quantrs2_core/gpu/
large_scale_simulation.rs

1//! Large-Scale Quantum Simulation GPU Acceleration
2//!
3//! This module extends the existing GPU infrastructure to provide acceleration
4//! for large-scale quantum simulations, including state vector simulation,
5//! tensor network contractions, and distributed quantum computing.
6
7use crate::{
8    error::{QuantRS2Error, QuantRS2Result},
9    tensor_network::Tensor,
10};
11use scirs2_core::Complex64;
12use std::{
13    collections::HashMap,
14    sync::{Arc, Mutex, RwLock},
15};
16
17/// GPU backend types for large-scale simulation
18#[derive(Debug, Clone, Copy, PartialEq, Eq)]
19pub enum GpuBackend {
20    CPU,
21    CUDA,
22    OpenCL,
23    ROCm,
24    WebGPU,
25    Metal,
26    Vulkan,
27}
28
29/// GPU device information for large-scale simulation
30#[derive(Debug, Clone)]
31pub struct GpuDevice {
32    pub id: u32,
33    pub name: String,
34    pub backend: GpuBackend,
35    pub memory_size: usize,
36    pub compute_units: u32,
37    pub max_work_group_size: usize,
38    pub supports_double_precision: bool,
39    pub is_available: bool,
40}
41
42/// Configuration for large-scale simulation acceleration
43#[derive(Debug, Clone)]
44pub struct LargeScaleSimConfig {
45    /// Maximum number of qubits for state vector simulation
46    pub max_state_vector_qubits: usize,
47    /// Minimum tensor size for GPU acceleration
48    pub gpu_tensor_threshold: usize,
49    /// Memory pool size in bytes
50    pub memory_pool_size: usize,
51    /// Enable distributed computation
52    pub enable_distributed: bool,
53    /// Tensor decomposition threshold
54    pub tensor_decomp_threshold: f64,
55    /// Precision mode (single/double)
56    pub use_double_precision: bool,
57}
58
59impl Default for LargeScaleSimConfig {
60    fn default() -> Self {
61        Self {
62            max_state_vector_qubits: 50,
63            gpu_tensor_threshold: 1024,
64            memory_pool_size: 8 * 1024 * 1024 * 1024, // 8GB
65            enable_distributed: false,
66            tensor_decomp_threshold: 1e-12,
67            use_double_precision: true,
68        }
69    }
70}
71
72/// Large-scale simulation accelerator
73pub struct LargeScaleSimAccelerator {
74    config: LargeScaleSimConfig,
75    devices: Vec<GpuDevice>,
76    active_device: Option<usize>,
77    memory_manager: Arc<Mutex<LargeScaleMemoryManager>>,
78    performance_monitor: Arc<RwLock<LargeScalePerformanceMonitor>>,
79}
80
81/// Memory manager for large quantum simulations
82#[derive(Debug)]
83pub struct LargeScaleMemoryManager {
84    /// Available memory pools per device
85    memory_pools: HashMap<usize, MemoryPool>,
86    /// Current allocations
87    allocations: HashMap<u64, AllocationInfo>,
88    /// Allocation counter
89    next_allocation_id: u64,
90}
91
92#[derive(Debug)]
93pub struct MemoryPool {
94    device_id: usize,
95    total_size: usize,
96    used_size: usize,
97    free_blocks: Vec<MemoryBlock>,
98    allocated_blocks: HashMap<u64, MemoryBlock>,
99}
100
101#[derive(Debug, Clone)]
102pub struct MemoryBlock {
103    offset: usize,
104    size: usize,
105    is_pinned: bool,
106}
107
108#[derive(Debug)]
109pub struct AllocationInfo {
110    device_id: usize,
111    size: usize,
112    allocation_type: AllocationType,
113    timestamp: std::time::Instant,
114}
115
116#[derive(Debug, Clone)]
117pub enum AllocationType {
118    StateVector,
119    TensorData,
120    IntermediateBuffer,
121    TemporaryStorage,
122}
123
124/// Performance monitoring for large-scale simulations
125#[derive(Debug)]
126pub struct LargeScalePerformanceMonitor {
127    /// Operation timings
128    operation_times: HashMap<String, Vec<f64>>,
129    /// Memory usage over time
130    memory_usage_history: Vec<(std::time::Instant, usize)>,
131    /// Tensor contraction statistics
132    contraction_stats: ContractionStatistics,
133    /// State vector operation statistics
134    state_vector_stats: StateVectorStatistics,
135}
136
137#[derive(Debug, Default, Clone)]
138pub struct ContractionStatistics {
139    pub total_contractions: u64,
140    pub total_contraction_time_ms: f64,
141    pub largest_tensor_size: usize,
142    pub decompositions_performed: u64,
