Complex64],
522 _qubits: &[QubitId],
523 _block: u32,
524 _grid: u32,
525 ) -> QuantRS2Result<()> {
526 Ok(())
527 }
528
529 const fn apply_holonomic_gate_webgpu(
530 &self,
531 _state: &mut [Complex64],
532 _matrix: &[Complex64],
533 _qubits: &[QubitId],
534 ) -> QuantRS2Result<()> {
535 Ok(())
536 }
537 const fn apply_holonomic_gate_cpu_optimized(
538 &self,
539 _state: &mut [Complex64],
540 _matrix: &[Complex64],
541 _qubits: &[QubitId],
542 ) -> QuantRS2Result<()> {
543 Ok(())
544 }
545
546 const fn apply_quantum_sponge_gpu(
547 &self,
548 _state: &mut [Complex64],
549 _circuit: &[Complex64],
550 _rate: usize,
551 _capacity: usize,
552 ) -> QuantRS2Result<()> {
553 Ok(())
554 }
555 const fn apply_quantum_merkle_gpu(
556 &self,
557 _state: &mut [Complex64],
558 _circuit: &[Complex64],
559 _depth: usize,
560 _arity: usize,
561 ) -> QuantRS2Result<()> {
562 Ok(())
563 }
564 const fn apply_quantum_grover_gpu(
565 &self,
566 _state: &mut [Complex64],
567 _circuit: &[Complex64],
568 _iterations: usize,
569 ) -> QuantRS2Result<()> {
570 Ok(())
571 }
572
573 const fn apply_qml_attention_cuda(
574 &self,
575 _state: &mut [Complex64],
576 _query: &[Complex64],
577 _key: &[Complex64],
578 _value: &[Complex64],
579 _heads: usize,
580 ) -> QuantRS2Result<()> {
581 Ok(())
582 }
583 const fn apply_qml_attention_webgpu(
584 &self,
585 _state: &mut [Complex64],
586 _query: &[Complex64],
587 _key: &[Complex64],
588 _value: &[Complex64],
589 _heads: usize,
590 ) -> QuantRS2Result<()> {
591 Ok(())
592 }
593 const fn apply_qml_attention_cpu_vectorized(
594 &self,
595 _state: &mut [Complex64],
596 _query: &[Complex64],
597 _key: &[Complex64],
598 _value: &[Complex64],
599 _heads: usize,
600 ) -> QuantRS2Result<()> {
601 Ok(())
602 }
603
604 fn apply_single_gate_optimized(
605 &self,
606 _state: &mut [Complex64],
607 _gate: &dyn GateOp,
608 ) -> QuantRS2Result<()> {
609 Ok(())
610 }
611 fn analyze_gate_fusion_opportunities(
612 &self,
613 _gates: &[Box<dyn GateOp>],
614 ) -> QuantRS2Result<Vec<FusionChain>> {
615 Ok(vec![])
616 }
617 fn apply_fused_rotation_sequence(
618 &self,
619 _state: &mut [Complex64],
620 _gates: &[Box<dyn GateOp>],
621 ) -> QuantRS2Result<()> {
622 Ok(())
623 }
624 fn apply_fused_pauli_string(
625 &self,
626 _state: &mut [Complex64],
627 _gates: &[Box<dyn GateOp>],
628 ) -> QuantRS2Result<()> {
629 Ok(())
630 }
631 fn apply_fused_controlled_sequence(
632 &self,
633 _state: &mut [Complex64],
634 _gates: &[Box<dyn GateOp>],
635 ) -> QuantRS2Result<()> {
636 Ok(())
637 }
638}
639
640#[derive(Debug, Clone)]
643pub enum PostQuantumCompressionType {
644 QuantumSponge { rate: usize, capacity: usize },
645 QuantumMerkleTree { depth: usize, arity: usize },
646 QuantumGrover { iterations: usize },
647}
648
649#[derive(Debug, Clone)]
650pub enum FusionType {
651 RotationSequence,
652 PauliString,
653 ControlledSequence,
654 None,
655}
656
657pub struct FusionChain {
658 pub gates: Vec<Box<dyn GateOp>>,
659 pub fusion_type: FusionType,
660}
661
662pub struct CompiledKernel {
663 pub name: String,
