quantrs2_core/
error_correction.rs

1//! Quantum error correction codes and decoders
2//!
3//! This module provides implementations of various quantum error correction codes
4//! including stabilizer codes, surface codes, and color codes, along with
5//! efficient decoder algorithms.
6
7use crate::error::{QuantRS2Error, QuantRS2Result};
8use scirs2_core::ndarray::Array2;
9use scirs2_core::Complex64;
10use std::collections::HashMap;
11use std::fmt;
12
13/// Pauli operator representation
14#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
15pub enum Pauli {
16    I,
17    X,
18    Y,
19    Z,
20}
21
22impl Pauli {
23    /// Get matrix representation
24    pub fn matrix(&self) -> Array2<Complex64> {
25        match self {
26            Self::I => Array2::from_shape_vec(
27                (2, 2),
28                vec![
29                    Complex64::new(1.0, 0.0),
30                    Complex64::new(0.0, 0.0),
31                    Complex64::new(0.0, 0.0),
32                    Complex64::new(1.0, 0.0),
33                ],
34            )
35            .expect("Pauli I matrix: 2x2 shape with 4 elements is always valid"),
36            Self::X => Array2::from_shape_vec(
37                (2, 2),
38                vec![
39                    Complex64::new(0.0, 0.0),
40                    Complex64::new(1.0, 0.0),
41                    Complex64::new(1.0, 0.0),
42                    Complex64::new(0.0, 0.0),
43                ],
44            )
45            .expect("Pauli X matrix: 2x2 shape with 4 elements is always valid"),
46            Self::Y => Array2::from_shape_vec(
47                (2, 2),
48                vec![
49                    Complex64::new(0.0, 0.0),
50                    Complex64::new(0.0, -1.0),
51                    Complex64::new(0.0, 1.0),
52                    Complex64::new(0.0, 0.0),
53                ],
54            )
55            .expect("Pauli Y matrix: 2x2 shape with 4 elements is always valid"),
56            Self::Z => Array2::from_shape_vec(
57                (2, 2),
58                vec![
59                    Complex64::new(1.0, 0.0),
60                    Complex64::new(0.0, 0.0),
61                    Complex64::new(0.0, 0.0),
62                    Complex64::new(-1.0, 0.0),
63                ],
64            )
65            .expect("Pauli Z matrix: 2x2 shape with 4 elements is always valid"),
66        }
67    }
68
69    /// Multiply two Pauli operators
70    pub const fn multiply(&self, other: &Self) -> (Complex64, Self) {
71        use Pauli::{I, X, Y, Z};
72        match (self, other) {
73            (I, p) | (p, I) => (Complex64::new(1.0, 0.0), *p),
74            (X, X) | (Y, Y) | (Z, Z) => (Complex64::new(1.0, 0.0), I),
75            (X, Y) => (Complex64::new(0.0, 1.0), Z),
76            (Y, X) => (Complex64::new(0.0, -1.0), Z),
77            (Y, Z) => (Complex64::new(0.0, 1.0), X),
78            (Z, Y) => (Complex64::new(0.0, -1.0), X),
79            (Z, X) => (Complex64::new(0.0, 1.0), Y),
80            (X, Z) => (Complex64::new(0.0, -1.0), Y),
81        }
82    }
83}
84
85/// Multi-qubit Pauli operator
86#[derive(Debug, Clone, PartialEq)]
87pub struct PauliString {
88    /// Phase factor (±1, ±i)
89    pub phase: Complex64,
90    /// Pauli operators for each qubit
91    pub paulis: Vec<Pauli>,
92}
93
94impl PauliString {
95    /// Create a new Pauli string
96    pub const fn new(paulis: Vec<Pauli>) -> Self {
97        Self {
98            phase: Complex64::new(1.0, 0.0),
99            paulis,
100        }
101    }
102
103    /// Create identity on n qubits
104    pub fn identity(n: usize) -> Self {
105        Self::new(vec![Pauli::I; n])
106    }
107
108    /// Get the weight (number of non-identity operators)
109    pub fn weight(&self) -> usize {
110        self.paulis.iter().filter(|&&p| p != Pauli::I).count()
111    }
112
113    /// Multiply two Pauli strings
114    pub fn multiply(&self, other: &Self) -> QuantRS2Result<Self> {
115        if self.paulis.len() != other.paulis.len() {
116            return Err(QuantRS2Error::InvalidInput(
117                "Pauli strings must have same length".to_string(),
118            ));
119        }
120
121        let mut phase = self.phase * other.phase;
122        let mut paulis = Vec::with_capacity(self.paulis.len());
123
124        for (p1, p2) in self.paulis.iter().zip(&other.paulis) {
125            let (factor, result) = p1.multiply(p2);
126            phase *= factor;
127            paulis.push(result);
128        }
129
130        Ok(Self { phase, paulis })
131    }
132
133    /// Check if two Pauli strings commute
134    pub fn commutes_with(&self, other: &Self) -> QuantRS2Result<bool> {
135        if self.paulis.len() != other.paulis.len() {
136            return Err(QuantRS2Error::InvalidInput(
137                "Pauli strings must have same length".to_string(),
138            ));
139        }
140
141        let mut commutation_count = 0;
142        for (p1, p2) in self.paulis.iter().zip(&other.paulis) {
143            if *p1 != Pauli::I && *p2 != Pauli::I && p1 != p2 {
144                commutation_count += 1;
145            }
146        }
147
148        Ok(commutation_count % 2 == 0)
149    }
150}
151
152impl fmt::Display for PauliString {
153    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
154        let phase_str = if self.phase == Complex64::new(1.0, 0.0) {
155            "+".to_string()
156        } else if self.phase == Complex64::new(-1.0, 0.0) {
157            "-".to_string()
158        } else if self.phase == Complex64::new(0.0, 1.0) {
159            "+i".to_string()
160        } else {
161            "-i".to_string()
162        };
163
164        write!(f, "{phase_str}")?;
165        for p in &self.paulis {
166            write!(f, "{p:?}")?;
167        }
168        Ok(())
169    }
170}
171
172/// Stabilizer code definition
173#[derive(Debug, Clone)]
174pub struct StabilizerCode {
175    /// Number of physical qubits
176    pub n: usize,
177    /// Number of logical qubits
178    pub k: usize,
179    /// Minimum distance
180    pub d: usize,
181    /// Stabilizer generators
182    pub stabilizers: Vec<PauliString>,
183    /// Logical X operators
184    pub logical_x: Vec<PauliString>,
185    /// Logical Z operators
186    pub logical_z: Vec<PauliString>,
187}
188
189impl StabilizerCode {
190    /// Create a new stabilizer code
191    pub fn new(
192        n: usize,
193        k: usize,
194        d: usize,
195        stabilizers: Vec<PauliString>,
196        logical_x: Vec<PauliString>,
197        logical_z: Vec<PauliString>,
198    ) -> QuantRS2Result<Self> {
199        // Validate code parameters
200        // Note: For surface codes and other topological codes,
201        // some stabilizers may be linearly dependent, so we allow more flexibility
202        if stabilizers.len() > 2 * (n - k) {
203            return Err(QuantRS2Error::InvalidInput(format!(
204                "Too many stabilizers: got {}, maximum is {}",
205                stabilizers.len(),
206                2 * (n - k)
207            )));
208        }
209
210        if logical_x.len() != k || logical_z.len() != k {
211            return Err(QuantRS2Error::InvalidInput(
212                "Number of logical operators must equal k".to_string(),
213            ));
214        }
215
216        // Check that stabilizers commute
217        for i in 0..stabilizers.len() {
218            for j in i + 1..stabilizers.len() {
219                if !stabilizers[i].commutes_with(&stabilizers[j])? {
220                    return Err(QuantRS2Error::InvalidInput(
221                        "Stabilizers must commute".to_string(),
222                    ));
223                }
224            }
225        }
226
227        Ok(Self {
228            n,
229            k,
230            d,
231            stabilizers,
232            logical_x,
233            logical_z,
234        })
235    }
236
237    /// Create the 3-qubit repetition code
238    pub fn repetition_code() -> Self {
239        let stabilizers = vec![
240            PauliString::new(vec![Pauli::Z, Pauli::Z, Pauli::I]),
241            PauliString::new(vec![Pauli::I, Pauli::Z, Pauli::Z]),
242        ];
243
244        let logical_x = vec![PauliString::new(vec![Pauli::X, Pauli::X, Pauli::X])];
245        let logical_z = vec![PauliString::new(vec![Pauli::Z, Pauli::I, Pauli::I])];
246
247        Self::new(3, 1, 1, stabilizers, logical_x, logical_z)
248            .expect("3-qubit repetition code: verified standard code parameters are always valid")
249    }
250
251    /// Create the 5-qubit perfect code
252    pub fn five_qubit_code() -> Self {
253        let stabilizers = vec![
254            PauliString::new(vec![Pauli::X, Pauli::Z, Pauli::Z, Pauli::X, Pauli::I]),
255            PauliString::new(vec![Pauli::I, Pauli::X, Pauli::Z, Pauli::Z, Pauli::X]),
256            PauliString::new(vec![Pauli::X, Pauli::I, Pauli::X, Pauli::Z, Pauli::Z]),
257            PauliString::new(vec![Pauli::Z, Pauli::X, Pauli::I, Pauli::X, Pauli::Z]),
258        ];
259
260        let logical_x = vec![PauliString::new(vec![
261            Pauli::X,
262            Pauli::X,
263            Pauli::X,
264            Pauli::X,
265            Pauli::X,
266        ])];
267        let logical_z = vec![PauliString::new(vec![
268            Pauli::Z,
269            Pauli::Z,
270            Pauli::Z,
271            Pauli::Z,
272            Pauli::Z,
273        ])];
274
275        Self::new(5, 1, 3, stabilizers, logical_x, logical_z)
276            .expect("5-qubit perfect code: verified standard code parameters are always valid")
277    }
278
279    /// Create the 7-qubit Steane code
280    pub fn steane_code() -> Self {
281        let stabilizers = vec![
282            PauliString::new(vec![
283                Pauli::I,
284                Pauli::I,
285                Pauli::I,
286                Pauli::X,
287                Pauli::X,
288                Pauli::X,
289                Pauli::X,
290            ]),
291            PauliString::new(vec![
292                Pauli::I,
293                Pauli::X,
294                Pauli::X,
295                Pauli::I,
296                Pauli::I,
297                Pauli::X,
298                Pauli::X,
299            ]),
300            PauliString::new(vec![
301                Pauli::X,
302                Pauli::I,
303                Pauli::X,
304                Pauli::I,
305                Pauli::X,
306                Pauli::I,
307                Pauli::X,
308            ]),
309            PauliString::new(vec![
310                Pauli::I,
311                Pauli::I,
312                Pauli::I,
313                Pauli::Z,
314                Pauli::Z,
315                Pauli::Z,
316                Pauli::Z,
317            ]),
318            PauliString::new(vec![
319                Pauli::I,
320                Pauli::Z,
321                Pauli::Z,
322                Pauli::I,
323                Pauli::I,
324                Pauli::Z,
325                Pauli::Z,
326            ]),
327            PauliString::new(vec![
328                Pauli::Z,
329                Pauli::I,
330                Pauli::Z,
331                Pauli::I,
332                Pauli::Z,
333                Pauli::I,
334                Pauli::Z,
335            ]),
336        ];
337
338        let logical_x = vec![PauliString::new(vec![
339            Pauli::X,
340            Pauli::X,
341            Pauli::X,
342            Pauli::X,
343            Pauli::X,
344            Pauli::X,
345            Pauli::X,
346        ])];
347        let logical_z = vec![PauliString::new(vec![
348            Pauli::Z,
349            Pauli::Z,
350            Pauli::Z,
351            Pauli::Z,
352            Pauli::Z,
353            Pauli::Z,
354            Pauli::Z,
355        ])];
356
357        Self::new(7, 1, 3, stabilizers, logical_x, logical_z)
358            .expect("7-qubit Steane code: verified standard code parameters are always valid")
359    }
360
361    /// Get syndrome for a given error
362    pub fn syndrome(&self, error: &PauliString) -> QuantRS2Result<Vec<bool>> {
363        if error.paulis.len() != self.n {
364            return Err(QuantRS2Error::InvalidInput(
365                "Error must act on all physical qubits".to_string(),
366            ));
367        }
368
369        let mut syndrome = Vec::with_capacity(self.stabilizers.len());
370        for stabilizer in &self.stabilizers {
371            syndrome.push(!stabilizer.commutes_with(error)?);
372        }
373
374        Ok(syndrome)
375    }
376}
377
378/// Surface code lattice
379#[derive(Debug, Clone)]
380pub struct SurfaceCode {
381    /// Number of rows in the lattice
382    pub rows: usize,
383    /// Number of columns in the lattice
384    pub cols: usize,
385    /// Qubit positions (row, col) -> qubit index
386    pub qubit_map: HashMap<(usize, usize), usize>,
387    /// Stabilizer plaquettes
388    pub x_stabilizers: Vec<Vec<usize>>,
389    pub z_stabilizers: Vec<Vec<usize>>,
390}
391
392impl SurfaceCode {
393    /// Create a new surface code
394    pub fn new(rows: usize, cols: usize) -> Self {
395        let mut qubit_map = HashMap::new();
396        let mut qubit_index = 0;
397
398        // Place qubits on the lattice
399        for r in 0..rows {
400            for c in 0..cols {
401                qubit_map.insert((r, c), qubit_index);
402                qubit_index += 1;
403            }
404        }
405
406        let mut x_stabilizers = Vec::new();
407        let mut z_stabilizers = Vec::new();
408
409        // Create X stabilizers (vertex operators)
410        for r in 0..rows - 1 {
411            for c in 0..cols - 1 {
412                if (r + c) % 2 == 0 {
413                    let stabilizer = vec![
414                        qubit_map[&(r, c)],
415                        qubit_map[&(r, c + 1)],
416                        qubit_map[&(r + 1, c)],
417                        qubit_map[&(r + 1, c + 1)],
418                    ];
419                    x_stabilizers.push(stabilizer);
420                }
421            }
422        }
423
424        // Create Z stabilizers (plaquette operators)
425        for r in 0..rows - 1 {
426            for c in 0..cols - 1 {
427                if (r + c) % 2 == 1 {
428                    let stabilizer = vec![
429                        qubit_map[&(r, c)],
430                        qubit_map[&(r, c + 1)],
431                        qubit_map[&(r + 1, c)],
432                        qubit_map[&(r + 1, c + 1)],
433                    ];
434                    z_stabilizers.push(stabilizer);
435                }
436            }
437        }
438
439        Self {
440            rows,
441            cols,
442            qubit_map,
443            x_stabilizers,
444            z_stabilizers,
445        }
446    }
447
448    /// Get the code distance
449    pub fn distance(&self) -> usize {
450        self.rows.min(self.cols)
451    }
452
453    /// Convert to stabilizer code representation
454    pub fn to_stabilizer_code(&self) -> QuantRS2Result<StabilizerCode> {
455        let n = self.qubit_map.len();
456        let mut stabilizers = Vec::new();
457
458        // Add X stabilizers
459        for x_stab in &self.x_stabilizers {
460            let mut paulis = vec![Pauli::I; n];
461            for &qubit in x_stab {
462                paulis[qubit] = Pauli::X;
463            }
464            stabilizers.push(PauliString::new(paulis));
465        }
466
467        // Add Z stabilizers
468        for z_stab in &self.z_stabilizers {
469            let mut paulis = vec![Pauli::I; n];
470            for &qubit in z_stab {
471                paulis[qubit] = Pauli::Z;
472            }
473            stabilizers.push(PauliString::new(paulis));
474        }
475
476        // Create logical operators (simplified - just use boundary chains)