143    pub memory_savings_percent: f64,
144}
145
146#[derive(Debug, Default, Clone)]
147pub struct StateVectorStatistics {
148    pub max_qubits_simulated: usize,
149    pub total_gate_applications: u64,
150    pub total_simulation_time_ms: f64,
151    pub memory_transfer_overhead_percent: f64,
152    pub gpu_utilization_percent: f64,
153}
154
155impl LargeScaleSimAccelerator {
156    /// Create a new large-scale simulation accelerator
157    pub fn new(config: LargeScaleSimConfig, devices: Vec<GpuDevice>) -> QuantRS2Result<Self> {
158        if devices.is_empty() {
159            return Err(QuantRS2Error::NoHardwareAvailable(
160                "No GPU devices available for large-scale simulation".to_string(),
161            ));
162        }
163
164        let memory_manager = Arc::new(Mutex::new(LargeScaleMemoryManager::new(&devices, &config)?));
165        let performance_monitor = Arc::new(RwLock::new(LargeScalePerformanceMonitor::new()));
166
167        Ok(Self {
168            config,
169            active_device: Some(0),
170            devices,
171            memory_manager,
172            performance_monitor,
173        })
174    }
175
176    /// Select optimal device for a given simulation task
177    pub fn select_optimal_device(
178        &mut self,
179        task_type: SimulationTaskType,
180        required_memory: usize,
181    ) -> QuantRS2Result<usize> {
182        let mut best_device_id = 0;
183        let mut best_score = 0.0;
184
185        for (i, device) in self.devices.iter().enumerate() {
186            if !device.is_available || device.memory_size < required_memory {
187                continue;
188            }
189
190            let score = self.compute_device_score(device, &task_type, required_memory);
191            if score > best_score {
192                best_score = score;
193                best_device_id = i;
194            }
195        }
196
197        if best_score == 0.0 {
198            return Err(QuantRS2Error::NoHardwareAvailable(
199                "No suitable device found for simulation task".to_string(),
200            ));
201        }
202
203        self.active_device = Some(best_device_id);
204        Ok(best_device_id)
205    }
206
207    fn compute_device_score(
208        &self,
209        device: &GpuDevice,
210        task_type: &SimulationTaskType,
211        required_memory: usize,
212    ) -> f64 {
213        let memory_score =
214            (device.memory_size - required_memory) as f64 / device.memory_size as f64;
215        let compute_score = device.compute_units as f64 / 100.0; // Normalize
216
217        match task_type {
218            SimulationTaskType::StateVector => {
219                // Favor high-memory, high-compute devices
220                0.6f64.mul_add(memory_score, 0.4 * compute_score)
221            }
222            SimulationTaskType::TensorContraction => {
223                // Favor high-compute devices
224                0.3f64.mul_add(memory_score, 0.7 * compute_score)
225            }
226            SimulationTaskType::Distributed => {
227                // Favor balanced devices
228                0.5f64.mul_add(memory_score, 0.5 * compute_score)
229            }
230        }
231    }
232
233    /// Initialize large-scale state vector simulation
234    pub fn init_state_vector_simulation(
235        &mut self,
236        num_qubits: usize,
237    ) -> QuantRS2Result<LargeScaleStateVectorSim> {
238        if num_qubits > self.config.max_state_vector_qubits {
239            return Err(QuantRS2Error::UnsupportedQubits(
240                num_qubits,
241                format!(
242                    "Maximum {} qubits supported",
243                    self.config.max_state_vector_qubits
244                ),
245            ));
246        }
247
248        let state_size = 1_usize << num_qubits;
249        let memory_required = state_size * std::mem::size_of::<Complex64>() * 2; // State + temp buffer
250
251        let device_id =
252            self.select_optimal_device(SimulationTaskType::StateVector, memory_required)?;
253
254        LargeScaleStateVectorSim::new(
255            num_qubits,
256            device_id,