664 pub last_execution_time: f64,
665}
666
667pub struct CompiledShader {
668 pub name: String,
669}
670
671pub struct CachedCudaKernel {
672 pub kernel: CompiledKernel,
673 pub compilation_time: f64,
674}
675
676pub struct CachedWebGpuShader {
677 pub shader: CompiledShader,
678 pub compilation_time: f64,
679}
680
681pub struct CacheStatistics {
682 pub hits: usize,
683 pub misses: usize,
684}
685
686impl CacheStatistics {
687 pub fn overall_hit_rate(&self) -> f64 {
688 if self.hits + self.misses == 0 {
689 0.0
690 } else {
691 self.hits as f64 / (self.hits + self.misses) as f64
692 }
693 }
694}
695
696pub struct BufferPool {
697 pub initial_size: usize,
698}
699
700impl BufferPool {
701 pub const fn new(initial_size: usize) -> Self {
702 Self { initial_size }
703 }
704}
705
706pub struct DeviceProperties {
707 pub max_shared_memory: usize,
708 pub warp_size: usize,
709}
710
711pub struct WebGpuLimits {
712 pub max_compute_workgroup_size: u32,
713}
714
715pub struct PerformanceReport {
716 pub average_kernel_times: HashMap<String, f64>,
717 pub cache_hit_rate: f64,
718 pub tensor_core_utilization: f64,
719 pub memory_bandwidth_utilization: f64,
720}
721
722impl KernelCache {
723 pub fn new() -> Self {
724 Self {
725 cuda_kernels: HashMap::new(),
726 webgpu_shaders: HashMap::new(),
727 cache_stats: CacheStatistics { hits: 0, misses: 0 },
728 }
729 }
730}
731
732impl Default for KernelCache {
733 fn default() -> Self {
734 Self::new()
735 }
736}
737
738impl PerformanceStats {
739 pub fn new() -> Self {
740 Self {
741 kernel_times: HashMap::new(),
742 memory_bandwidth: HashMap::new(),
743 tensor_core_utilization: 0.0,
744 cache_hit_rates: HashMap::new(),
745 }
746 }
747}
748
749impl Default for PerformanceStats {
750 fn default() -> Self {
751 Self::new()
752 }
753}
754
755#[cfg(test)]
756mod tests {
757 use super::*;
758
759 #[test]
760 fn test_specialized_gpu_kernels_creation() {
761 let config = OptimizationConfig::default();
762 let kernels = SpecializedGpuKernels::new(config);
763 assert!(kernels.is_ok());
764 }
765
766 #[test]
767 fn test_holonomic_gate_application() {
768 let config = OptimizationConfig::default();
769 let kernels =
770 SpecializedGpuKernels::new(config).expect("Failed to create specialized GPU kernels");
771
772 let mut state = vec![Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)];
773 let holonomy_matrix = vec![
774 Complex64::new(1.0, 0.0),
775 Complex64::new(0.0, 0.0),
776 Complex64::new(0.0, 0.0),
777 Complex64::new(1.0, 0.0),
778 ];
779 let target_qubits = vec![QubitId(0)];
780
781 let result = kernels.apply_holonomic_gate(&mut state, &holonomy_matrix, &target_qubits);
782 assert!(result.is_ok());
783 }
784
785 #[test]
786 fn test_performance_reporting() {
787 let config = OptimizationConfig::default();
788 let kernels = SpecializedGpuKernels::new(config)
789 .expect("Failed to create specialized GPU kernels for performance reporting");
790
791 let report = kernels.get_performance_report();
792 assert!(report.cache_hit_rate >= 0.0 && report.cache_hit_rate <= 1.0);
793 }
794}