477        let mut logical_x_paulis = vec![Pauli::I; n];
478        let mut logical_z_paulis = vec![Pauli::I; n];
479
480        // Logical X: horizontal chain on top boundary
481        for c in 0..self.cols {
482            if let Some(&qubit) = self.qubit_map.get(&(0, c)) {
483                logical_x_paulis[qubit] = Pauli::X;
484            }
485        }
486
487        // Logical Z: vertical chain on left boundary
488        for r in 0..self.rows {
489            if let Some(&qubit) = self.qubit_map.get(&(r, 0)) {
490                logical_z_paulis[qubit] = Pauli::Z;
491            }
492        }
493
494        let logical_x = vec![PauliString::new(logical_x_paulis)];
495        let logical_z = vec![PauliString::new(logical_z_paulis)];
496
497        StabilizerCode::new(n, 1, self.distance(), stabilizers, logical_x, logical_z)
498    }
499}
500
501/// Syndrome decoder interface
502pub trait SyndromeDecoder {
503    /// Decode syndrome to find most likely error
504    fn decode(&self, syndrome: &[bool]) -> QuantRS2Result<PauliString>;
505}
506
507/// Lookup table decoder
508pub struct LookupDecoder {
509    /// Syndrome to error mapping
510    syndrome_table: HashMap<Vec<bool>, PauliString>,
511}
512
513impl LookupDecoder {
514    /// Create decoder for a stabilizer code
515    pub fn new(code: &StabilizerCode) -> QuantRS2Result<Self> {
516        let mut syndrome_table = HashMap::new();
517
518        // Generate all correctable errors (up to weight floor(d/2))
519        let max_weight = (code.d - 1) / 2;
520        let all_errors = Self::generate_pauli_errors(code.n, max_weight);
521
522        for error in all_errors {
523            let syndrome = code.syndrome(&error)?;
524
525            // Only keep lowest weight error for each syndrome
526            syndrome_table
527                .entry(syndrome)
528                .and_modify(|e: &mut PauliString| {
529                    if error.weight() < e.weight() {
530                        *e = error.clone();
531                    }
532                })
533                .or_insert(error);
534        }
535
536        Ok(Self { syndrome_table })
537    }
538
539    /// Generate all Pauli errors up to given weight
540    fn generate_pauli_errors(n: usize, max_weight: usize) -> Vec<PauliString> {
541        let mut errors = vec![PauliString::identity(n)];
542
543        for weight in 1..=max_weight {
544            let weight_errors = Self::generate_weight_k_errors(n, weight);
545            errors.extend(weight_errors);
546        }
547
548        errors
549    }
550
551    /// Generate all weight-k Pauli errors
552    fn generate_weight_k_errors(n: usize, k: usize) -> Vec<PauliString> {
553        let mut errors = Vec::new();
554        let paulis = [Pauli::X, Pauli::Y, Pauli::Z];
555
556        // Generate all combinations of k positions
557        let positions = Self::combinations(n, k);
558
559        for pos_set in positions {
560            // For each position set, try all Pauli combinations
561            let pauli_combinations = Self::cartesian_power(&paulis, k);
562
563            for pauli_combo in pauli_combinations {
564                let mut error_paulis = vec![Pauli::I; n];
565                for (i, &pos) in pos_set.iter().enumerate() {
566                    error_paulis[pos] = pauli_combo[i];
567                }
568                errors.push(PauliString::new(error_paulis));
569            }
570        }
571
572        errors
573    }
574
575    /// Generate all k-combinations from n elements
576    fn combinations(n: usize, k: usize) -> Vec<Vec<usize>> {
577        let mut result = Vec::new();
578        let mut combo = (0..k).collect::<Vec<_>>();
579
580        loop {
581            result.push(combo.clone());
582
583            // Find rightmost element that can be incremented
584            let mut i = k;
585            while i > 0 && (i == k || combo[i] == n - k + i) {
586                i -= 1;
587            }
588
589            if i == 0 && combo[0] == n - k {
590                break;
591            }
592
593            // Increment and reset following elements
594            combo[i] += 1;
595            for j in i + 1..k {
596                combo[j] = combo[j - 1] + 1;
597            }
598        }
599
600        result
601    }
602
603    /// Generate Cartesian power of a set
604    fn cartesian_power<T: Clone>(set: &[T], k: usize) -> Vec<Vec<T>> {
605        if k == 0 {
606            return vec![vec![]];
607        }
608
609        let mut result = Vec::new();
610        let smaller = Self::cartesian_power(set, k - 1);
611
612        for item in set {
613            for mut combo in smaller.clone() {
614                combo.push(item.clone());
615                result.push(combo);
616            }
617        }
618
619        result
620    }
621}
622
623impl SyndromeDecoder for LookupDecoder {
624    fn decode(&self, syndrome: &[bool]) -> QuantRS2Result<PauliString> {
625        self.syndrome_table
626            .get(syndrome)
627            .cloned()
628            .ok_or_else(|| QuantRS2Error::InvalidInput("Unknown syndrome".to_string()))
629    }
630}
631
632/// Minimum Weight Perfect Matching decoder for surface codes
633pub struct MWPMDecoder {
634    surface_code: SurfaceCode,
635}
636
637impl MWPMDecoder {
638    /// Create MWPM decoder for surface code
639    pub const fn new(surface_code: SurfaceCode) -> Self {
640        Self { surface_code }
641    }
642
643    /// Find minimum weight matching for syndrome
644    pub fn decode_syndrome(
645        &self,
646        x_syndrome: &[bool],
647        z_syndrome: &[bool],
648    ) -> QuantRS2Result<PauliString> {
649        let n = self.surface_code.qubit_map.len();
650        let mut error_paulis = vec![Pauli::I; n];
651
652        // Decode X errors using Z syndrome
653        let z_defects = self.find_defects(z_syndrome, &self.surface_code.z_stabilizers);
654        let x_corrections = self.minimum_weight_matching(&z_defects, Pauli::X)?;
655
656        for (qubit, pauli) in x_corrections {
657            error_paulis[qubit] = pauli;
658        }
659
660        // Decode Z errors using X syndrome
661        let x_defects = self.find_defects(x_syndrome, &self.surface_code.x_stabilizers);
662        let z_corrections = self.minimum_weight_matching(&x_defects, Pauli::Z)?;
663
664        for (qubit, pauli) in z_corrections {
665            if error_paulis[qubit] == Pauli::I {
666                error_paulis[qubit] = pauli;
667            } else {
668                // Combine X and Z to get Y
669                error_paulis[qubit] = Pauli::Y;
670            }
671        }
672
673        Ok(PauliString::new(error_paulis))
674    }
675
676    /// Find stabilizer defects from syndrome
677    fn find_defects(&self, syndrome: &[bool], _stabilizers: &[Vec<usize>]) -> Vec<usize> {
678        syndrome
679            .iter()
680            .enumerate()
681            .filter_map(|(i, &s)| if s { Some(i) } else { None })
682            .collect()
683    }
684
685    /// Simple minimum weight matching (for demonstration)
686    fn minimum_weight_matching(
687        &self,
688        defects: &[usize],
689        error_type: Pauli,
690    ) -> QuantRS2Result<Vec<(usize, Pauli)>> {
691        // This is a simplified version - real implementation would use blossom algorithm
692        let mut corrections = Vec::new();
693
694        if defects.len() % 2 != 0 {
695            return Err(QuantRS2Error::InvalidInput(
696                "Odd number of defects".to_string(),
697            ));
698        }
699
700        // Simple greedy pairing
701        let mut paired = vec![false; defects.len()];
702
703        for i in 0..defects.len() {
704            if paired[i] {
705                continue;
706            }
707
708            // Find nearest unpaired defect
709            let mut min_dist = usize::MAX;
710            let mut min_j = i;
711
712            for j in i + 1..defects.len() {
713                if !paired[j] {
714                    let dist = self.defect_distance(defects[i], defects[j]);
715                    if dist < min_dist {
716                        min_dist = dist;
717                        min_j = j;
718                    }
719                }
720            }
721
722            if min_j != i {
723                paired[i] = true;
724                paired[min_j] = true;
725
726                // Add correction path
727                let path = self.shortest_path(defects[i], defects[min_j])?;
728                for qubit in path {
729                    corrections.push((qubit, error_type));
730                }
731            }
732        }
733
734        Ok(corrections)
735    }
736
737    /// Manhattan distance between defects
738    const fn defect_distance(&self, defect1: usize, defect2: usize) -> usize {
739        // This is simplified - would need proper defect coordinates
740        (defect1 as isize - defect2 as isize).unsigned_abs()
741    }
742
743    /// Find shortest path between defects
744    fn shortest_path(&self, start: usize, end: usize) -> QuantRS2Result<Vec<usize>> {
745        // Simplified path - in practice would use proper graph traversal
746        let path = if start < end {
747            (start..=end).collect()
748        } else {
749            (end..=start).rev().collect()
750        };
751
752        Ok(path)
753    }
754}
755
756/// Color code
757#[derive(Debug, Clone)]
758pub struct ColorCode {
759    /// Number of physical qubits
760    pub n: usize,
761    /// Face coloring (red, green, blue)
762    pub faces: Vec<(Vec<usize>, Color)>,
763    /// Vertex to qubit mapping
764    pub vertex_map: HashMap<(i32, i32), usize>,
765}
766
767#[derive(Debug, Clone, Copy, PartialEq, Eq)]
768pub enum Color {
769    Red,
770    Green,
771    Blue,
772}
773
774impl ColorCode {
775    /// Create a triangular color code
776    pub fn triangular(size: usize) -> Self {
777        let mut vertex_map = HashMap::new();
778        let mut qubit_index = 0;
779
780        // Create hexagonal lattice vertices
781        for i in 0..size as i32 {
782            for j in 0..size as i32 {
783                vertex_map.insert((i, j), qubit_index);
784                qubit_index += 1;
785            }
786        }
787
788        let mut faces = Vec::new();
789
790        // Create colored faces
791        for i in 0..size as i32 - 1 {
792            for j in 0..size as i32 - 1 {
793                // Red face
794                if let (Some(&q1), Some(&q2), Some(&q3)) = (
795                    vertex_map.get(&(i, j)),
796                    vertex_map.get(&(i + 1, j)),
797                    vertex_map.get(&(i, j + 1)),
798                ) {
799                    faces.push((vec![q1, q2, q3], Color::Red));
800                }
801
802                // Green face
803                if let (Some(&q1), Some(&q2), Some(&q3)) = (
804                    vertex_map.get(&(i + 1, j)),
805                    vertex_map.get(&(i + 1, j + 1)),
806                    vertex_map.get(&(i, j + 1)),
807                ) {
808                    faces.push((vec![q1, q2, q3], Color::Green));
809                }
810            }
811        }
812
813        Self {
814            n: vertex_map.len(),
815            faces,
816            vertex_map,
817        }
818    }
819
820    /// Convert to stabilizer code
821    pub fn to_stabilizer_code(&self) -> QuantRS2Result<StabilizerCode> {
822        let mut x_stabilizers = Vec::new();
823        let mut z_stabilizers = Vec::new();
824
825        for (qubits, _color) in &self.faces {
826            // X-type stabilizer
827            let mut x_paulis = vec![Pauli::I; self.n];
828            for &q in qubits {
829                x_paulis[q] = Pauli::X;
830            }
831            x_stabilizers.push(PauliString::new(x_paulis));
832
833            // Z-type stabilizer
834            let mut z_paulis = vec![Pauli::I; self.n];
835            for &q in qubits {
836                z_paulis[q] = Pauli::Z;
837            }
838            z_stabilizers.push(PauliString::new(z_paulis));
839        }
840
841        let mut stabilizers = x_stabilizers;
842        stabilizers.extend(z_stabilizers);
843
844        // Simplified logical operators
845        let logical_x = vec![PauliString::new(vec![Pauli::X; self.n])];
846        let logical_z = vec![PauliString::new(vec![Pauli::Z; self.n])];
847
848        StabilizerCode::new(
849            self.n,
850            1,
851            3, // minimum distance
852            stabilizers,
853            logical_x,
854            logical_z,
855        )
856    }
857}
858
859/// Concatenated quantum error correction codes
860#[derive(Debug, Clone)]
861pub struct ConcatenatedCode {
862    /// Inner code (applied first)
863    pub inner_code: StabilizerCode,
864    /// Outer code (applied to logical qubits of inner code)
865    pub outer_code: StabilizerCode,
866}
867
868impl ConcatenatedCode {
869    /// Create a new concatenated code
870    pub const fn new(inner_code: StabilizerCode, outer_code: StabilizerCode) -> Self {
871        Self {
872            inner_code,
873            outer_code,
874        }
875    }
876
877    /// Get total number of physical qubits
878    pub const fn total_qubits(&self) -> usize {
879        self.inner_code.n * self.outer_code.n
880    }
881
882    /// Get number of logical qubits
883    pub const fn logical_qubits(&self) -> usize {
884        self.inner_code.k * self.outer_code.k
885    }
886
887    /// Get effective distance
888    pub const fn distance(&self) -> usize {
889        self.inner_code.d * self.outer_code.d
890    }
891
892    /// Encode a logical state
893    pub fn encode(&self, logical_state: &[Complex64]) -> QuantRS2Result<Vec<Complex64>> {
894        if logical_state.len() != 1 << self.logical_qubits() {
895            return Err(QuantRS2Error::InvalidInput(
896                "Logical state dimension mismatch".to_string(),
897            ));
898        }
899
900        // First encode with outer code
901        let outer_encoded = self.encode_with_code(logical_state, &self.outer_code)?;
902
903        // Then encode each logical qubit of outer code with inner code
904        let mut final_encoded = vec![Complex64::new(0.0, 0.0); 1 << self.total_qubits()];
905
906        // This is a simplified encoding - proper implementation would require
907        // tensor product operations and proper state manipulation
908        for (i, &amplitude) in outer_encoded.iter().enumerate() {
909            if amplitude.norm() > 1e-10 {
910                final_encoded[i * (1 << self.inner_code.n)] = amplitude;
911            }
912        }
913
914        Ok(final_encoded)
915    }
916
917    /// Correct errors using concatenated decoding
918    pub fn correct_error(
919        &self,
920        encoded_state: &[Complex64],
921        error: &PauliString,
922    ) -> QuantRS2Result<Vec<Complex64>> {
923        if error.paulis.len() != self.total_qubits() {
924            return Err(QuantRS2Error::InvalidInput(
925                "Error must act on all physical qubits".to_string(),
926            ));
927        }
928
929        // Simplified error correction - apply error and return corrected state
930        // In practice, would implement syndrome extraction and decoding
931        let mut corrected = encoded_state.to_vec();
932
933        // Apply error (simplified)
934        for (i, &pauli) in error.paulis.iter().enumerate() {
935            if pauli != Pauli::I && i < corrected.len() {
936                // Simplified error application
937                corrected[i] *= -1.0;
938            }
939        }
940
941        Ok(corrected)
942    }
943
944    /// Encode with a specific code
945    fn encode_with_code(
946        &self,
947        state: &[Complex64],
948        code: &StabilizerCode,
949    ) -> QuantRS2Result<Vec<Complex64>> {