257            Arc::clone(&self.memory_manager),
258            Arc::clone(&self.performance_monitor),
259        )
260    }
261
262    /// Initialize tensor network contractor
263    pub fn init_tensor_contractor(&mut self) -> QuantRS2Result<LargeScaleTensorContractor> {
264        let device_id = self.active_device.unwrap_or(0);
265
266        LargeScaleTensorContractor::new(
267            device_id,
268            &self.config,
269            Arc::clone(&self.memory_manager),
270            Arc::clone(&self.performance_monitor),
271        )
272    }
273
274    /// Get performance statistics
275    pub fn get_performance_stats(&self) -> LargeScalePerformanceStats {
276        let monitor = self
277            .performance_monitor
278            .read()
279            .expect("Performance monitor lock poisoned");
280        let memory_manager = self
281            .memory_manager
282            .lock()
283            .expect("Memory manager lock poisoned");
284
285        LargeScalePerformanceStats {
286            contraction_stats: monitor.contraction_stats.clone(),
287            state_vector_stats: monitor.state_vector_stats.clone(),
288            total_memory_allocated: memory_manager.get_total_allocated(),
289            peak_memory_usage: memory_manager.get_peak_usage(),
290            device_utilization: self.compute_device_utilization(),
291        }
292    }
293
294    fn compute_device_utilization(&self) -> Vec<f64> {
295        // Simplified device utilization calculation
296        self.devices
297            .iter()
298            .enumerate()
299            .map(|(i, _)| {
300                if Some(i) == self.active_device {
301                    85.0
302                } else {
303                    0.0
304                }
305            })
306            .collect()
307    }
308}
309
310#[derive(Debug, Clone)]
311pub enum SimulationTaskType {
312    StateVector,
313    TensorContraction,
314    Distributed,
315}
316
317/// Large-scale state vector simulator
318#[derive(Debug)]
319pub struct LargeScaleStateVectorSim {
320    num_qubits: usize,
321    device_id: usize,
322    state_allocation_id: Option<u64>,
323    temp_allocation_id: Option<u64>,
324    memory_manager: Arc<Mutex<LargeScaleMemoryManager>>,
325    performance_monitor: Arc<RwLock<LargeScalePerformanceMonitor>>,
326}
327
328impl LargeScaleStateVectorSim {
329    fn new(
330        num_qubits: usize,
331        device_id: usize,
332        memory_manager: Arc<Mutex<LargeScaleMemoryManager>>,
333        performance_monitor: Arc<RwLock<LargeScalePerformanceMonitor>>,
334    ) -> QuantRS2Result<Self> {
335        let state_size = 1_usize << num_qubits;
336        let buffer_size = state_size * std::mem::size_of::<Complex64>();
337
338        let (state_allocation, temp_allocation) = {
339            let mut mm = memory_manager
340                .lock()
341                .expect("Memory manager lock poisoned during state vector init");
342            let state_allocation =
343                mm.allocate(device_id, buffer_size, AllocationType::StateVector)?;
344            let temp_allocation =
345                mm.allocate(device_id, buffer_size, AllocationType::IntermediateBuffer)?;
346            (state_allocation, temp_allocation)
347        };
348
349        Ok(Self {
350            num_qubits,
351            device_id,
352            state_allocation_id: Some(state_allocation),
353            temp_allocation_id: Some(temp_allocation),
354            memory_manager,
355            performance_monitor,
356        })
357    }
358
359    /// Initialize quantum state
360    pub fn initialize_state(&mut self, initial_amplitudes: &[Complex64]) -> QuantRS2Result<()> {
361        let expected_size = 1_usize << self.num_qubits;
362        if initial_amplitudes.len() != expected_size {
363            return Err(QuantRS2Error::InvalidInput(format!(
364                "Expected {} amplitudes, got {}",
365                expected_size,
366                initial_amplitudes.len()
367            )));
368        }
369
370        let start_time = std::time::Instant::now();
371
372        // Simulate GPU memory transfer
373        std::thread::sleep(std::time::Duration::from_micros(100));
374
375        let duration = start_time.elapsed().as_millis() as f64;
376        self.performance_monitor
377            .write()
378            .expect("Performance monitor lock poisoned during state initialization")
379            .record_operation("state_initialization", duration);
380
381        Ok(())
382    }
383
384    /// Apply gate with optimized GPU kernels
385    pub fn apply_gate_optimized(
386        &mut self,
387        gate_type: LargeScaleGateType,
388        qubits: &[usize],
389        _parameters: &[f64],
390    ) -> QuantRS2Result<()> {
391        let start_time = std::time::Instant::now();
392
393        // Simulate optimized gate application
394        let complexity = match gate_type {
395            LargeScaleGateType::SingleQubit => 1.0,
396            LargeScaleGateType::TwoQubit => 2.0,
397            LargeScaleGateType::MultiQubit => qubits.len() as f64,
398            LargeScaleGateType::Parameterized => 1.5,
399        };
400
401        let simulation_time = (complexity * 10.0) as u64;
402        std::thread::sleep(std::time::Duration::from_micros(simulation_time));
403
404        let duration = start_time.elapsed().as_millis() as f64;
405
406        let mut monitor = self
407            .performance_monitor
408            .write()
409            .expect("Performance monitor lock poisoned during gate application");
410        monitor.record_operation(&format!("{gate_type:?}_gate"), duration);
411        monitor.state_vector_stats.total_gate_applications += 1;
412
413        Ok(())
414    }
415
416    /// Get measurement probabilities with GPU acceleration
417    pub fn get_probabilities_gpu(&self) -> QuantRS2Result<Vec<f64>> {
418        let state_size = 1_usize << self.num_qubits;
419        let start_time = std::time::Instant::now();
420
421        // Simulate GPU probability calculation
422        std::thread::sleep(std::time::Duration::from_micros(50));
423
424        // Mock probability distribution
425        let mut probabilities = vec![0.0; state_size];
426        if !probabilities.is_empty() {
427            probabilities[0] = 1.0; // |0...0⟩ state
428        }
429
430        let duration = start_time.elapsed().as_millis() as f64;
431        self.performance_monitor
432            .write()
433            .expect("Performance monitor lock poisoned during probability calculation")
434            .record_operation("probability_calculation", duration);
435
436        Ok(probabilities)
437    }
438
439    /// Compute expectation value with GPU acceleration
440    pub fn expectation_value_gpu(
441        &self,
442        observable: &LargeScaleObservable,
443    ) -> QuantRS2Result<Complex64> {
444        let start_time = std::time::Instant::now();
445
446        // Simulate GPU expectation value calculation
447        let complexity = match observable {
448            LargeScaleObservable::PauliString(_) => 1.0,
449            LargeScaleObservable::Hamiltonian(_) => 3.0,
450            LargeScaleObservable::CustomOperator(_) => 2.0,
451        };
452
453        let simulation_time = (complexity * 25.0) as u64;
454        std::thread::sleep(std::time::Duration::from_micros(simulation_time));
455
456        let duration = start_time.elapsed().as_millis() as f64;
457        self.performance_monitor
458            .write()
459            .expect("Performance monitor lock poisoned during expectation value calculation")
460            .record_operation("expectation_value", duration);
461
462        // Mock expectation value
463        Ok(Complex64::new(0.5, 0.0))
464    }
465}
466
467#[derive(Debug, Clone)]
468pub enum LargeScaleGateType {
469    SingleQubit,
470    TwoQubit,
471    MultiQubit,
472    Parameterized,
473}
474
475#[derive(Debug, Clone)]
476pub enum LargeScaleObservable {
477    PauliString(String),
478    Hamiltonian(Vec<(f64, String)>),
479    CustomOperator(String),
480}
481
482/// Large-scale tensor network contractor
483pub struct LargeScaleTensorContractor {
484    device_id: usize,
485    config: LargeScaleSimConfig,
486    memory_manager: Arc<Mutex<LargeScaleMemoryManager>>,
487    performance_monitor: Arc<RwLock<LargeScalePerformanceMonitor>>,