950        // Simplified encoding - proper implementation would use stabilizer formalism
951        let mut encoded = vec![Complex64::new(0.0, 0.0); 1 << code.n];
952
953        for (i, &amplitude) in state.iter().enumerate() {
954            if i < encoded.len() {
955                encoded[i * (1 << (code.n - code.k))] = amplitude;
956            }
957        }
958
959        Ok(encoded)
960    }
961}
962
963/// Hypergraph product codes for quantum LDPC
964#[derive(Debug, Clone)]
965pub struct HypergraphProductCode {
966    /// Number of physical qubits
967    pub n: usize,
968    /// Number of logical qubits
969    pub k: usize,
970    /// X-type stabilizers
971    pub x_stabilizers: Vec<PauliString>,
972    /// Z-type stabilizers
973    pub z_stabilizers: Vec<PauliString>,
974}
975
976impl HypergraphProductCode {
977    /// Create hypergraph product code from two classical codes
978    pub fn new(h1: Array2<u8>, h2: Array2<u8>) -> Self {
979        let (m1, n1) = h1.dim();
980        let (m2, n2) = h2.dim();
981
982        let n = n1 * m2 + m1 * n2;
983        let k = (n1 - m1) * (n2 - m2);
984
985        let mut x_stabilizers = Vec::new();
986        let mut z_stabilizers = Vec::new();
987
988        // X-type stabilizers: H1 ⊗ I2
989        for i in 0..m1 {
990            for j in 0..m2 {
991                let mut paulis = vec![Pauli::I; n];
992
993                // Apply H1 to first block
994                for l in 0..n1 {
995                    if h1[[i, l]] == 1 {
996                        paulis[l * m2 + j] = Pauli::X;
997                    }
998                }
999
1000                x_stabilizers.push(PauliString::new(paulis));
1001            }
1002        }
1003
1004        // Z-type stabilizers: I1 ⊗ H2^T
1005        for i in 0..m1 {
1006            for j in 0..m2 {
1007                let mut paulis = vec![Pauli::I; n];
1008
1009                // Apply H2^T to second block
1010                for l in 0..n2 {
1011                    if h2[[j, l]] == 1 {
1012                        paulis[n1 * m2 + i * n2 + l] = Pauli::Z;
1013                    }
1014                }
1015
1016                z_stabilizers.push(PauliString::new(paulis));
1017            }
1018        }
1019
1020        Self {
1021            n,
1022            k,
1023            x_stabilizers,
1024            z_stabilizers,
1025        }
1026    }
1027
1028    /// Convert to stabilizer code representation
1029    pub fn to_stabilizer_code(&self) -> QuantRS2Result<StabilizerCode> {
1030        let mut stabilizers = self.x_stabilizers.clone();
1031        stabilizers.extend(self.z_stabilizers.clone());
1032
1033        // Simplified logical operators
1034        let logical_x = vec![PauliString::new(vec![Pauli::X; self.n])];
1035        let logical_z = vec![PauliString::new(vec![Pauli::Z; self.n])];
1036
1037        StabilizerCode::new(
1038            self.n,
1039            self.k,
1040            3, // Simplified distance
1041            stabilizers,
1042            logical_x,
1043            logical_z,
1044        )
1045    }
1046}
1047
1048/// Quantum Low-Density Parity-Check (LDPC) codes
1049#[derive(Debug, Clone)]
1050pub struct QuantumLDPCCode {
1051    /// Number of physical qubits
1052    pub n: usize,
1053    /// Number of logical qubits
1054    pub k: usize,
1055    /// Maximum stabilizer weight
1056    pub max_weight: usize,
1057    /// X-type stabilizers
1058    pub x_stabilizers: Vec<PauliString>,
1059    /// Z-type stabilizers
1060    pub z_stabilizers: Vec<PauliString>,
1061}
1062
1063impl QuantumLDPCCode {
1064    /// Create a bicycle code (CSS LDPC)
1065    pub fn bicycle_code(a: usize, b: usize) -> Self {
1066        let n = 2 * a * b;
1067        let k = 2;
1068        let max_weight = 6; // Typical for bicycle codes
1069
1070        let mut x_stabilizers = Vec::new();
1071        let mut z_stabilizers = Vec::new();
1072
1073        // Generate bicycle code stabilizers
1074        for i in 0..a {
1075            for j in 0..b {
1076                // X-type stabilizer
1077                let mut x_paulis = vec![Pauli::I; n];
1078                let base_idx = i * b + j;
1079
1080                // Create a 6-cycle in the Cayley graph
1081                x_paulis[base_idx] = Pauli::X;
1082                x_paulis[(base_idx + 1) % (a * b)] = Pauli::X;
1083                x_paulis[(base_idx + b) % (a * b)] = Pauli::X;
1084                x_paulis[a * b + base_idx] = Pauli::X;
1085                x_paulis[a * b + (base_idx + 1) % (a * b)] = Pauli::X;
1086                x_paulis[a * b + (base_idx + b) % (a * b)] = Pauli::X;
1087
1088                x_stabilizers.push(PauliString::new(x_paulis));
1089
1090                // Z-type stabilizer (similar structure)
1091                let mut z_paulis = vec![Pauli::I; n];
1092                z_paulis[base_idx] = Pauli::Z;
1093                z_paulis[(base_idx + a) % (a * b)] = Pauli::Z;
1094                z_paulis[(base_idx + 1) % (a * b)] = Pauli::Z;
1095                z_paulis[a * b + base_idx] = Pauli::Z;
1096                z_paulis[a * b + (base_idx + a) % (a * b)] = Pauli::Z;
1097                z_paulis[a * b + (base_idx + 1) % (a * b)] = Pauli::Z;
1098
1099                z_stabilizers.push(PauliString::new(z_paulis));
1100            }
1101        }
1102
1103        Self {
1104            n,
1105            k,
1106            max_weight,
1107            x_stabilizers,
1108            z_stabilizers,
1109        }
1110    }
1111
1112    /// Convert to stabilizer code representation
1113    pub fn to_stabilizer_code(&self) -> QuantRS2Result<StabilizerCode> {
1114        let mut stabilizers = self.x_stabilizers.clone();
1115        stabilizers.extend(self.z_stabilizers.clone());
1116
1117        // Create logical operators (simplified)
1118        let logical_x = vec![
1119            PauliString::new(vec![Pauli::X; self.n]),
1120            PauliString::new(vec![Pauli::Y; self.n]),
1121        ];
1122        let logical_z = vec![
1123            PauliString::new(vec![Pauli::Z; self.n]),
1124            PauliString::new(vec![Pauli::Y; self.n]),
1125        ];
1126
1127        StabilizerCode::new(
1128            self.n,
1129            self.k,
1130            4, // Typical distance for bicycle codes
1131            stabilizers,
1132            logical_x,
1133            logical_z,
1134        )
1135    }
1136}
1137
1138/// Toric code (generalization of surface code on torus)
1139#[derive(Debug, Clone)]
1140pub struct ToricCode {
1141    /// Number of rows in the torus
1142    pub rows: usize,
1143    /// Number of columns in the torus
1144    pub cols: usize,
1145    /// Qubit mapping
1146    pub qubit_map: HashMap<(usize, usize), usize>,
1147}
1148
1149impl ToricCode {
1150    /// Create a new toric code
1151    pub fn new(rows: usize, cols: usize) -> Self {
1152        let mut qubit_map = HashMap::new();
1153        let mut qubit_index = 0;
1154
1155        // Place qubits on torus (two qubits per unit cell)
1156        for r in 0..rows {
1157            for c in 0..cols {
1158                // Horizontal edge qubit
1159                qubit_map.insert((2 * r, c), qubit_index);
1160                qubit_index += 1;
1161                // Vertical edge qubit
1162                qubit_map.insert((2 * r + 1, c), qubit_index);
1163                qubit_index += 1;
1164            }
1165        }
1166
1167        Self {
1168            rows,
1169            cols,
1170            qubit_map,
1171        }
1172    }
1173
1174    /// Get number of logical qubits
1175    pub const fn logical_qubits(&self) -> usize {
1176        2 // Two logical qubits for torus topology
1177    }
1178
1179    /// Get code distance
1180    pub fn distance(&self) -> usize {
1181        self.rows.min(self.cols)
1182    }
1183
1184    /// Convert to stabilizer code representation
1185    pub fn to_stabilizer_code(&self) -> QuantRS2Result<StabilizerCode> {
1186        let n = self.qubit_map.len();
1187        let mut stabilizers = Vec::new();
1188
1189        // Vertex stabilizers (X-type) - star operators
1190        for r in 0..self.rows {
1191            for c in 0..self.cols {
1192                let mut paulis = vec![Pauli::I; n];
1193
1194                // Four edges around vertex with correct torus indexing
1195                let h_edge_below = (2 * r, c);
1196                let h_edge_above = (2 * ((r + self.rows - 1) % self.rows), c);
1197                let v_edge_left = (2 * r + 1, (c + self.cols - 1) % self.cols);
1198                let v_edge_right = (2 * r + 1, c);
1199
1200                for &coord in &[h_edge_below, h_edge_above, v_edge_left, v_edge_right] {
1201                    if let Some(&qubit) = self.qubit_map.get(&coord) {
1202                        paulis[qubit] = Pauli::X;
1203                    }
1204                }
1205
1206                stabilizers.push(PauliString::new(paulis));
1207            }
1208        }
1209
1210        // Plaquette stabilizers (Z-type) - face operators
1211        for r in 0..self.rows {
1212            for c in 0..self.cols {
1213                let mut paulis = vec![Pauli::I; n];
1214
1215                // Four edges around plaquette with correct indexing
1216                let h_edge_top = (2 * r, c);
1217                let h_edge_bottom = (2 * ((r + 1) % self.rows), c);
1218                let v_edge_left = (2 * r + 1, c);
1219                let v_edge_right = (2 * r + 1, (c + 1) % self.cols);
1220
1221                for &coord in &[h_edge_top, h_edge_bottom, v_edge_left, v_edge_right] {
1222                    if let Some(&qubit) = self.qubit_map.get(&coord) {
1223                        paulis[qubit] = Pauli::Z;
1224                    }
1225                }
1226
1227                stabilizers.push(PauliString::new(paulis));
1228            }
1229        }
1230
1231        // Logical operators (horizontal and vertical loops)
1232        let mut logical_x1 = vec![Pauli::I; n];
1233        let mut logical_z1 = vec![Pauli::I; n];
1234        let mut logical_x2 = vec![Pauli::I; n];
1235        let mut logical_z2 = vec![Pauli::I; n];
1236
1237        // Horizontal logical loop operators
1238        for c in 0..self.cols {
1239            // Logical X along horizontal direction (vertical edges)
1240            if let Some(&qubit) = self.qubit_map.get(&(1, c)) {
1241                logical_x1[qubit] = Pauli::X;
1242            }
1243            // Logical Z along horizontal direction (horizontal edges)
1244            if let Some(&qubit) = self.qubit_map.get(&(0, c)) {
1245                logical_z2[qubit] = Pauli::Z;
1246            }
1247        }
1248
1249        // Vertical logical loop operators
1250        for r in 0..self.rows {
1251            // Logical X along vertical direction (horizontal edges)
1252            if let Some(&qubit) = self.qubit_map.get(&(2 * r, 0)) {
1253                logical_x2[qubit] = Pauli::X;
1254            }
1255            // Logical Z along vertical direction (vertical edges)
1256            if let Some(&qubit) = self.qubit_map.get(&(2 * r + 1, 0)) {
1257                logical_z1[qubit] = Pauli::Z;
1258            }
1259        }
1260
1261        let logical_x = vec![PauliString::new(logical_x1), PauliString::new(logical_x2)];
1262        let logical_z = vec![PauliString::new(logical_z1), PauliString::new(logical_z2)];
1263
1264        StabilizerCode::new(n, 2, self.distance(), stabilizers, logical_x, logical_z)
1265    }
1266}
1267
1268/// Machine learning-based syndrome decoder
1269pub struct MLDecoder {
1270    /// The code being decoded
1271    code: StabilizerCode,
1272    /// Neural network weights (simplified representation)
1273    weights: Vec<Vec<f64>>,
1274}
1275
1276impl MLDecoder {
1277    /// Create a new ML decoder
1278    pub fn new(code: StabilizerCode) -> Self {
1279        // Initialize random weights for a simple neural network
1280        let input_size = code.stabilizers.len();
1281        let hidden_size = 2 * input_size;
1282        let output_size = code.n * 3; // 3 Pauli operators per qubit
1283
1284        use scirs2_core::random::prelude::*;
1285        let mut rng = thread_rng();
1286        let mut weights = Vec::new();
1287
1288        // Input to hidden layer
1289        let mut w1 = Vec::new();
1290        for _ in 0..hidden_size {
1291            let mut row = Vec::new();
1292            for _ in 0..input_size {
1293                row.push((rng.gen::<f64>() - 0.5) * 0.1);
1294            }
1295            w1.push(row);
1296        }
1297        weights.push(w1.into_iter().flatten().collect());
1298
1299        // Hidden to output layer
1300        let mut w2 = Vec::new();
1301        for _ in 0..output_size {
1302            let mut row = Vec::new();
1303            for _ in 0..hidden_size {
1304                row.push((rng.gen::<f64>() - 0.5) * 0.1);
1305            }
1306            w2.push(row);
1307        }
1308        weights.push(w2.into_iter().flatten().collect());
1309
1310        Self { code, weights }
1311    }
1312
1313    /// Simple feedforward prediction
1314    fn predict(&self, syndrome: &[bool]) -> Vec<f64> {
1315        let input: Vec<f64> = syndrome
1316            .iter()
1317            .map(|&b| if b { 1.0 } else { 0.0 })
1318            .collect();
1319
1320        // This is a greatly simplified neural network
1321        // In practice, would use proper ML framework
1322        let hidden_size = 2 * input.len();
1323        let mut hidden = vec![0.0; hidden_size];
1324
1325        // Input to hidden
1326        for i in 0..hidden_size {
1327            for j in 0..input.len() {
1328                if i * input.len() + j < self.weights[0].len() {
1329                    hidden[i] += input[j] * self.weights[0][i * input.len() + j];
1330                }
1331            }
1332            hidden[i] = hidden[i].tanh(); // Activation function
1333        }
1334
1335        // Hidden to output
1336        let output_size = self.code.n * 3;
1337        let mut output = vec![0.0; output_size];
1338
1339        for i in 0..output_size {
1340            for j in 0..hidden_size {
1341                if i * hidden_size + j < self.weights[1].len() {
1342                    output[i] += hidden[j] * self.weights[1][i * hidden_size + j];
1343                }
1344            }
1345        }
1346
1347        output
1348    }
1349}
1350
1351impl SyndromeDecoder for MLDecoder {
1352    fn decode(&self, syndrome: &[bool]) -> QuantRS2Result<PauliString> {
1353        let prediction = self.predict(syndrome);
1354
1355        // Convert prediction to Pauli string
1356        let mut paulis = Vec::with_capacity(self.code.n);
1357
1358        for qubit in 0..self.code.n {
1359            let base_idx = qubit * 3;
1360            if base_idx + 2 < prediction.len() {
1361                let x_prob = prediction[base_idx];
1362                let y_prob = prediction[base_idx + 1];
1363                let z_prob = prediction[base_idx + 2];
1364
1365                // Choose Pauli with highest probability
1366                if x_prob > y_prob && x_prob > z_prob && x_prob > 0.5 {
1367                    paulis.push(Pauli::X);
1368                } else if y_prob > z_prob && y_prob > 0.5 {
1369                    paulis.push(Pauli::Y);
1370                } else if z_prob > 0.5 {
1371                    paulis.push(Pauli::Z);
1372                } else {
1373                    paulis.push(Pauli::I);
1374                }
1375            } else {
1376                paulis.push(Pauli::I);
1377            }
1378        }
1379
1380        Ok(PauliString::new(paulis))
1381    }
1382}
1383
1384/// Real-time error correction with hardware integration
1385/// This module provides interfaces and implementations for real-time quantum error correction
1386/// that can be integrated with quantum hardware control systems.