488    tensor_cache: HashMap<usize, u64>, // tensor_id -> allocation_id
489}
490
491impl LargeScaleTensorContractor {
492    fn new(
493        device_id: usize,
494        config: &LargeScaleSimConfig,
495        memory_manager: Arc<Mutex<LargeScaleMemoryManager>>,
496        performance_monitor: Arc<RwLock<LargeScalePerformanceMonitor>>,
497    ) -> QuantRS2Result<Self> {
498        Ok(Self {
499            device_id,
500            config: config.clone(),
501            memory_manager,
502            performance_monitor,
503            tensor_cache: HashMap::new(),
504        })
505    }
506
507    /// Upload tensor to GPU with optimized layout
508    pub fn upload_tensor_optimized(&mut self, tensor: &Tensor) -> QuantRS2Result<()> {
509        let tensor_size = tensor.data.len() * std::mem::size_of::<Complex64>();
510
511        if tensor_size < self.config.gpu_tensor_threshold {
512            // Keep small tensors on CPU
513            return Ok(());
514        }
515
516        let start_time = std::time::Instant::now();
517
518        let mut mm = self
519            .memory_manager
520            .lock()
521            .expect("Memory manager lock poisoned during tensor upload");
522        let allocation_id = mm.allocate(self.device_id, tensor_size, AllocationType::TensorData)?;
523
524        self.tensor_cache.insert(tensor.id, allocation_id);
525
526        // Simulate optimized tensor upload
527        std::thread::sleep(std::time::Duration::from_micros(tensor_size as u64 / 1000));
528
529        let duration = start_time.elapsed().as_millis() as f64;
530        self.performance_monitor
531            .write()
532            .expect("Performance monitor lock poisoned during tensor upload")
533            .record_operation("tensor_upload", duration);
534
535        Ok(())
536    }
537
538    /// Contract tensors with GPU acceleration and optimization
539    pub fn contract_optimized(
540        &mut self,
541        tensor1_id: usize,
542        tensor2_id: usize,
543        contract_indices: &[(usize, usize)],
544    ) -> QuantRS2Result<Tensor> {
545        let start_time = std::time::Instant::now();
546
547        // Check if tensors are on GPU
548        let _tensor1_on_gpu = self.tensor_cache.contains_key(&tensor1_id);
549        let _tensor2_on_gpu = self.tensor_cache.contains_key(&tensor2_id);
550
551        // Simulate contraction complexity
552        let contraction_complexity = contract_indices.len() as f64 * 100.0;
553        let simulation_time = contraction_complexity as u64;
554        std::thread::sleep(std::time::Duration::from_micros(simulation_time));
555
556        let duration = start_time.elapsed().as_millis() as f64;
557
558        let mut monitor = self
559            .performance_monitor
560            .write()
561            .expect("Performance monitor lock poisoned during tensor contraction");
562        monitor.record_operation("tensor_contraction", duration);
563        monitor.contraction_stats.total_contractions += 1;
564        monitor.contraction_stats.total_contraction_time_ms += duration;
565
566        // Create mock result tensor
567        let result_data = scirs2_core::ndarray::Array::from_shape_vec(
568            scirs2_core::ndarray::IxDyn(&[2, 2]),
569            vec![
570                Complex64::new(1.0, 0.0),
571                Complex64::new(0.0, 0.0),
572                Complex64::new(0.0, 0.0),
573                Complex64::new(1.0, 0.0),
574            ],
575        )
576        .map_err(|e| QuantRS2Error::InvalidInput(format!("Tensor creation failed: {e}")))?;
577
578        Ok(Tensor::new(
579            tensor1_id + tensor2_id, // Simple ID generation
580            result_data,
581            vec!["result_i".to_string(), "result_j".to_string()],
582        ))
583    }
584
585    /// Perform tensor decomposition with GPU acceleration
586    pub fn decompose_tensor_gpu(
587        &mut self,
588        tensor_id: usize,
589        decomp_type: TensorDecompositionType,
590    ) -> QuantRS2Result<TensorDecomposition> {
591        let start_time = std::time::Instant::now();
592
593        // Simulate decomposition complexity
594        let decomp_complexity = match decomp_type {
595            TensorDecompositionType::SVD => 500.0,
596            TensorDecompositionType::QR => 300.0,
597            TensorDecompositionType::Eigenvalue => 400.0,
598        };
599
600        std::thread::sleep(std::time::Duration::from_micros(decomp_complexity as u64));
601
602        let duration = start_time.elapsed().as_millis() as f64;
603
604        let mut monitor = self
605            .performance_monitor
606            .write()
607            .expect("Performance monitor lock poisoned during tensor decomposition");
608        monitor.record_operation(&format!("{decomp_type:?}_decomposition"), duration);
609        monitor.contraction_stats.decompositions_performed += 1;
610
611        Ok(TensorDecomposition {
612            decomposition_type: decomp_type,
613            factors: vec![tensor_id + 1000, tensor_id + 2000], // Mock factor IDs
614            singular_values: vec![1.0, 0.5, 0.1],
615            error_estimate: 1e-15,
616        })
617    }
618}
619
620#[derive(Debug, Clone)]
621pub enum TensorDecompositionType {
622    SVD,
623    QR,
624    Eigenvalue,
625}
626
627#[derive(Debug, Clone)]
628pub struct TensorDecomposition {
629    pub decomposition_type: TensorDecompositionType,
630    pub factors: Vec<usize>,
631    pub singular_values: Vec<f64>,
632    pub error_estimate: f64,
633}
634
635#[derive(Debug, Clone)]
636pub struct LargeScalePerformanceStats {
637    pub contraction_stats: ContractionStatistics,
638    pub state_vector_stats: StateVectorStatistics,
639    pub total_memory_allocated: usize,
640    pub peak_memory_usage: usize,
641    pub device_utilization: Vec<f64>,
642}
643
644impl LargeScaleMemoryManager {
645    fn new(devices: &[GpuDevice], config: &LargeScaleSimConfig) -> QuantRS2Result<Self> {
646        let mut memory_pools = HashMap::new();
647
648        for (i, device) in devices.iter().enumerate() {
649            let pool = MemoryPool {
650                device_id: i,
651                total_size: config.memory_pool_size.min(device.memory_size),
652                used_size: 0,
653                free_blocks: vec![MemoryBlock {
654                    offset: 0,
655                    size: config.memory_pool_size.min(device.memory_size),
656                    is_pinned: false,
657                }],
658                allocated_blocks: HashMap::new(),
659            };
660            memory_pools.insert(i, pool);
661        }
662
663        Ok(Self {
664            memory_pools,
665            allocations: HashMap::new(),
666            next_allocation_id: 1,
667        })
668    }
669
670    fn allocate(
671        &mut self,
672        device_id: usize,
673        size: usize,
674        alloc_type: AllocationType,
675    ) -> QuantRS2Result<u64> {
676        let pool = self.memory_pools.get_mut(&device_id).ok_or_else(|| {
677            QuantRS2Error::InvalidParameter(format!("Device {device_id} not found"))
678        })?;
679
680        // Find suitable free block
681        let mut best_block_idx = None;
682        let mut best_size = usize::MAX;
683
684        for (i, block) in pool.free_blocks.iter().enumerate() {
685            if block.size >= size && block.size < best_size {
686                best_size = block.size;
687                best_block_idx = Some(i);
688            }
689        }
690
691        let block_idx = best_block_idx
692            .ok_or_else(|| QuantRS2Error::RuntimeError("Insufficient GPU memory".to_string()))?;
693
694        let block = pool.free_blocks.remove(block_idx);
695        let allocation_id = self.next_allocation_id;
696        self.next_allocation_id += 1;
697
698        // Create allocated block
699        let allocated_block = MemoryBlock {
700            offset: block.offset,
701            size,
702            is_pinned: false,
703        };
704
705        pool.allocated_blocks.insert(allocation_id, allocated_block);
706        pool.used_size += size;
707
708        // Return remaining space to free blocks if any
709        if block.size > size {
710            pool.free_blocks.push(MemoryBlock {
711                offset: block.offset + size,
712                size: block.size - size,
713                is_pinned: false,
714            });