1387pub mod real_time {
1388    use super::*;
1389    use std::collections::VecDeque;
1390    use std::sync::{Arc, Mutex, RwLock};
1391    use std::thread;
1392    use std::time::{Duration, Instant};
1393
1394    /// Hardware interface trait for quantum error correction
1395    pub trait QuantumHardwareInterface: Send + Sync {
1396        /// Get syndrome measurements from hardware
1397        fn measure_syndromes(&self) -> QuantRS2Result<Vec<bool>>;
1398
1399        /// Apply error correction operations to hardware
1400        fn apply_correction(&self, correction: &PauliString) -> QuantRS2Result<()>;
1401
1402        /// Get hardware error rates and characterization data
1403        fn get_error_characteristics(&self) -> QuantRS2Result<HardwareErrorCharacteristics>;
1404
1405        /// Check if hardware is ready for error correction
1406        fn is_ready(&self) -> bool;
1407
1408        /// Get hardware latency statistics
1409        fn get_latency_stats(&self) -> QuantRS2Result<LatencyStats>;
1410    }
1411
1412    /// Hardware error characteristics for adaptive error correction
1413    #[derive(Debug, Clone)]
1414    pub struct HardwareErrorCharacteristics {
1415        /// Single-qubit error rates (T1, T2, gate errors)
1416        pub single_qubit_error_rates: Vec<f64>,
1417        /// Two-qubit gate error rates
1418        pub two_qubit_error_rates: Vec<f64>,
1419        /// Measurement error rates
1420        pub measurement_error_rates: Vec<f64>,
1421        /// Correlated error patterns
1422        pub correlated_errors: Vec<CorrelatedErrorPattern>,
1423        /// Error rate temporal variation
1424        pub temporal_variation: f64,
1425    }
1426
1427    /// Correlated error pattern for adaptive decoding
1428    #[derive(Debug, Clone)]
1429    pub struct CorrelatedErrorPattern {
1430        pub qubits: Vec<usize>,
1431        pub probability: f64,
1432        pub pauli_pattern: PauliString,
1433    }
1434
1435    /// Performance and latency statistics
1436    #[derive(Debug, Clone)]
1437    pub struct LatencyStats {
1438        pub syndrome_measurement_time: Duration,
1439        pub decoding_time: Duration,
1440        pub correction_application_time: Duration,
1441        pub total_cycle_time: Duration,
1442        pub throughput_hz: f64,
1443    }
1444
1445    /// Real-time syndrome stream processor
1446    pub struct SyndromeStreamProcessor {
1447        buffer: Arc<Mutex<VecDeque<SyndromePacket>>>,
1448        decoder: Arc<dyn SyndromeDecoder + Send + Sync>,
1449        hardware: Arc<dyn QuantumHardwareInterface>,
1450        performance_monitor: Arc<RwLock<PerformanceMonitor>>,
1451        config: RealTimeConfig,
1452    }
1453
1454    /// Syndrome packet with timing information
1455    #[derive(Debug, Clone)]
1456    pub struct SyndromePacket {
1457        pub syndrome: Vec<bool>,
1458        pub timestamp: Instant,
1459        pub sequence_number: u64,
1460        pub measurement_fidelity: f64,
1461    }
1462
1463    /// Real-time error correction configuration
1464    #[derive(Debug, Clone)]
1465    pub struct RealTimeConfig {
1466        pub max_latency: Duration,
1467        pub buffer_size: usize,
1468        pub parallel_workers: usize,
1469        pub adaptive_threshold: bool,
1470        pub hardware_feedback: bool,
1471        pub performance_logging: bool,
1472    }
1473
1474    impl Default for RealTimeConfig {
1475        fn default() -> Self {
1476            Self {
1477                max_latency: Duration::from_micros(100), // 100μs for fast correction
1478                buffer_size: 1000,
1479                parallel_workers: 4,
1480                adaptive_threshold: true,
1481                hardware_feedback: true,
1482                performance_logging: true,
1483            }
1484        }
1485    }
1486
1487    /// Performance monitoring for real-time error correction
1488    #[derive(Debug, Clone)]
1489    pub struct PerformanceMonitor {
1490        pub cycles_processed: u64,
1491        pub errors_corrected: u64,
1492        pub false_positives: u64,
1493        pub latency_histogram: Vec<Duration>,
1494        pub throughput_samples: VecDeque<f64>,
1495        pub start_time: Instant,
1496    }
1497
1498    impl PerformanceMonitor {
1499        pub fn new() -> Self {
1500            Self {
1501                cycles_processed: 0,
1502                errors_corrected: 0,
1503                false_positives: 0,
1504                latency_histogram: Vec::new(),
1505                throughput_samples: VecDeque::new(),
1506                start_time: Instant::now(),
1507            }
1508        }
1509
1510        pub fn record_cycle(&mut self, latency: Duration, error_corrected: bool) {
1511            self.cycles_processed += 1;
1512            if error_corrected {
1513                self.errors_corrected += 1;
1514            }
1515            self.latency_histogram.push(latency);
1516
1517            // Calculate current throughput
1518            let elapsed = self.start_time.elapsed();
1519            if elapsed.as_secs_f64() > 0.0 {
1520                let throughput = self.cycles_processed as f64 / elapsed.as_secs_f64();
1521                self.throughput_samples.push_back(throughput);
1522
1523                // Keep only recent samples
1524                if self.throughput_samples.len() > 100 {
1525                    self.throughput_samples.pop_front();
1526                }
1527            }
1528        }
1529
1530        pub fn average_latency(&self) -> Duration {
1531            if self.latency_histogram.is_empty() {
1532                return Duration::from_nanos(0);
1533            }
1534
1535            let total_nanos: u64 = self
1536                .latency_histogram
1537                .iter()
1538                .map(|d| d.as_nanos() as u64)
1539                .sum();
1540            Duration::from_nanos(total_nanos / self.latency_histogram.len() as u64)
1541        }
1542
1543        pub fn current_throughput(&self) -> f64 {
1544            self.throughput_samples.back().copied().unwrap_or(0.0)
1545        }
1546
1547        pub fn error_correction_rate(&self) -> f64 {
1548            if self.cycles_processed == 0 {
1549                0.0
1550            } else {
1551                self.errors_corrected as f64 / self.cycles_processed as f64
1552            }
1553        }
1554    }
1555
1556    impl SyndromeStreamProcessor {
1557        /// Create a new real-time syndrome stream processor
1558        pub fn new(
1559            decoder: Arc<dyn SyndromeDecoder + Send + Sync>,
1560            hardware: Arc<dyn QuantumHardwareInterface>,
1561            config: RealTimeConfig,
1562        ) -> Self {
1563            Self {
1564                buffer: Arc::new(Mutex::new(VecDeque::with_capacity(config.buffer_size))),
1565                decoder,
1566                hardware,
1567                performance_monitor: Arc::new(RwLock::new(PerformanceMonitor::new())),
1568                config,
1569            }
1570        }
1571
1572        /// Start real-time error correction processing
1573        pub fn start_processing(&self) -> QuantRS2Result<thread::JoinHandle<()>> {
1574            let buffer = Arc::clone(&self.buffer);
1575            let decoder = Arc::clone(&self.decoder);
1576            let hardware = Arc::clone(&self.hardware);
1577            let monitor = Arc::clone(&self.performance_monitor);
1578            let config = self.config.clone();
1579
1580            let handle = thread::spawn(move || {
1581                let mut sequence_number = 0u64;
1582
1583                loop {
1584                    let cycle_start = Instant::now();
1585
1586                    // Check if hardware is ready
1587                    if !hardware.is_ready() {
1588                        thread::sleep(Duration::from_micros(10));
1589                        continue;
1590                    }
1591
1592                    // Measure syndromes from hardware
1593                    match hardware.measure_syndromes() {
1594                        Ok(syndrome) => {
1595                            let packet = SyndromePacket {
1596                                syndrome: syndrome.clone(),
1597                                timestamp: Instant::now(),
1598                                sequence_number,
1599                                measurement_fidelity: 0.99, // Would be measured from hardware
1600                            };
1601
1602                            // Add to buffer
1603                            {
1604                                let mut buf = buffer.lock().expect("Syndrome buffer lock poisoned");
1605                                if buf.len() >= config.buffer_size {
1606                                    buf.pop_front(); // Remove oldest if buffer full
1607                                }
1608                                buf.push_back(packet);
1609                            }
1610
1611                            // Process syndrome if not all zeros (no error)
1612                            let has_error = syndrome.iter().any(|&x| x);
1613                            let mut error_corrected = false;
1614
1615                            if has_error {
1616                                match decoder.decode(&syndrome) {
1617                                    Ok(correction) => {
1618                                        match hardware.apply_correction(&correction) {
1619                                            Ok(()) => {
1620                                                error_corrected = true;
1621                                            }
1622                                            Err(e) => {
1623                                                eprintln!("Failed to apply correction: {e}");
1624                                            }
1625                                        }
1626                                    }
1627                                    Err(e) => {
1628                                        eprintln!("Decoding failed: {e}");
1629                                    }
1630                                }
1631                            }
1632
1633                            // Record performance metrics
1634                            let cycle_time = cycle_start.elapsed();
1635                            {
1636                                let mut mon =
1637                                    monitor.write().expect("Performance monitor lock poisoned");
1638                                mon.record_cycle(cycle_time, error_corrected);
1639                            }
1640
1641                            // Check latency constraint
1642                            if cycle_time > config.max_latency {
1643                                eprintln!("Warning: Error correction cycle exceeded max latency: {:?} > {:?}",
1644                                         cycle_time, config.max_latency);
1645                            }
1646
1647                            sequence_number += 1;
1648                        }
1649                        Err(e) => {
1650                            eprintln!("Failed to measure syndromes: {e}");
1651                            thread::sleep(Duration::from_micros(10));
1652                        }
1653                    }
1654
1655                    // Small sleep to prevent busy waiting
1656                    thread::sleep(Duration::from_micros(1));
1657                }
1658            });
1659
1660            Ok(handle)
1661        }
1662
1663        /// Get current performance statistics
1664        pub fn get_performance_stats(&self) -> PerformanceMonitor {
1665            (*self
1666                .performance_monitor
1667                .read()
1668                .expect("Performance monitor lock poisoned"))
1669            .clone()
1670        }
1671
1672        /// Get syndrome buffer status
1673        pub fn get_buffer_status(&self) -> (usize, usize) {
1674            let buffer = self.buffer.lock().expect("Syndrome buffer lock poisoned");
1675            (buffer.len(), self.config.buffer_size)
1676        }
1677    }
1678
1679    /// Adaptive threshold decoder that learns from hardware feedback
1680    pub struct AdaptiveThresholdDecoder {
1681        base_decoder: Arc<dyn SyndromeDecoder + Send + Sync>,
1682        error_characteristics: Arc<RwLock<HardwareErrorCharacteristics>>,
1683        learning_rate: f64,
1684        threshold_history: VecDeque<f64>,
1685    }
1686
1687    impl AdaptiveThresholdDecoder {
1688        pub fn new(
1689            base_decoder: Arc<dyn SyndromeDecoder + Send + Sync>,
1690            initial_characteristics: HardwareErrorCharacteristics,
1691        ) -> Self {
1692            Self {
1693                base_decoder,
1694                error_characteristics: Arc::new(RwLock::new(initial_characteristics)),
1695                learning_rate: 0.01,
1696                threshold_history: VecDeque::with_capacity(1000),
1697            }
1698        }
1699
1700        /// Update error characteristics based on hardware feedback
1701        pub fn update_characteristics(
1702            &mut self,
1703            new_characteristics: HardwareErrorCharacteristics,
1704        ) {
1705            *self
1706                .error_characteristics
1707                .write()
1708                .expect("Error characteristics lock poisoned") = new_characteristics;
1709        }
1710
1711        /// Adapt thresholds based on observed error patterns
1712        pub fn adapt_thresholds(&mut self, syndrome: &[bool], correction_success: bool) {
1713            let error_weight = syndrome.iter().filter(|&&x| x).count() as f64;
1714
1715            if correction_success {
1716                // Increase confidence in current threshold
1717                self.threshold_history.push_back(error_weight);
1718            } else {
1719                // Decrease threshold to be more aggressive
1720                self.threshold_history.push_back(error_weight * 0.8);
1721            }
1722
1723            if self.threshold_history.len() > 100 {
1724                self.threshold_history.pop_front();
1725            }
1726        }
1727
1728        /// Get current adaptive threshold
1729        pub fn current_threshold(&self) -> f64 {
1730            if self.threshold_history.is_empty() {
1731                return 1.0; // Default threshold
1732            }
1733
1734            let sum: f64 = self.threshold_history.iter().sum();
1735            sum / self.threshold_history.len() as f64
1736        }
1737    }
1738
1739    impl SyndromeDecoder for AdaptiveThresholdDecoder {
1740        fn decode(&self, syndrome: &[bool]) -> QuantRS2Result<PauliString> {
1741            let threshold = self.current_threshold();
1742            let error_weight = syndrome.iter().filter(|&&x| x).count() as f64;
1743
1744            // Use adaptive threshold to decide decoding strategy
1745            if error_weight > threshold {
1746                // High-confidence error: use more aggressive decoding
1747                self.base_decoder.decode(syndrome)
1748            } else {
1749                // Low-confidence: use conservative approach or no correction
1750                Ok(PauliString::new(vec![Pauli::I; syndrome.len()]))
1751            }
1752        }
1753    }
1754
1755    /// Parallel syndrome decoder for high-throughput error correction
1756    pub struct ParallelSyndromeDecoder {
1757        base_decoder: Arc<dyn SyndromeDecoder + Send + Sync>,
1758        worker_count: usize,
1759    }
1760
1761    impl ParallelSyndromeDecoder {
1762        pub fn new(
1763            base_decoder: Arc<dyn SyndromeDecoder + Send + Sync>,
1764            worker_count: usize,
1765        ) -> Self {
1766            Self {
1767                base_decoder,
1768                worker_count,
1769            }
1770        }
1771
1772        /// Decode multiple syndromes in parallel
1773        pub fn decode_batch(&self, syndromes: &[Vec<bool>]) -> QuantRS2Result<Vec<PauliString>> {
1774            let chunk_size = (syndromes.len() + self.worker_count - 1) / self.worker_count;
1775            let mut handles = Vec::new();
1776
1777            for chunk in syndromes.chunks(chunk_size) {
1778                let decoder = Arc::clone(&self.base_decoder);
1779                let chunk_data: Vec<Vec<bool>> = chunk.to_vec();
1780
1781                let handle = thread::spawn(move || {
1782                    let mut results = Vec::new();
1783                    for syndrome in chunk_data {
1784                        match decoder.decode(&syndrome) {
1785                            Ok(correction) => results.push(correction),
1786                            Err(_) => {
1787                                results.push(PauliString::new(vec![Pauli::I; syndrome.len()]));
1788                            }
1789                        }
1790                    }
1791                    results
1792                });
1793
1794                handles.push(handle);
1795            }
1796
1797            let mut all_results = Vec::new();
1798            for handle in handles {
1799                match handle.join() {
1800                    Ok(chunk_results) => all_results.extend(chunk_results),
1801                    Err(_) => {
1802                        return Err(QuantRS2Error::ComputationError(
1803                            "Parallel decoding failed".to_string(),
1804                        ))
1805                    }
1806                }
1807            }
1808
1809            Ok(all_results)
1810        }
1811    }
1812
1813    impl SyndromeDecoder for ParallelSyndromeDecoder {
1814        fn decode(&self, syndrome: &[bool]) -> QuantRS2Result<PauliString> {
1815            self.base_decoder.decode(syndrome)
1816        }
1817    }
1818
1819    /// Mock hardware interface for testing
1820    pub struct MockQuantumHardware {
1821        error_rate: f64,
1822        latency: Duration,
1823        syndrome_length: usize,
1824    }
1825
1826    impl MockQuantumHardware {
1827        pub const fn new(error_rate: f64, latency: Duration, syndrome_length: usize) -> Self {
1828            Self {
1829                error_rate,
1830                latency,
1831                syndrome_length,
1832            }
1833        }
1834    }
1835
1836    impl QuantumHardwareInterface for MockQuantumHardware {
1837        fn measure_syndromes(&self) -> QuantRS2Result<Vec<bool>> {
1838            thread::sleep(self.latency);
1839
1840            // Simulate random syndrome measurements
1841            use scirs2_core::random::prelude::*;
1842            let mut rng = thread_rng();
1843            let mut syndrome = vec![false; self.syndrome_length];
1844            for i in 0..self.syndrome_length {
1845                if rng.gen::<f64>() < self.error_rate {
1846                    syndrome[i] = true;
1847                }
1848            }
1849
1850            Ok(syndrome)
1851        }
1852
1853        fn apply_correction(&self, _correction: &PauliString) -> QuantRS2Result<()> {
1854            thread::sleep(self.latency / 2);
1855            Ok(())
1856        }
1857
1858        fn get_error_characteristics(&self) -> QuantRS2Result<HardwareErrorCharacteristics> {
1859            Ok(HardwareErrorCharacteristics {
1860                single_qubit_error_rates: vec![self.error_rate; self.syndrome_length],
1861                two_qubit_error_rates: vec![self.error_rate * 10.0; self.syndrome_length / 2],
1862                measurement_error_rates: vec![self.error_rate * 0.1; self.syndrome_length],
1863                correlated_errors: Vec::new(),
1864                temporal_variation: 0.01,
1865            })
1866        }
1867
1868        fn is_ready(&self) -> bool {
1869            true
1870        }
1871
1872        fn get_latency_stats(&self) -> QuantRS2Result<LatencyStats> {
1873            Ok(LatencyStats {
1874                syndrome_measurement_time: self.latency,
1875                decoding_time: Duration::from_micros(10),
1876                correction_application_time: self.latency / 2,
1877                total_cycle_time: self.latency + Duration::from_micros(10) + self.latency / 2,
1878                throughput_hz: 1.0 / self.latency.as_secs_f64().mul_add(1.5, 10e-6),
1879            })
1880        }
1881    }
1882}
1883
1884/// Logical gate synthesis for fault-tolerant computing
1885/// This module provides the ability to implement logical operations on encoded quantum states
1886/// without decoding them first, which is essential for fault-tolerant quantum computation.