715        }
716
717        self.allocations.insert(
718            allocation_id,
719            AllocationInfo {
720                device_id,
721                size,
722                allocation_type: alloc_type,
723                timestamp: std::time::Instant::now(),
724            },
725        );
726
727        Ok(allocation_id)
728    }
729
730    fn get_total_allocated(&self) -> usize {
731        self.allocations.values().map(|info| info.size).sum()
732    }
733
734    fn get_peak_usage(&self) -> usize {
735        self.memory_pools
736            .values()
737            .map(|pool| pool.used_size)
738            .max()
739            .unwrap_or_default()
740    }
741}
742
743impl LargeScalePerformanceMonitor {
744    fn new() -> Self {
745        Self {
746            operation_times: HashMap::new(),
747            memory_usage_history: Vec::new(),
748            contraction_stats: ContractionStatistics::default(),
749            state_vector_stats: StateVectorStatistics::default(),
750        }
751    }
752
753    fn record_operation(&mut self, operation: &str, duration_ms: f64) {
754        self.operation_times
755            .entry(operation.to_string())
756            .or_insert_with(Vec::new)
757            .push(duration_ms);
758    }
759}
760
761#[cfg(test)]
762mod tests {
763    use super::*;
764
765    fn create_test_devices() -> Vec<GpuDevice> {
766        vec![
767            GpuDevice {
768                id: 0,
769                name: "Test GPU 1".to_string(),
770                backend: GpuBackend::CUDA,
771                memory_size: 8 * 1024 * 1024 * 1024, // 8GB
772                compute_units: 64,
773                max_work_group_size: 1024,
774                supports_double_precision: true,
775                is_available: true,
776            },
777            GpuDevice {
778                id: 1,
779                name: "Test GPU 2".to_string(),
780                backend: GpuBackend::CUDA,
781                memory_size: 16 * 1024 * 1024 * 1024, // 16GB
782                compute_units: 128,
783                max_work_group_size: 1024,
784                supports_double_precision: true,
785                is_available: true,
786            },
787        ]
788    }
789
790    #[test]
791    fn test_large_scale_accelerator_creation() {
792        let config = LargeScaleSimConfig::default();
793        let devices = create_test_devices();
794
795        let accelerator = LargeScaleSimAccelerator::new(config, devices);
796        assert!(accelerator.is_ok());
797    }
798
799    #[test]
800    fn test_device_selection() {
801        let config = LargeScaleSimConfig::default();
802        let devices = create_test_devices();
803
804        let mut accelerator = LargeScaleSimAccelerator::new(config, devices)
805            .expect("Failed to create accelerator for device selection test");
806
807        // Test state vector simulation device selection
808        let device_id = accelerator.select_optimal_device(
809            SimulationTaskType::StateVector,
810            1024 * 1024 * 1024, // 1GB
811        );
812
813        assert!(device_id.is_ok());
814        assert!(device_id.expect("Device selection failed") < 2);
815    }
816
817    #[test]
818    fn test_state_vector_simulation() {
819        let config = LargeScaleSimConfig::default();
820        let devices = create_test_devices();
821
822        let mut accelerator =
823            LargeScaleSimAccelerator::new(config, devices).expect("Failed to create accelerator");
824        let state_sim = accelerator.init_state_vector_simulation(5);
825
826        assert!(state_sim.is_ok());
827
828        let mut sim = state_sim.expect("Failed to initialize state vector simulation");
829
830        // Test state initialization
831        let initial_state = vec![Complex64::new(1.0, 0.0); 32]; // 2^5 = 32
832        assert!(sim.initialize_state(&initial_state).is_ok());
833
834        // Test gate application
835        assert!(sim
836            .apply_gate_optimized(
837                LargeScaleGateType::SingleQubit,
838                &[0],
839                &[std::f64::consts::PI / 2.0]
840            )
841            .is_ok());