1887pub mod logical_gates {
1888    use super::*;
1889
1890    /// Logical gate operation that can be applied to encoded quantum states
1891    #[derive(Debug, Clone)]
1892    pub struct LogicalGateOp {
1893        /// The stabilizer code this logical gate operates on
1894        pub code: StabilizerCode,
1895        /// Physical gate operations that implement the logical gate
1896        pub physical_operations: Vec<PhysicalGateSequence>,
1897        /// Which logical qubit(s) this gate acts on
1898        pub logical_qubits: Vec<usize>,
1899        /// Error propagation analysis
1900        pub error_propagation: ErrorPropagationAnalysis,
1901    }
1902
1903    /// Sequence of physical gates that implement part of a logical gate
1904    #[derive(Debug, Clone)]
1905    pub struct PhysicalGateSequence {
1906        /// Target physical qubits
1907        pub target_qubits: Vec<usize>,
1908        /// Pauli operators to apply
1909        pub pauli_sequence: Vec<PauliString>,
1910        /// Timing constraints (if any)
1911        pub timing_constraints: Option<TimingConstraints>,
1912        /// Error correction rounds needed
1913        pub error_correction_rounds: usize,
1914    }
1915
1916    /// Analysis of how errors propagate through logical gates
1917    #[derive(Debug, Clone)]
1918    pub struct ErrorPropagationAnalysis {
1919        /// How single-qubit errors propagate
1920        pub single_qubit_propagation: Vec<ErrorPropagationPath>,
1921        /// How two-qubit errors propagate
1922        pub two_qubit_propagation: Vec<ErrorPropagationPath>,
1923        /// Maximum error weight after gate application
1924        pub max_error_weight: usize,
1925        /// Fault-tolerance threshold
1926        pub fault_tolerance_threshold: f64,
1927    }
1928
1929    /// Path of error propagation through a logical gate
1930    #[derive(Debug, Clone)]
1931    pub struct ErrorPropagationPath {
1932        /// Initial error location
1933        pub initial_error: PauliString,
1934        /// Final error after gate application
1935        pub final_error: PauliString,
1936        /// Probability of this propagation path
1937        pub probability: f64,
1938        /// Whether this path can be corrected
1939        pub correctable: bool,
1940    }
1941
1942    /// Timing constraints for fault-tolerant gate implementation
1943    #[derive(Debug, Clone)]
1944    pub struct TimingConstraints {
1945        /// Maximum time between operations
1946        pub max_operation_time: std::time::Duration,
1947        /// Required synchronization points
1948        pub sync_points: Vec<usize>,
1949        /// Parallel operation groups
1950        pub parallel_groups: Vec<Vec<usize>>,
1951    }
1952
1953    /// Logical gate synthesis engine
1954    pub struct LogicalGateSynthesizer {
1955        /// Available error correction codes
1956        codes: Vec<StabilizerCode>,
1957        /// Synthesis strategies
1958        strategies: Vec<SynthesisStrategy>,
1959        /// Error threshold for fault tolerance
1960        error_threshold: f64,
1961    }
1962
1963    /// Strategy for synthesizing logical gates
1964    #[derive(Debug, Clone)]
1965    pub enum SynthesisStrategy {
1966        /// Transversal gates (apply same gate to all qubits)
1967        Transversal,
1968        /// Magic state distillation and injection
1969        MagicStateDistillation,
1970        /// Lattice surgery operations
1971        LatticeSurgery,
1972        /// Code deformation
1973        CodeDeformation,
1974        /// Braiding operations (for topological codes)
1975        Braiding,
1976    }
1977
1978    impl LogicalGateSynthesizer {
1979        /// Create a new logical gate synthesizer
1980        pub fn new(error_threshold: f64) -> Self {
1981            Self {
1982                codes: Vec::new(),
1983                strategies: vec![
1984                    SynthesisStrategy::Transversal,
1985                    SynthesisStrategy::MagicStateDistillation,
1986                    SynthesisStrategy::LatticeSurgery,
1987                ],
1988                error_threshold,
1989            }
1990        }
1991
1992        /// Add an error correction code to the synthesizer
1993        pub fn add_code(&mut self, code: StabilizerCode) {
1994            self.codes.push(code);
1995        }
1996
1997        /// Synthesize a logical Pauli-X gate
1998        pub fn synthesize_logical_x(
1999            &self,
2000            code: &StabilizerCode,
2001            logical_qubit: usize,
2002        ) -> QuantRS2Result<LogicalGateOp> {
2003            if logical_qubit >= code.k {
2004                return Err(QuantRS2Error::InvalidInput(format!(
2005                    "Logical qubit {} exceeds code dimension {}",
2006                    logical_qubit, code.k
2007                )));
2008            }
2009
2010            // For most stabilizer codes, logical X can be implemented transversally
2011            let logical_x_operator = &code.logical_x[logical_qubit];
2012
2013            let physical_ops = vec![PhysicalGateSequence {
2014                target_qubits: (0..code.n).collect(),
2015                pauli_sequence: vec![logical_x_operator.clone()],
2016                timing_constraints: None,
2017                error_correction_rounds: 1,
2018            }];
2019
2020            let error_analysis = self.analyze_error_propagation(code, &physical_ops)?;
2021
2022            Ok(LogicalGateOp {
2023                code: code.clone(),
2024                physical_operations: physical_ops,
2025                logical_qubits: vec![logical_qubit],
2026                error_propagation: error_analysis,
2027            })
2028        }
2029
2030        /// Synthesize a logical Pauli-Z gate
2031        pub fn synthesize_logical_z(
2032            &self,
2033            code: &StabilizerCode,
2034            logical_qubit: usize,
2035        ) -> QuantRS2Result<LogicalGateOp> {
2036            if logical_qubit >= code.k {
2037                return Err(QuantRS2Error::InvalidInput(format!(
2038                    "Logical qubit {} exceeds code dimension {}",
2039                    logical_qubit, code.k
2040                )));
2041            }
2042
2043            let logical_z_operator = &code.logical_z[logical_qubit];
2044
2045            let physical_ops = vec![PhysicalGateSequence {
2046                target_qubits: (0..code.n).collect(),
2047                pauli_sequence: vec![logical_z_operator.clone()],
2048                timing_constraints: None,
2049                error_correction_rounds: 1,
2050            }];
2051
2052            let error_analysis = self.analyze_error_propagation(code, &physical_ops)?;
2053
2054            Ok(LogicalGateOp {
2055                code: code.clone(),
2056                physical_operations: physical_ops,
2057                logical_qubits: vec![logical_qubit],
2058                error_propagation: error_analysis,
2059            })
2060        }
2061
2062        /// Synthesize a logical Hadamard gate
2063        pub fn synthesize_logical_h(
2064            &self,
2065            code: &StabilizerCode,
2066            logical_qubit: usize,
2067        ) -> QuantRS2Result<LogicalGateOp> {
2068            if logical_qubit >= code.k {
2069                return Err(QuantRS2Error::InvalidInput(format!(
2070                    "Logical qubit {} exceeds code dimension {}",
2071                    logical_qubit, code.k
2072                )));
2073            }
2074
2075            // Hadamard can often be implemented transversally
2076            // H|x⟩ = |+⟩ if x=0, |-⟩ if x=1, and H swaps X and Z operators
2077            let physical_ops = vec![PhysicalGateSequence {
2078                target_qubits: (0..code.n).collect(),
2079                pauli_sequence: self.generate_hadamard_sequence(code, logical_qubit)?,
2080                timing_constraints: Some(TimingConstraints {
2081                    max_operation_time: std::time::Duration::from_micros(100),
2082                    sync_points: vec![code.n / 2],
2083                    parallel_groups: vec![(0..code.n).collect()],
2084                }),
2085                error_correction_rounds: 2, // Need more rounds for non-Pauli gates
2086            }];
2087
2088            let error_analysis = self.analyze_error_propagation(code, &physical_ops)?;
2089
2090            Ok(LogicalGateOp {
2091                code: code.clone(),
2092                physical_operations: physical_ops,
2093                logical_qubits: vec![logical_qubit],
2094                error_propagation: error_analysis,
2095            })
2096        }
2097
2098        /// Synthesize a logical CNOT gate
2099        pub fn synthesize_logical_cnot(
2100            &self,
2101            code: &StabilizerCode,
2102            control_qubit: usize,
2103            target_qubit: usize,
2104        ) -> QuantRS2Result<LogicalGateOp> {
2105            if control_qubit >= code.k || target_qubit >= code.k {
2106                return Err(QuantRS2Error::InvalidInput(
2107                    "Control or target qubit exceeds code dimension".to_string(),
2108                ));
2109            }
2110
2111            if control_qubit == target_qubit {
2112                return Err(QuantRS2Error::InvalidInput(
2113                    "Control and target qubits must be different".to_string(),
2114                ));
2115            }
2116
2117            // CNOT can be implemented transversally for many codes
2118            let cnot_sequence = self.generate_cnot_sequence(code, control_qubit, target_qubit)?;
2119
2120            let physical_ops = vec![PhysicalGateSequence {
2121                target_qubits: (0..code.n).collect(),
2122                pauli_sequence: cnot_sequence,
2123                timing_constraints: Some(TimingConstraints {
2124                    max_operation_time: std::time::Duration::from_micros(200),
2125                    sync_points: vec![],
2126                    parallel_groups: vec![], // CNOT requires sequential operations
2127                }),
2128                error_correction_rounds: 2,
2129            }];
2130
2131            let error_analysis = self.analyze_error_propagation(code, &physical_ops)?;
2132
2133            Ok(LogicalGateOp {
2134                code: code.clone(),
2135                physical_operations: physical_ops,
2136                logical_qubits: vec![control_qubit, target_qubit],
2137                error_propagation: error_analysis,
2138            })
2139        }
2140
2141        /// Synthesize a T gate using magic state distillation
2142        pub fn synthesize_logical_t(
2143            &self,
2144            code: &StabilizerCode,
2145            logical_qubit: usize,
2146        ) -> QuantRS2Result<LogicalGateOp> {
2147            if logical_qubit >= code.k {
2148                return Err(QuantRS2Error::InvalidInput(format!(
2149                    "Logical qubit {} exceeds code dimension {}",
2150                    logical_qubit, code.k
2151                )));
2152            }
2153
2154            // T gate requires magic state distillation for fault-tolerant implementation
2155            let magic_state_prep = self.prepare_magic_state(code)?;
2156            let injection_sequence =
2157                self.inject_magic_state(code, logical_qubit, &magic_state_prep)?;
2158
2159            let physical_ops = vec![magic_state_prep, injection_sequence];
2160
2161            let error_analysis = self.analyze_error_propagation(code, &physical_ops)?;
2162
2163            Ok(LogicalGateOp {
2164                code: code.clone(),
2165                physical_operations: physical_ops,
2166                logical_qubits: vec![logical_qubit],
2167                error_propagation: error_analysis,
2168            })
2169        }
2170
2171        /// Generate Hadamard gate sequence for a logical qubit
2172        fn generate_hadamard_sequence(
2173            &self,
2174            code: &StabilizerCode,
2175            _logical_qubit: usize,
2176        ) -> QuantRS2Result<Vec<PauliString>> {
2177            // For transversal Hadamard, apply H to each physical qubit
2178            // This swaps X and Z logical operators
2179            let mut sequence = Vec::new();
2180
2181            // Create a Pauli string that represents applying H to all qubits
2182            // Since H|0⟩ = |+⟩ = (|0⟩ + |1⟩)/√2 and H|1⟩ = |-⟩ = (|0⟩ - |1⟩)/√2
2183            // We represent this as identity for simplicity in this implementation
2184            sequence.push(PauliString::new(vec![Pauli::I; code.n]));
2185
2186            Ok(sequence)
2187        }
2188
2189        /// Generate CNOT gate sequence for logical qubits
2190        fn generate_cnot_sequence(
2191            &self,
2192            code: &StabilizerCode,
2193            _control: usize,
2194            _target: usize,
2195        ) -> QuantRS2Result<Vec<PauliString>> {
2196            // For transversal CNOT, apply CNOT between corresponding physical qubits
2197            // This is a simplified implementation
2198            let mut sequence = Vec::new();
2199
2200            // Represent CNOT as identity for this implementation
2201            sequence.push(PauliString::new(vec![Pauli::I; code.n]));
2202
2203            Ok(sequence)
2204        }
2205
2206        /// Prepare magic state for T gate implementation
2207        fn prepare_magic_state(
2208            &self,
2209            code: &StabilizerCode,
2210        ) -> QuantRS2Result<PhysicalGateSequence> {
2211            // Magic state |T⟩ = (|0⟩ + e^(iπ/4)|1⟩)/√2 for T gate
2212            // This is a simplified implementation
2213            Ok(PhysicalGateSequence {
2214                target_qubits: (0..code.n).collect(),
2215                pauli_sequence: vec![PauliString::new(vec![Pauli::I; code.n])],
2216                timing_constraints: Some(TimingConstraints {
2217                    max_operation_time: std::time::Duration::from_millis(1),
2218                    sync_points: vec![],
2219                    parallel_groups: vec![(0..code.n).collect()],
2220                }),
2221                error_correction_rounds: 5, // Magic state prep requires many rounds
2222            })
2223        }
2224
2225        /// Inject magic state to implement T gate
2226        fn inject_magic_state(
2227            &self,
2228            code: &StabilizerCode,
2229            _logical_qubit: usize,
2230            _magic_state: &PhysicalGateSequence,
2231        ) -> QuantRS2Result<PhysicalGateSequence> {
2232            // Inject magic state using teleportation-based approach
2233            Ok(PhysicalGateSequence {
2234                target_qubits: (0..code.n).collect(),
2235                pauli_sequence: vec![PauliString::new(vec![Pauli::I; code.n])],
2236                timing_constraints: Some(TimingConstraints {
2237                    max_operation_time: std::time::Duration::from_micros(500),
2238                    sync_points: vec![code.n / 2],
2239                    parallel_groups: vec![],
2240                }),
2241                error_correction_rounds: 3,
2242            })
2243        }
2244
2245        /// Analyze error propagation through logical gate operations
2246        fn analyze_error_propagation(
2247            &self,
2248            code: &StabilizerCode,
2249            physical_ops: &[PhysicalGateSequence],
2250        ) -> QuantRS2Result<ErrorPropagationAnalysis> {
2251            let mut single_qubit_propagation = Vec::new();
2252            let mut two_qubit_propagation = Vec::new();
2253            let mut max_error_weight = 0;
2254
2255            // Analyze single-qubit errors
2256            for i in 0..code.n {
2257                for pauli in [Pauli::X, Pauli::Y, Pauli::Z] {
2258                    let mut initial_error = vec![Pauli::I; code.n];
2259                    initial_error[i] = pauli;
2260                    let initial_pauli_string = PauliString::new(initial_error);
2261
2262                    // Simulate error propagation through the logical gate
2263                    let final_error = self.propagate_error(&initial_pauli_string, physical_ops)?;
2264                    let error_weight = final_error.weight();
2265                    max_error_weight = max_error_weight.max(error_weight);
2266
2267                    // Check if error is correctable
2268                    let correctable = self.is_error_correctable(code, &final_error)?;
2269
2270                    single_qubit_propagation.push(ErrorPropagationPath {
2271                        initial_error: initial_pauli_string,
2272                        final_error,
2273                        probability: 1.0 / (3.0 * code.n as f64), // Uniform for now
2274                        correctable,
2275                    });
2276                }
2277            }
2278
2279            // Analyze two-qubit errors (simplified)
2280            for i in 0..code.n.min(5) {
2281                // Limit to first 5 for performance
2282                for j in (i + 1)..code.n.min(5) {
2283                    let mut initial_error = vec![Pauli::I; code.n];
2284                    initial_error[i] = Pauli::X;
2285                    initial_error[j] = Pauli::X;
2286                    let initial_pauli_string = PauliString::new(initial_error);
2287
2288                    let final_error = self.propagate_error(&initial_pauli_string, physical_ops)?;
2289                    let error_weight = final_error.weight();
2290                    max_error_weight = max_error_weight.max(error_weight);
2291
2292                    let correctable = self.is_error_correctable(code, &final_error)?;
2293
2294                    two_qubit_propagation.push(ErrorPropagationPath {
2295                        initial_error: initial_pauli_string,
2296                        final_error,
2297                        probability: 1.0 / (code.n * (code.n - 1)) as f64,
2298                        correctable,
2299                    });
2300                }
2301            }
2302
2303            Ok(ErrorPropagationAnalysis {
2304                single_qubit_propagation,
2305                two_qubit_propagation,
2306                max_error_weight,
2307                fault_tolerance_threshold: self.error_threshold,
2308            })
2309        }
2310
2311        /// Propagate an error through physical gate operations
2312        fn propagate_error(
2313            &self,
2314            error: &PauliString,
2315            _physical_ops: &[PhysicalGateSequence],
2316        ) -> QuantRS2Result<PauliString> {
2317            // Simplified error propagation - in reality this would track
2318            // how each gate operation transforms the error
2319            Ok(error.clone())
2320        }
2321
2322        /// Check if an error is correctable by the code
2323        fn is_error_correctable(
2324            &self,
2325            code: &StabilizerCode,
2326            error: &PauliString,
2327        ) -> QuantRS2Result<bool> {
2328            // An error is correctable if its weight is less than (d+1)/2
2329            // where d is the minimum distance of the code
2330            Ok(error.weight() <= (code.d + 1) / 2)
2331        }
2332    }
2333
2334    /// Logical circuit synthesis for fault-tolerant quantum computing
2335    pub struct LogicalCircuitSynthesizer {
2336        gate_synthesizer: LogicalGateSynthesizer,
2337        optimization_passes: Vec<OptimizationPass>,
2338    }
2339
2340    /// Optimization pass for logical circuits
2341    #[derive(Debug, Clone)]
2342    pub enum OptimizationPass {
2343        /// Combine adjacent Pauli gates
2344        PauliOptimization,
2345        /// Optimize error correction rounds
2346        ErrorCorrectionOptimization,
2347        /// Parallelize commuting operations
2348        ParallelizationOptimization,
2349        /// Reduce magic state usage
2350        MagicStateOptimization,
2351    }
2352
2353    impl LogicalCircuitSynthesizer {
2354        pub fn new(error_threshold: f64) -> Self {
2355            Self {
2356                gate_synthesizer: LogicalGateSynthesizer::new(error_threshold),
2357                optimization_passes: vec![
2358                    OptimizationPass::PauliOptimization,
2359                    OptimizationPass::ErrorCorrectionOptimization,
2360                    OptimizationPass::ParallelizationOptimization,
2361                    OptimizationPass::MagicStateOptimization,
2362                ],
2363            }
2364        }
2365
2366        /// Add a code to the synthesizer
2367        pub fn add_code(&mut self, code: StabilizerCode) {
2368            self.gate_synthesizer.add_code(code);
2369        }
2370
2371        /// Synthesize a logical circuit from a sequence of gate names
2372        pub fn synthesize_circuit(
2373            &self,
2374            code: &StabilizerCode,
2375            gate_sequence: &[(&str, Vec<usize>)], // (gate_name, target_qubits)
2376        ) -> QuantRS2Result<Vec<LogicalGateOp>> {
2377            let mut logical_gates = Vec::new();
2378
2379            for (gate_name, targets) in gate_sequence {
2380                match gate_name.to_lowercase().as_str() {
2381                    "x" | "pauli_x" => {
2382                        if targets.len() != 1 {
2383                            return Err(QuantRS2Error::InvalidInput(
2384                                "X gate requires exactly one target".to_string(),
2385                            ));
2386                        }
2387                        logical_gates.push(
2388                            self.gate_synthesizer
2389                                .synthesize_logical_x(code, targets[0])?,
2390                        );
2391                    }
2392                    "z" | "pauli_z" => {
2393                        if targets.len() != 1 {
2394                            return Err(QuantRS2Error::InvalidInput(
2395                                "Z gate requires exactly one target".to_string(),
2396                            ));
2397                        }
2398                        logical_gates.push(
2399                            self.gate_synthesizer
2400                                .synthesize_logical_z(code, targets[0])?,
2401                        );
2402                    }
2403                    "h" | "hadamard" => {
2404                        if targets.len() != 1 {
2405                            return Err(QuantRS2Error::InvalidInput(
2406                                "H gate requires exactly one target".to_string(),
2407                            ));
2408                        }
2409                        logical_gates.push(
2410                            self.gate_synthesizer
2411                                .synthesize_logical_h(code, targets[0])?,
2412                        );
2413                    }
2414                    "cnot" | "cx" => {
2415                        if targets.len() != 2 {
2416                            return Err(QuantRS2Error::InvalidInput(
2417                                "CNOT gate requires exactly two targets".to_string(),
2418                            ));
2419                        }
2420                        logical_gates.push(
2421                            self.gate_synthesizer
2422                                .synthesize_logical_cnot(code, targets[0], targets[1])?,
2423                        );
2424                    }
2425                    "t" => {
2426                        if targets.len() != 1 {
2427                            return Err(QuantRS2Error::InvalidInput(
2428                                "T gate requires exactly one target".to_string(),
2429                            ));
2430                        }
2431                        logical_gates.push(
2432                            self.gate_synthesizer
2433                                .synthesize_logical_t(code, targets[0])?,
2434                        );
2435                    }
2436                    _ => {
2437                        return Err(QuantRS2Error::UnsupportedOperation(format!(
2438                            "Unsupported logical gate: {gate_name}"
2439                        )));
2440                    }
2441                }
2442            }
2443
2444            // Apply optimization passes
2445            self.optimize_circuit(logical_gates)
2446        }
2447
2448        /// Apply optimization passes to the logical circuit
2449        fn optimize_circuit(
2450            &self,
2451            mut circuit: Vec<LogicalGateOp>,
2452        ) -> QuantRS2Result<Vec<LogicalGateOp>> {
2453            for pass in &self.optimization_passes {
2454                circuit = self.apply_optimization_pass(circuit, pass)?;
2455            }
2456            Ok(circuit)
2457        }
2458
2459        /// Apply a specific optimization pass
2460        const fn apply_optimization_pass(
2461            &self,
2462            circuit: Vec<LogicalGateOp>,
2463            pass: &OptimizationPass,
2464        ) -> QuantRS2Result<Vec<LogicalGateOp>> {
2465            match pass {
2466                OptimizationPass::PauliOptimization => self.optimize_pauli_gates(circuit),
2467                OptimizationPass::ErrorCorrectionOptimization => {
2468                    self.optimize_error_correction(circuit)
2469                }
2470                OptimizationPass::ParallelizationOptimization => {
2471                    self.optimize_parallelization(circuit)
2472                }
2473                OptimizationPass::MagicStateOptimization => self.optimize_magic_states(circuit),
2474            }
2475        }
2476
2477        /// Optimize Pauli gate sequences
2478        const fn optimize_pauli_gates(
2479            &self,
2480            circuit: Vec<LogicalGateOp>,
2481        ) -> QuantRS2Result<Vec<LogicalGateOp>> {
2482            // Combine adjacent Pauli gates that act on the same logical qubits
2483            Ok(circuit) // Simplified implementation
2484        }
2485
2486        /// Optimize error correction rounds
2487        const fn optimize_error_correction(
2488            &self,
2489            circuit: Vec<LogicalGateOp>,
2490        ) -> QuantRS2Result<Vec<LogicalGateOp>> {
2491            // Reduce redundant error correction rounds
2492            Ok(circuit) // Simplified implementation
2493        }
2494
2495        /// Optimize parallelization of commuting operations
2496        const fn optimize_parallelization(
2497            &self,
2498            circuit: Vec<LogicalGateOp>,
2499        ) -> QuantRS2Result<Vec<LogicalGateOp>> {
2500            // Identify and parallelize commuting gates
2501            Ok(circuit) // Simplified implementation
2502        }
2503
2504        /// Optimize magic state usage
2505        const fn optimize_magic_states(
2506            &self,
2507            circuit: Vec<LogicalGateOp>,
2508        ) -> QuantRS2Result<Vec<LogicalGateOp>> {
2509            // Reduce number of magic states required
2510            Ok(circuit) // Simplified implementation
2511        }
2512
2513        /// Estimate resource requirements for the logical circuit
2514        pub fn estimate_resources(&self, circuit: &[LogicalGateOp]) -> LogicalCircuitResources {
2515            let mut total_physical_operations = 0;
2516            let mut total_error_correction_rounds = 0;
2517            let mut max_parallelism = 0;
2518            let mut magic_states_required = 0;
2519
2520            for gate in circuit {
2521                total_physical_operations += gate.physical_operations.len();
2522                for op in &gate.physical_operations {
2523                    total_error_correction_rounds += op.error_correction_rounds;
2524                    if let Some(constraints) = &op.timing_constraints {
2525                        max_parallelism = max_parallelism.max(constraints.parallel_groups.len());
2526                    }
2527                }
2528
2529                // Count T gates which require magic states
2530                if gate.logical_qubits.len() == 1 {
2531                    // This is a heuristic - in practice we'd check the gate type
2532                    magic_states_required += 1;
2533                }
2534            }
2535
2536            LogicalCircuitResources {
2537                total_physical_operations,
2538                total_error_correction_rounds,
2539                max_parallelism,
2540                magic_states_required,
2541                estimated_depth: circuit.len(),
2542                estimated_time: std::time::Duration::from_millis(
2543                    (total_error_correction_rounds * 10) as u64,
2544                ),
2545            }
2546        }
2547    }
2548
2549    /// Resource requirements for a logical circuit
2550    #[derive(Debug, Clone)]
2551    pub struct LogicalCircuitResources {
2552        pub total_physical_operations: usize,
2553        pub total_error_correction_rounds: usize,
2554        pub max_parallelism: usize,
2555        pub magic_states_required: usize,
2556        pub estimated_depth: usize,
2557        pub estimated_time: std::time::Duration,
2558    }
2559}
2560
2561/// Noise-adaptive error correction threshold estimation
2562/// This module provides dynamic adjustment of error correction thresholds based on
2563/// observed noise characteristics and environmental conditions for optimal performance.
2564pub mod adaptive_threshold {
2565    use super::*;
2566    use std::collections::{HashMap, VecDeque};
2567    use std::time::{Duration, Instant};
2568
2569    /// Adaptive threshold estimator for error correction
2570    pub struct AdaptiveThresholdEstimator {
2571        /// Historical error pattern data
2572        error_history: VecDeque<ErrorObservation>,
2573        /// Current noise model parameters
2574        noise_model: NoiseModel,
2575        /// Threshold estimation algorithm
2576        estimation_algorithm: ThresholdEstimationAlgorithm,
2577        /// Performance metrics
2578        performance_tracker: PerformanceTracker,
2579        /// Configuration parameters
2580        config: AdaptiveConfig,
2581    }
2582
2583    /// Observation of an error and correction attempt
2584    #[derive(Debug, Clone)]
2585    pub struct ErrorObservation {
2586        /// Syndrome measured
2587        pub syndrome: Vec<bool>,
2588        /// Correction applied
2589        pub correction: PauliString,
2590        /// Whether correction was successful
2591        pub success: bool,
2592        /// Measured error rate at this time
2593        pub observed_error_rate: f64,
2594        /// Timestamp of observation
2595        pub timestamp: Instant,
2596        /// Environmental conditions
2597        pub environment: EnvironmentalConditions,
2598    }
2599
2600    /// Environmental conditions affecting error rates
2601    #[derive(Debug, Clone)]
2602    pub struct EnvironmentalConditions {
2603        /// Temperature in Kelvin
2604        pub temperature: f64,
2605        /// Magnetic field strength in Tesla
2606        pub magnetic_field: f64,
2607        /// Vibration level (arbitrary units)
2608        pub vibration_level: f64,
2609        /// Electromagnetic interference level
2610        pub emi_level: f64,
2611        /// Device uptime in seconds
2612        pub uptime: f64,
2613    }
2614
2615    /// Noise model for quantum errors
2616    #[derive(Debug, Clone)]
2617    pub struct NoiseModel {
2618        /// Single-qubit error rates by qubit and error type
2619        pub single_qubit_rates: HashMap<(usize, Pauli), f64>,
2620        /// Two-qubit correlated error rates
2621        pub correlated_rates: HashMap<(usize, usize), f64>,
2622        /// Temporal correlation in errors
2623        pub temporal_correlation: f64,
2624        /// Environmental sensitivity coefficients
2625        pub environment_sensitivity: EnvironmentSensitivity,
2626        /// Model confidence (0.0 to 1.0)
2627        pub confidence: f64,
2628    }
2629
2630    /// Sensitivity to environmental factors
2631    #[derive(Debug, Clone)]
2632    pub struct EnvironmentSensitivity {
2633        /// Temperature coefficient (per Kelvin)
2634        pub temperature_coeff: f64,
2635        /// Magnetic field coefficient (per Tesla)
2636        pub magnetic_field_coeff: f64,
2637        /// Vibration coefficient
2638        pub vibration_coeff: f64,
2639        /// EMI coefficient
2640        pub emi_coeff: f64,
2641        /// Drift coefficient (per second)
2642        pub drift_coeff: f64,
2643    }
2644
2645    /// Algorithm for threshold estimation
2646    #[derive(Debug, Clone)]
2647    pub enum ThresholdEstimationAlgorithm {
2648        /// Bayesian inference with prior knowledge
2649        Bayesian {
2650            prior_strength: f64,
2651            update_rate: f64,
2652        },
2653        /// Machine learning based prediction
2654        MachineLearning {
2655            model_type: MLModelType,
2656            training_window: usize,
2657        },
2658        /// Kalman filter for dynamic estimation
2659        KalmanFilter {
2660            process_noise: f64,
2661            measurement_noise: f64,
2662        },
2663        /// Exponential moving average
2664        ExponentialAverage { alpha: f64 },
2665    }
2666
2667    /// Machine learning model types
2668    #[derive(Debug, Clone)]
2669    pub enum MLModelType {
2670        LinearRegression,
2671        RandomForest,
2672        NeuralNetwork { hidden_layers: Vec<usize> },
2673        SupportVectorMachine,
2674    }
2675
2676    /// Performance tracking for adaptive threshold
2677    #[derive(Debug, Clone)]
2678    pub struct PerformanceTracker {
2679        /// Number of successful corrections
2680        pub successful_corrections: u64,
2681        /// Number of failed corrections
2682        pub failed_corrections: u64,
2683        /// Number of false positives (unnecessary corrections)
2684        pub false_positives: u64,
2685        /// Number of false negatives (missed errors)
2686        pub false_negatives: u64,
2687        /// Average correction latency
2688        pub average_latency: Duration,
2689        /// Current threshold accuracy
2690        pub threshold_accuracy: f64,
2691    }
2692
2693    /// Configuration for adaptive threshold estimation
2694    #[derive(Debug, Clone)]
2695    pub struct AdaptiveConfig {
2696        /// Maximum history size
2697        pub max_history_size: usize,
2698        /// Minimum observations before adaptation
2699        pub min_observations: usize,
2700        /// Update frequency
2701        pub update_frequency: Duration,
2702        /// Confidence threshold for model updates
2703        pub confidence_threshold: f64,
2704        /// Environmental monitoring enabled
2705        pub environmental_monitoring: bool,
2706        /// Real-time adaptation enabled
2707        pub real_time_adaptation: bool,
2708    }
2709
2710    /// Threshold recommendation result
2711    #[derive(Debug, Clone)]
2712    pub struct ThresholdRecommendation {
2713        /// Recommended threshold value
2714        pub threshold: f64,
2715        /// Confidence in recommendation (0.0 to 1.0)
2716        pub confidence: f64,
2717        /// Predicted error rate
2718        pub predicted_error_rate: f64,
2719        /// Quality of recommendation (0.0 to 1.0)
2720        pub recommendation_quality: f64,
2721        /// Environmental impact assessment
2722        pub environmental_impact: f64,
2723    }
2724
2725    impl Default for AdaptiveConfig {
2726        fn default() -> Self {
2727            Self {
2728                max_history_size: 10000,
2729                min_observations: 100,
2730                update_frequency: Duration::from_secs(30),
2731                confidence_threshold: 0.8,
2732                environmental_monitoring: true,
2733                real_time_adaptation: true,
2734            }
2735        }
2736    }
2737
2738    impl Default for EnvironmentalConditions {
2739        fn default() -> Self {
2740            Self {
2741                temperature: 300.0, // Room temperature in Kelvin
2742                magnetic_field: 0.0,
2743                vibration_level: 0.0,
2744                emi_level: 0.0,
2745                uptime: 0.0,
2746            }
2747        }
2748    }
2749
2750    impl Default for EnvironmentSensitivity {
2751        fn default() -> Self {
2752            Self {
2753                temperature_coeff: 1e-5,
2754                magnetic_field_coeff: 1e-3,
2755                vibration_coeff: 1e-4,
2756                emi_coeff: 1e-4,
2757                drift_coeff: 1e-7,
2758            }
2759        }
2760    }
2761
2762    impl Default for NoiseModel {
2763        fn default() -> Self {
2764            Self {
2765                single_qubit_rates: HashMap::new(),
2766                correlated_rates: HashMap::new(),
2767                temporal_correlation: 0.1,
2768                environment_sensitivity: EnvironmentSensitivity::default(),
2769                confidence: 0.5,
2770            }
2771        }
2772    }
2773
2774    impl PerformanceTracker {
2775        pub const fn new() -> Self {
2776            Self {
2777                successful_corrections: 0,
2778                failed_corrections: 0,
2779                false_positives: 0,
2780                false_negatives: 0,
2781                average_latency: Duration::from_nanos(0),
2782                threshold_accuracy: 0.0,
2783            }
2784        }
2785
2786        pub fn precision(&self) -> f64 {
2787            let total_positive = self.successful_corrections + self.false_positives;
2788            if total_positive == 0 {
2789                1.0
2790            } else {
2791                self.successful_corrections as f64 / total_positive as f64
2792            }
2793        }
2794
2795        pub fn recall(&self) -> f64 {
2796            let total_actual_positive = self.successful_corrections + self.false_negatives;
2797            if total_actual_positive == 0 {
2798                1.0
2799            } else {
2800                self.successful_corrections as f64 / total_actual_positive as f64
2801            }
2802        }
2803
2804        pub fn f1_score(&self) -> f64 {
2805            let p = self.precision();
2806            let r = self.recall();
2807            if p + r == 0.0 {
2808                0.0
2809            } else {
2810                2.0 * p * r / (p + r)
2811            }
2812        }
2813    }
2814
2815    impl AdaptiveThresholdEstimator {
2816        /// Create a new adaptive threshold estimator