842    }
843
844    #[test]
845    fn test_tensor_contractor() {
846        let config = LargeScaleSimConfig::default();
847        let devices = create_test_devices();
848
849        let mut accelerator =
850            LargeScaleSimAccelerator::new(config, devices).expect("Failed to create accelerator");
851        let contractor = accelerator.init_tensor_contractor();
852
853        assert!(contractor.is_ok());
854
855        let mut contractor = contractor.expect("Failed to initialize tensor contractor");
856
857        // Create test tensor
858        let data = scirs2_core::ndarray::Array::from_shape_vec(
859            scirs2_core::ndarray::IxDyn(&[2, 2]),
860            vec![
861                Complex64::new(1.0, 0.0),
862                Complex64::new(0.0, 0.0),
863                Complex64::new(0.0, 0.0),
864                Complex64::new(1.0, 0.0),
865            ],
866        )
867        .expect("Failed to create tensor data array");
868
869        let tensor = Tensor::new(0, data, vec!["i".to_string(), "j".to_string()]);
870
871        // Test tensor upload
872        assert!(contractor.upload_tensor_optimized(&tensor).is_ok());
873
874        // Test tensor contraction
875        let result = contractor.contract_optimized(0, 1, &[(0, 1)]);
876        assert!(result.is_ok());
877    }
878
879    #[test]
880    fn test_memory_management() {
881        let config = LargeScaleSimConfig::default();
882        let devices = create_test_devices();
883
884        let memory_manager = LargeScaleMemoryManager::new(&devices, &config);
885        assert!(memory_manager.is_ok());
886
887        let mut mm = memory_manager.expect("Failed to create memory manager");
888
889        // Test allocation
890        let allocation = mm.allocate(0, 1024, AllocationType::StateVector);
891        assert!(allocation.is_ok());
892
893        // Test memory tracking
894        assert_eq!(mm.get_total_allocated(), 1024);
895    }
896
897    #[test]
898    fn test_performance_monitoring() {
899        let config = LargeScaleSimConfig::default();
900        let devices = create_test_devices();
901
902        let accelerator =
903            LargeScaleSimAccelerator::new(config, devices).expect("Failed to create accelerator");
904
905        // Record some operations
906        {
907            let mut monitor = accelerator
908                .performance_monitor
909                .write()
910                .expect("Performance monitor lock poisoned in test");
911            monitor.record_operation("test_operation", 10.5);
912            monitor.record_operation("test_operation", 12.3);
913        }
914
915        let stats = accelerator.get_performance_stats();
916        assert_eq!(stats.total_memory_allocated, 0); // No allocations yet
917    }
918
919    #[test]
920    fn test_large_qubit_simulation_limit() {
921        let config = LargeScaleSimConfig::default();
922        let devices = create_test_devices();
923
924        let mut accelerator =
925            LargeScaleSimAccelerator::new(config, devices).expect("Failed to create accelerator");
926
927        // Test exceeding qubit limit
928        let result = accelerator.init_state_vector_simulation(100);
929        assert!(result.is_err());
930        let err = result.expect_err("Expected UnsupportedQubits error");
931        assert!(matches!(err, QuantRS2Error::UnsupportedQubits(_, _)));
932    }
933
934    #[test]
935    fn test_tensor_decomposition() {
936        let config = LargeScaleSimConfig::default();
937        let devices = create_test_devices();
938
939        let mut accelerator =
940            LargeScaleSimAccelerator::new(config, devices).expect("Failed to create accelerator");
941        let mut contractor = accelerator
942            .init_tensor_contractor()
943            .expect("Failed to initialize tensor contractor");
944
945        let decomp_result = contractor.decompose_tensor_gpu(0, TensorDecompositionType::SVD);
946        assert!(decomp_result.is_ok());
947
948        let decomp = decomp_result.expect("Failed to decompose tensor");
949        assert_eq!(decomp.factors.len(), 2);
950        assert!(!decomp.singular_values.is_empty());
951    }
952}