2817        pub fn new(
2818            initial_noise_model: NoiseModel,
2819            algorithm: ThresholdEstimationAlgorithm,
2820            config: AdaptiveConfig,
2821        ) -> Self {
2822            Self {
2823                error_history: VecDeque::with_capacity(config.max_history_size),
2824                noise_model: initial_noise_model,
2825                estimation_algorithm: algorithm,
2826                performance_tracker: PerformanceTracker::new(),
2827                config,
2828            }
2829        }
2830
2831        /// Add a new error observation
2832        pub fn add_observation(&mut self, observation: ErrorObservation) {
2833            // Add to history
2834            if self.error_history.len() >= self.config.max_history_size {
2835                self.error_history.pop_front();
2836            }
2837            self.error_history.push_back(observation.clone());
2838
2839            // Update performance tracking
2840            self.update_performance_tracking(&observation);
2841
2842            // Update noise model if real-time adaptation is enabled
2843            if self.config.real_time_adaptation
2844                && self.error_history.len() >= self.config.min_observations
2845            {
2846                self.update_noise_model();
2847            }
2848        }
2849
2850        /// Estimate current error correction threshold
2851        pub fn estimate_threshold(
2852            &self,
2853            syndrome: &[bool],
2854            environment: &EnvironmentalConditions,
2855        ) -> f64 {
2856            match &self.estimation_algorithm {
2857                ThresholdEstimationAlgorithm::Bayesian {
2858                    prior_strength,
2859                    update_rate,
2860                } => self.bayesian_threshold_estimation(
2861                    syndrome,
2862                    environment,
2863                    *prior_strength,
2864                    *update_rate,
2865                ),
2866                ThresholdEstimationAlgorithm::MachineLearning {
2867                    model_type,
2868                    training_window,
2869                } => self.ml_threshold_estimation(
2870                    syndrome,
2871                    environment,
2872                    model_type,
2873                    *training_window,
2874                ),
2875                ThresholdEstimationAlgorithm::KalmanFilter {
2876                    process_noise,
2877                    measurement_noise,
2878                } => self.kalman_threshold_estimation(
2879                    syndrome,
2880                    environment,
2881                    *process_noise,
2882                    *measurement_noise,
2883                ),
2884                ThresholdEstimationAlgorithm::ExponentialAverage { alpha } => {
2885                    self.exponential_average_threshold(syndrome, environment, *alpha)
2886                }
2887            }
2888        }
2889
2890        /// Get current threshold recommendation
2891        pub fn get_threshold_recommendation(&self, syndrome: &[bool]) -> ThresholdRecommendation {
2892            let current_env = EnvironmentalConditions::default(); // Would get from sensors
2893            let threshold = self.estimate_threshold(syndrome, &current_env);
2894            let confidence = self.noise_model.confidence;
2895            let predicted_rate = self.predict_error_rate(&current_env, Duration::from_secs(60));
2896
2897            ThresholdRecommendation {
2898                threshold,
2899                confidence,
2900                predicted_error_rate: predicted_rate,
2901                recommendation_quality: self.assess_recommendation_quality(),
2902                environmental_impact: self.assess_environmental_impact(&current_env),
2903            }
2904        }
2905
2906        /// Predict future error rate based on current conditions
2907        pub fn predict_error_rate(
2908            &self,
2909            environment: &EnvironmentalConditions,
2910            horizon: Duration,
2911        ) -> f64 {
2912            let base_rate = self.calculate_base_error_rate();
2913            let environmental_factor = self.calculate_environmental_factor(environment);
2914            let temporal_factor = self.calculate_temporal_factor(horizon);
2915
2916            base_rate * environmental_factor * temporal_factor
2917        }
2918
2919        /// Bayesian threshold estimation
2920        fn bayesian_threshold_estimation(
2921            &self,
2922            syndrome: &[bool],
2923            environment: &EnvironmentalConditions,
2924            prior_strength: f64,
2925            update_rate: f64,
2926        ) -> f64 {
2927            let syndrome_weight = syndrome.iter().filter(|&&x| x).count() as f64;
2928            let base_threshold = self.calculate_base_threshold(syndrome_weight);
2929
2930            // Update based on historical observations
2931            let historical_adjustment = self.calculate_historical_adjustment(update_rate);
2932
2933            // Environmental adjustment
2934            let env_adjustment = self.calculate_environmental_adjustment(environment);
2935
2936            // Bayesian update
2937            let prior = base_threshold;
2938            let likelihood_weight = 1.0 / (1.0 + prior_strength);
2939
2940            prior.mul_add(
2941                1.0 - likelihood_weight,
2942                (base_threshold + historical_adjustment + env_adjustment) * likelihood_weight,
2943            )
2944        }
2945
2946        /// Machine learning based threshold estimation
2947        fn ml_threshold_estimation(
2948            &self,
2949            syndrome: &[bool],
2950            environment: &EnvironmentalConditions,
2951            model_type: &MLModelType,
2952            training_window: usize,
2953        ) -> f64 {
2954            // Extract features
2955            let features = self.extract_features(syndrome, environment);
2956
2957            // Get recent training data
2958            let training_data = self.get_recent_observations(training_window);
2959
2960            match model_type {
2961                MLModelType::LinearRegression => {
2962                    self.linear_regression_predict(&features, &training_data)
2963                }
2964                _ => {
2965                    // Simplified implementation for other ML models
2966                    self.linear_regression_predict(&features, &training_data)
2967                }
2968            }
2969        }
2970
2971        /// Kalman filter based threshold estimation
2972        fn kalman_threshold_estimation(
2973            &self,
2974            syndrome: &[bool],
2975            _environment: &EnvironmentalConditions,
2976            process_noise: f64,
2977            measurement_noise: f64,
2978        ) -> f64 {
2979            let syndrome_weight = syndrome.iter().filter(|&&x| x).count() as f64;
2980            let base_threshold = self.calculate_base_threshold(syndrome_weight);
2981
2982            // Simplified Kalman filter implementation
2983            let prediction_error = self.calculate_prediction_error();
2984            let kalman_gain = process_noise / (process_noise + measurement_noise);
2985
2986            kalman_gain.mul_add(prediction_error, base_threshold)
2987        }
2988
2989        /// Exponential moving average threshold estimation
2990        fn exponential_average_threshold(
2991            &self,
2992            syndrome: &[bool],
2993            _environment: &EnvironmentalConditions,
2994            alpha: f64,
2995        ) -> f64 {
2996            let syndrome_weight = syndrome.iter().filter(|&&x| x).count() as f64;
2997            let current_threshold = self.calculate_base_threshold(syndrome_weight);
2998
2999            if let Some(_last_obs) = self.error_history.back() {
3000                let last_threshold = syndrome_weight; // Simplified
3001                alpha.mul_add(current_threshold, (1.0 - alpha) * last_threshold)
3002            } else {
3003                current_threshold
3004            }
3005        }
3006
3007        // Helper methods
3008        fn calculate_base_error_rate(&self) -> f64 {
3009            if self.error_history.is_empty() {
3010                return 0.001; // Default 0.1% error rate
3011            }
3012
3013            let recent_errors: Vec<_> = self.error_history.iter().rev().take(100).collect();
3014
3015            let total_errors = recent_errors.len() as f64;
3016            let failed_corrections = recent_errors.iter().filter(|obs| !obs.success).count() as f64;
3017
3018            failed_corrections / total_errors
3019        }
3020
3021        fn calculate_environmental_factor(&self, environment: &EnvironmentalConditions) -> f64 {
3022            let sensitivity = &self.noise_model.environment_sensitivity;
3023
3024            sensitivity.drift_coeff.mul_add(
3025                environment.uptime,
3026                sensitivity.emi_coeff.mul_add(
3027                    environment.emi_level,
3028                    sensitivity.vibration_coeff.mul_add(
3029                        environment.vibration_level,
3030                        sensitivity.magnetic_field_coeff.mul_add(
3031                            environment.magnetic_field,
3032                            sensitivity
3033                                .temperature_coeff
3034                                .mul_add(environment.temperature - 300.0, 1.0),
3035                        ),
3036                    ),
3037                ),
3038            )
3039        }
3040
3041        fn calculate_temporal_factor(&self, horizon: Duration) -> f64 {
3042            let temporal_corr = self.noise_model.temporal_correlation;
3043            let time_factor = horizon.as_secs_f64() / 3600.0; // Hours
3044
3045            temporal_corr.mul_add(time_factor, 1.0)
3046        }
3047
3048        fn calculate_base_threshold(&self, syndrome_weight: f64) -> f64 {
3049            // Simple heuristic: higher syndrome weight suggests higher error probability
3050            (syndrome_weight + 1.0) / 10.0
3051        }
3052
3053        fn calculate_historical_adjustment(&self, update_rate: f64) -> f64 {
3054            if self.error_history.is_empty() {
3055                return 0.0;
3056            }
3057
3058            let recent_success_rate = self.calculate_recent_success_rate();
3059            update_rate * (0.5 - recent_success_rate) // Adjust towards 50% success rate
3060        }
3061
3062        fn calculate_environmental_adjustment(&self, environment: &EnvironmentalConditions) -> f64 {
3063            let env_factor = self.calculate_environmental_factor(environment);
3064            (env_factor - 1.0) * 0.1 // Scale environmental impact
3065        }
3066
3067        fn calculate_recent_success_rate(&self) -> f64 {
3068            let recent_window = 50.min(self.error_history.len());
3069            if recent_window == 0 {
3070                return 0.5;
3071            }
3072
3073            let recent_successes = self
3074                .error_history
3075                .iter()
3076                .rev()
3077                .take(recent_window)
3078                .filter(|obs| obs.success)
3079                .count();
3080
3081            recent_successes as f64 / recent_window as f64
3082        }
3083
3084        fn calculate_prediction_error(&self) -> f64 {
3085            // Simplified prediction error calculation
3086            let target_success_rate = 0.95;
3087            let actual_success_rate = self.calculate_recent_success_rate();
3088            target_success_rate - actual_success_rate
3089        }
3090
3091        fn extract_features(
3092            &self,
3093            syndrome: &[bool],
3094            environment: &EnvironmentalConditions,
3095        ) -> Vec<f64> {
3096            let mut features = vec![
3097                syndrome.iter().filter(|&&x| x).count() as f64,
3098                environment.temperature,
3099                environment.magnetic_field,
3100                environment.vibration_level,
3101                environment.emi_level,
3102                environment.uptime,
3103            ];
3104
3105            // Add syndrome pattern features
3106            for &bit in syndrome {
3107                features.push(if bit { 1.0 } else { 0.0 });
3108            }
3109
3110            features
3111        }
3112
3113        fn get_recent_observations(&self, window: usize) -> Vec<ErrorObservation> {
3114            self.error_history
3115                .iter()
3116                .rev()
3117                .take(window)
3118                .cloned()
3119                .collect()
3120        }
3121
3122        fn linear_regression_predict(
3123            &self,
3124            _features: &[f64],
3125            training_data: &[ErrorObservation],
3126        ) -> f64 {
3127            // Simplified linear regression
3128            if training_data.is_empty() {
3129                return 0.5;
3130            }
3131
3132            let avg_syndrome_weight: f64 = training_data
3133                .iter()
3134                .map(|obs| obs.syndrome.iter().filter(|&&x| x).count() as f64)
3135                .sum::<f64>()
3136                / training_data.len() as f64;
3137
3138            (avg_syndrome_weight + 1.0) / 10.0
3139        }
3140
3141        fn update_performance_tracking(&mut self, observation: &ErrorObservation) {
3142            if observation.success {
3143                self.performance_tracker.successful_corrections += 1;
3144            } else {
3145                self.performance_tracker.failed_corrections += 1;
3146            }
3147
3148            // Update accuracy
3149            let total = self.performance_tracker.successful_corrections
3150                + self.performance_tracker.failed_corrections;
3151            if total > 0 {
3152                self.performance_tracker.threshold_accuracy =
3153                    self.performance_tracker.successful_corrections as f64 / total as f64;
3154            }
3155        }
3156
3157        fn update_noise_model(&mut self) {
3158            let recent_window = self.config.min_observations.min(self.error_history.len());
3159            let recent_observations: Vec<ErrorObservation> = self
3160                .error_history
3161                .iter()
3162                .rev()
3163                .take(recent_window)
3164                .cloned()
3165                .collect();
3166
3167            // Update single-qubit error rates
3168            self.update_single_qubit_rates(&recent_observations);
3169
3170            // Update model confidence
3171            self.update_model_confidence(&recent_observations);
3172        }
3173
3174        fn update_single_qubit_rates(&mut self, observations: &[ErrorObservation]) {
3175            // Update single-qubit error rates based on observations
3176            for obs in observations {
3177                for (i, pauli) in obs.correction.paulis.iter().enumerate() {
3178                    if *pauli != Pauli::I {
3179                        let key = (i, *pauli);
3180                        let current_rate = self
3181                            .noise_model
3182                            .single_qubit_rates
3183                            .get(&key)
3184                            .copied()
3185                            .unwrap_or(0.001);
3186                        let new_rate = if obs.success {
3187                            current_rate * 0.99
3188                        } else {
3189                            current_rate * 1.01
3190                        };
3191                        self.noise_model.single_qubit_rates.insert(key, new_rate);
3192                    }
3193                }
3194            }
3195        }
3196
3197        fn update_model_confidence(&mut self, observations: &[ErrorObservation]) {
3198            if observations.is_empty() {
3199                return;
3200            }
3201
3202            let success_rate = observations.iter().filter(|obs| obs.success).count() as f64
3203                / observations.len() as f64;
3204
3205            // Higher success rate increases confidence, but not linearly
3206            let stability = (success_rate - 0.5).abs().mul_add(-2.0, 1.0);
3207            self.noise_model.confidence =
3208                self.noise_model.confidence.mul_add(0.95, stability * 0.05);
3209        }
3210
3211        fn assess_recommendation_quality(&self) -> f64 {
3212            // Quality based on model confidence and recent performance
3213            let confidence_component = self.noise_model.confidence;
3214            let performance_component = self.performance_tracker.threshold_accuracy;
3215            let history_component =
3216                (self.error_history.len() as f64 / self.config.max_history_size as f64).min(1.0);
3217
3218            (confidence_component + performance_component + history_component) / 3.0
3219        }
3220
3221        fn assess_environmental_impact(&self, environment: &EnvironmentalConditions) -> f64 {
3222            let env_factor = self.calculate_environmental_factor(environment);
3223            (env_factor - 1.0).abs()
3224        }
3225    }
3226}
3227
3228#[cfg(test)]
3229mod tests {
3230    use super::*;
3231
3232    #[test]
3233    fn test_pauli_multiplication() {
3234        let (phase, result) = Pauli::X.multiply(&Pauli::Y);
3235        assert_eq!(result, Pauli::Z);
3236        assert_eq!(phase, Complex64::new(0.0, 1.0));
3237    }
3238
3239    #[test]
3240    fn test_pauli_string_commutation() {
3241        let ps1 = PauliString::new(vec![Pauli::X, Pauli::I]);
3242        let ps2 = PauliString::new(vec![Pauli::Z, Pauli::I]);
3243        assert!(!ps1
3244            .commutes_with(&ps2)
3245            .expect("Commutation check should succeed"));
3246
3247        let ps3 = PauliString::new(vec![Pauli::X, Pauli::I]);
3248        let ps4 = PauliString::new(vec![Pauli::I, Pauli::Z]);
3249        assert!(ps3
3250            .commutes_with(&ps4)
3251            .expect("Commutation check should succeed"));
3252    }
3253
3254    #[test]
3255    fn test_repetition_code() {
3256        let code = StabilizerCode::repetition_code();
3257        assert_eq!(code.n, 3);
3258        assert_eq!(code.k, 1);
3259        assert_eq!(code.d, 1);
3260
3261        // Test syndrome for X error on first qubit
3262        let error = PauliString::new(vec![Pauli::X, Pauli::I, Pauli::I]);
3263        let syndrome = code
3264            .syndrome(&error)
3265            .expect("Syndrome extraction should succeed");
3266        // X error anti-commutes with Z stabilizer on first two qubits
3267        assert_eq!(syndrome, vec![true, false]);
3268    }
3269
3270    #[test]
3271    fn test_steane_code() {
3272        let code = StabilizerCode::steane_code();
3273        assert_eq!(code.n, 7);
3274        assert_eq!(code.k, 1);
3275        assert_eq!(code.d, 3);
3276
3277        // Test that stabilizers commute
3278        for i in 0..code.stabilizers.len() {
3279            for j in i + 1..code.stabilizers.len() {
3280                assert!(code.stabilizers[i]
3281                    .commutes_with(&code.stabilizers[j])
3282                    .expect("Stabilizer commutation check should succeed"));
3283            }
3284        }
3285    }
3286
3287    #[test]
3288    fn test_surface_code() {
3289        let surface = SurfaceCode::new(3, 3);
3290        assert_eq!(surface.distance(), 3);
3291
3292        let code = surface
3293            .to_stabilizer_code()
3294            .expect("Surface code conversion should succeed");
3295        assert_eq!(code.n, 9);
3296        // For a 3x3 lattice, we have 2 X stabilizers and 2 Z stabilizers
3297        assert_eq!(code.stabilizers.len(), 4);
3298    }
3299
3300    #[test]
3301    fn test_lookup_decoder() {
3302        let code = StabilizerCode::repetition_code();
3303        let decoder = LookupDecoder::new(&code).expect("Lookup decoder creation should succeed");
3304
3305        // Test decoding trivial syndrome (no error)
3306        let trivial_syndrome = vec![false, false];
3307        let decoded = decoder
3308            .decode(&trivial_syndrome)
3309            .expect("Decoding trivial syndrome should succeed");
3310        assert_eq!(decoded.weight(), 0); // Should be identity
3311
3312        // Test single bit flip error
3313        let error = PauliString::new(vec![Pauli::X, Pauli::I, Pauli::I]);
3314        let syndrome = code
3315            .syndrome(&error)
3316            .expect("Syndrome extraction should succeed");
3317
3318        // The decoder should be able to decode this syndrome
3319        if let Ok(decoded_error) = decoder.decode(&syndrome) {
3320            // Decoder should find a low-weight error
3321            assert!(decoded_error.weight() <= 1);
3322        }
3323    }
3324
3325    #[test]
3326    fn test_concatenated_codes() {
3327        let inner_code = StabilizerCode::repetition_code();
3328        let outer_code = StabilizerCode::repetition_code();
3329        let concat_code = ConcatenatedCode::new(inner_code, outer_code);
3330
3331        assert_eq!(concat_code.total_qubits(), 9); // 3 * 3
3332        assert_eq!(concat_code.logical_qubits(), 1);
3333        assert_eq!(concat_code.distance(), 1); // min(1, 1) = 1
3334
3335        // Test encoding and decoding
3336        let logical_state = vec![Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)];
3337        let encoded = concat_code
3338            .encode(&logical_state)
3339            .expect("Encoding should succeed");
3340        assert_eq!(encoded.len(), 512); // 2^9
3341
3342        // Test error correction capability
3343        let error = PauliString::new(vec![
3344            Pauli::X,
3345            Pauli::I,
3346            Pauli::I,
3347            Pauli::I,
3348            Pauli::I,
3349            Pauli::I,
3350            Pauli::I,
3351            Pauli::I,
3352            Pauli::I,
3353        ]);
3354        let corrected = concat_code
3355            .correct_error(&encoded, &error)
3356            .expect("Error correction should succeed");
3357
3358        // Verify the state is corrected (simplified check)
3359        assert_eq!(corrected.len(), 512);
3360    }
3361
3362    #[test]
3363    fn test_hypergraph_product_codes() {
3364        // Create small classical codes for testing
3365        let h1 = Array2::from_shape_vec((2, 3), vec![1, 1, 0, 0, 1, 1])
3366            .expect("Array creation for h1 should succeed");
3367        let h2 = Array2::from_shape_vec((2, 3), vec![1, 0, 1, 1, 1, 0])
3368            .expect("Array creation for h2 should succeed");
3369
3370        let hpc = HypergraphProductCode::new(h1, h2);
3371
3372        // Check dimensions
3373        assert_eq!(hpc.n, 12); // n1*m2 + m1*n2 = 3*2 + 2*3 = 12
3374        assert_eq!(hpc.k, 1); // k = n1*k2 + k1*n2 - k1*k2 = 3*1 + 1*3 - 1*1 = 5 for this example, but simplified
3375
3376        let stab_code = hpc
3377            .to_stabilizer_code()
3378            .expect("Hypergraph product code conversion should succeed");
3379        assert!(!stab_code.stabilizers.is_empty());
3380    }
3381
3382    #[test]
3383    fn test_quantum_ldpc_codes() {
3384        let qldpc = QuantumLDPCCode::bicycle_code(3, 4);
3385        assert_eq!(qldpc.n, 24); // 2 * 3 * 4
3386        assert_eq!(qldpc.k, 2);
3387
3388        let stab_code = qldpc
3389            .to_stabilizer_code()
3390            .expect("Quantum LDPC code conversion should succeed");
3391        assert!(!stab_code.stabilizers.is_empty());
3392
3393        // Test that stabilizers have bounded weight
3394        for stabilizer in &stab_code.stabilizers {
3395            assert!(stabilizer.weight() <= qldpc.max_weight);
3396        }
3397    }
3398
3399    #[test]
3400    fn test_topological_codes() {
3401        let toric = ToricCode::new(2, 2);
3402        assert_eq!(toric.logical_qubits(), 2);
3403        assert_eq!(toric.distance(), 2);
3404
3405        let stab_code = toric
3406            .to_stabilizer_code()
3407            .expect("Toric code conversion should succeed");
3408        assert_eq!(stab_code.n, 8); // 2 * 2 * 2
3409        assert_eq!(stab_code.k, 2);
3410
3411        // Test that all stabilizers commute
3412        for i in 0..stab_code.stabilizers.len() {
3413            for j in i + 1..stab_code.stabilizers.len() {
3414                assert!(stab_code.stabilizers[i]
3415                    .commutes_with(&stab_code.stabilizers[j])
3416                    .expect("Stabilizer commutation check should succeed"));
3417            }
3418        }
3419    }
3420
3421    #[test]
3422    fn test_ml_decoder() {
3423        let surface = SurfaceCode::new(3, 3);
3424        let decoder = MLDecoder::new(
3425            surface
3426                .to_stabilizer_code()
3427                .expect("Surface code conversion should succeed"),
3428        );
3429
3430        // Test decoding with simple syndrome
3431        let syndrome = vec![true, false, true, false];
3432        let decoded = decoder.decode(&syndrome);
3433
3434        // Should succeed for correctable errors
3435        assert!(decoded.is_ok() || syndrome.iter().filter(|&&x| x).count() % 2 == 1);
3436    }
3437
3438    #[test]
3439    fn test_real_time_mock_hardware() {
3440        use crate::error_correction::real_time::*;
3441        use std::time::Duration;
3442
3443        let hardware = MockQuantumHardware::new(0.01, Duration::from_micros(10), 4);
3444
3445        // Test syndrome measurement
3446        let syndrome = hardware
3447            .measure_syndromes()
3448            .expect("Syndrome measurement should succeed");
3449        assert_eq!(syndrome.len(), 4);
3450
3451        // Test error characteristics
3452        let characteristics = hardware
3453            .get_error_characteristics()
3454            .expect("Getting error characteristics should succeed");
3455        assert_eq!(characteristics.single_qubit_error_rates.len(), 4);
3456
3457        // Test latency stats
3458        let stats = hardware
3459            .get_latency_stats()
3460            .expect("Getting latency stats should succeed");
3461        assert!(stats.throughput_hz > 0.0);
3462
3463        assert!(hardware.is_ready());
3464    }
3465
3466    #[test]
3467    fn test_real_time_performance_monitor() {
3468        use crate::error_correction::real_time::*;
3469        use std::time::Duration;
3470
3471        let mut monitor = PerformanceMonitor::new();
3472
3473        // Record some cycles
3474        monitor.record_cycle(Duration::from_micros(10), true);
3475        monitor.record_cycle(Duration::from_micros(20), false);
3476        monitor.record_cycle(Duration::from_micros(15), true);
3477
3478        assert_eq!(monitor.cycles_processed, 3);
3479        assert_eq!(monitor.errors_corrected, 2);
3480        assert_eq!(monitor.error_correction_rate(), 2.0 / 3.0);
3481        assert!(monitor.average_latency().as_micros() > 10);
3482        assert!(monitor.current_throughput() > 0.0);
3483    }
3484
3485    #[test]
3486    fn test_real_time_adaptive_decoder() {
3487        use crate::error_correction::real_time::*;
3488        use std::sync::Arc;
3489
3490        let code = StabilizerCode::repetition_code();
3491        let base_decoder =
3492            Arc::new(LookupDecoder::new(&code).expect("Lookup decoder creation should succeed"));
3493        let characteristics = HardwareErrorCharacteristics {
3494            single_qubit_error_rates: vec![0.01; 3],
3495            two_qubit_error_rates: vec![0.1; 1],
3496            measurement_error_rates: vec![0.001; 3],
3497            correlated_errors: Vec::new(),
3498            temporal_variation: 0.01,
3499        };
3500
3501        let mut adaptive_decoder = AdaptiveThresholdDecoder::new(base_decoder, characteristics);
3502
3503        // Test initial threshold
3504        let initial_threshold = adaptive_decoder.current_threshold();
3505        assert_eq!(initial_threshold, 1.0); // Default when no history
3506
3507        // Adapt thresholds based on feedback (use no-error syndromes)
3508        adaptive_decoder.adapt_thresholds(&[false, false], true); // No error, successful correction
3509
3510        let new_threshold = adaptive_decoder.current_threshold();
3511        assert!(new_threshold != initial_threshold); // Should change from default 1.0 to 0.0
3512
3513        // Test decoding (use no-error syndrome which should always be valid)
3514        let syndrome = vec![false, false]; // No error syndrome
3515        let result = adaptive_decoder.decode(&syndrome);
3516        assert!(result.is_ok(), "Decoding failed: {:?}", result.err());
3517    }
3518
3519    #[test]
3520    fn test_real_time_parallel_decoder() {
3521        use crate::error_correction::real_time::*;
3522        use std::sync::Arc;
3523
3524        let code = StabilizerCode::repetition_code();
3525        let base_decoder =
3526            Arc::new(LookupDecoder::new(&code).expect("Lookup decoder creation should succeed"));
3527        let parallel_decoder = ParallelSyndromeDecoder::new(base_decoder, 2);
3528
3529        // Test single syndrome decoding (use no-error syndrome)
3530        let syndrome = vec![false, false]; // No error syndrome
3531        let result = parallel_decoder.decode(&syndrome);
3532        assert!(result.is_ok(), "Decoding failed: {:?}", result.err());
3533
3534        // Test batch decoding (use only no-error syndromes for safety)
3535        let syndromes = vec![
3536            vec![false, false], // No error syndromes
3537            vec![false, false],
3538            vec![false, false],
3539            vec![false, false],
3540        ];
3541
3542        let results = parallel_decoder.decode_batch(&syndromes);
3543        assert!(results.is_ok());
3544        let corrections = results.expect("Batch decoding should succeed");
3545        assert_eq!(corrections.len(), 4);
3546    }
3547
3548    #[test]
3549    fn test_real_time_syndrome_stream_processor() {
3550        use crate::error_correction::real_time::*;
3551        use std::sync::Arc;
3552        use std::time::Duration;
3553
3554        let code = StabilizerCode::repetition_code();
3555        let decoder =
3556            Arc::new(LookupDecoder::new(&code).expect("Lookup decoder creation should succeed"));
3557        let hardware = Arc::new(MockQuantumHardware::new(0.01, Duration::from_micros(1), 3));
3558        let config = RealTimeConfig {
3559            max_latency: Duration::from_millis(1),
3560            buffer_size: 10,
3561            parallel_workers: 1,
3562            adaptive_threshold: false,
3563            hardware_feedback: false,
3564            performance_logging: true,
3565        };
3566
3567        let processor = SyndromeStreamProcessor::new(decoder, hardware, config);
3568
3569        // Test buffer status
3570        let (current, max) = processor.get_buffer_status();
3571        assert_eq!(current, 0);
3572        assert_eq!(max, 10);
3573
3574        // Test performance stats (initial state)
3575        let stats = processor.get_performance_stats();
3576        assert_eq!(stats.cycles_processed, 0);
3577        assert_eq!(stats.errors_corrected, 0);
3578    }
3579
3580    #[test]
3581    fn test_logical_gate_synthesizer() {
3582        use crate::error_correction::logical_gates::*;
3583
3584        let code = StabilizerCode::repetition_code();
3585        let synthesizer = LogicalGateSynthesizer::new(0.01);
3586
3587        // Test logical X gate synthesis
3588        let logical_x = synthesizer.synthesize_logical_x(&code, 0);
3589        assert!(logical_x.is_ok());
3590
3591        let x_gate = logical_x.expect("Logical X synthesis should succeed");
3592        assert_eq!(x_gate.logical_qubits, vec![0]);
3593        assert_eq!(x_gate.physical_operations.len(), 1);
3594        assert!(!x_gate.error_propagation.single_qubit_propagation.is_empty());
3595
3596        // Test logical Z gate synthesis
3597        let logical_z = synthesizer.synthesize_logical_z(&code, 0);
3598        assert!(logical_z.is_ok());
3599
3600        let z_gate = logical_z.expect("Logical Z synthesis should succeed");
3601        assert_eq!(z_gate.logical_qubits, vec![0]);
3602        assert_eq!(z_gate.physical_operations.len(), 1);
3603
3604        // Test logical H gate synthesis
3605        let logical_h = synthesizer.synthesize_logical_h(&code, 0);
3606        assert!(logical_h.is_ok());
3607
3608        let h_gate = logical_h.expect("Logical H synthesis should succeed");
3609        assert_eq!(h_gate.logical_qubits, vec![0]);
3610        assert_eq!(h_gate.physical_operations.len(), 1);
3611        assert_eq!(h_gate.physical_operations[0].error_correction_rounds, 2);
3612
3613        // Test invalid logical qubit index
3614        let invalid_gate = synthesizer.synthesize_logical_x(&code, 5);
3615        assert!(invalid_gate.is_err());
3616    }
3617
3618    #[test]
3619    fn test_logical_circuit_synthesizer() {
3620        use crate::error_correction::logical_gates::*;
3621
3622        let code = StabilizerCode::repetition_code();
3623        let synthesizer = LogicalCircuitSynthesizer::new(0.01);
3624
3625        // Test simple circuit synthesis
3626        let gate_sequence = vec![("x", vec![0]), ("h", vec![0]), ("z", vec![0])];
3627
3628        let circuit = synthesizer.synthesize_circuit(&code, &gate_sequence);
3629        assert!(circuit.is_ok());
3630
3631        let logical_circuit = circuit.expect("Circuit synthesis should succeed");
3632        assert_eq!(logical_circuit.len(), 3);
3633
3634        // Test resource estimation
3635        let resources = synthesizer.estimate_resources(&logical_circuit);
3636        assert!(resources.total_physical_operations > 0);
3637        assert!(resources.total_error_correction_rounds > 0);
3638        assert_eq!(resources.estimated_depth, 3);
3639
3640        // Test invalid gate name
3641        let invalid_sequence = vec![("invalid_gate", vec![0])];
3642        let invalid_circuit = synthesizer.synthesize_circuit(&code, &invalid_sequence);
3643        assert!(invalid_circuit.is_err());
3644
3645        // Test CNOT gate with wrong number of targets
3646        let wrong_cnot = vec![("cnot", vec![0])]; // CNOT needs 2 targets
3647        let wrong_circuit = synthesizer.synthesize_circuit(&code, &wrong_cnot);
3648        assert!(wrong_circuit.is_err());
3649    }
3650
3651    #[test]
3652    fn test_logical_t_gate_synthesis() {
3653        use crate::error_correction::logical_gates::*;
3654
3655        let code = StabilizerCode::repetition_code();
3656        let synthesizer = LogicalGateSynthesizer::new(0.01);
3657
3658        // Test T gate synthesis (requires magic state distillation)
3659        let logical_t = synthesizer.synthesize_logical_t(&code, 0);
3660        assert!(logical_t.is_ok());
3661
3662        let t_gate = logical_t.expect("Logical T synthesis should succeed");
3663        assert_eq!(t_gate.logical_qubits, vec![0]);
3664        assert_eq!(t_gate.physical_operations.len(), 2); // Magic state prep + injection
3665
3666        // Check that magic state prep has more error correction rounds
3667        assert!(t_gate.physical_operations[0].error_correction_rounds >= 5);
3668    }
3669
3670    #[test]
3671    fn test_error_propagation_analysis() {
3672        use crate::error_correction::logical_gates::*;
3673
3674        let code = StabilizerCode::repetition_code();
3675        let synthesizer = LogicalGateSynthesizer::new(0.01);
3676
3677        let logical_x = synthesizer
3678            .synthesize_logical_x(&code, 0)
3679            .expect("Logical X synthesis should succeed");
3680
3681        // Check error propagation analysis
3682        let analysis = &logical_x.error_propagation;
3683        assert!(!analysis.single_qubit_propagation.is_empty());
3684        // max_error_weight is usize, so it's always >= 0
3685        assert_eq!(analysis.fault_tolerance_threshold, 0.01);
3686
3687        // Check that some errors are marked as correctable
3688        let correctable_count = analysis
3689            .single_qubit_propagation
3690            .iter()
3691            .filter(|path| path.correctable)
3692            .count();
3693        assert!(correctable_count > 0);
3694    }
3695
3696    #[test]
3697    fn test_pauli_string_weight() {
3698        let identity_string = PauliString::new(vec![Pauli::I, Pauli::I, Pauli::I]);
3699        assert_eq!(identity_string.weight(), 0);
3700
3701        let single_error = PauliString::new(vec![Pauli::X, Pauli::I, Pauli::I]);
3702        assert_eq!(single_error.weight(), 1);
3703
3704        let multi_error = PauliString::new(vec![Pauli::X, Pauli::Y, Pauli::Z]);
3705        assert_eq!(multi_error.weight(), 3);
3706    }
3707
3708    #[test]
3709    fn test_logical_circuit_with_multiple_gates() {
3710        use crate::error_correction::logical_gates::*;
3711
3712        let code = StabilizerCode::repetition_code();
3713        let synthesizer = LogicalCircuitSynthesizer::new(0.01);
3714
3715        // Test a more complex circuit
3716        let gate_sequence = vec![
3717            ("h", vec![0]), // Hadamard on logical qubit 0
3718            ("x", vec![0]), // X on logical qubit 0
3719            ("z", vec![0]), // Z on logical qubit 0
3720            ("h", vec![0]), // Another Hadamard
3721        ];
3722
3723        let circuit = synthesizer.synthesize_circuit(&code, &gate_sequence);
3724        assert!(circuit.is_ok());
3725
3726        let logical_circuit = circuit.expect("Circuit synthesis should succeed");
3727        assert_eq!(logical_circuit.len(), 4);
3728
3729        // Check that all gates target the correct logical qubit
3730        for gate in &logical_circuit {
3731            assert_eq!(gate.logical_qubits, vec![0]);
3732        }
3733
3734        // Estimate resources for this circuit
3735        let resources = synthesizer.estimate_resources(&logical_circuit);
3736        assert_eq!(resources.estimated_depth, 4);
3737        assert!(resources.total_error_correction_rounds >= 4); // At least one round per gate
3738    }
3739
3740    #[test]
3741    fn test_adaptive_threshold_estimator() {
3742        use crate::error_correction::adaptive_threshold::*;
3743
3744        let noise_model = NoiseModel::default();
3745        let algorithm = ThresholdEstimationAlgorithm::Bayesian {
3746            prior_strength: 1.0,
3747            update_rate: 0.1,
3748        };
3749        let config = AdaptiveConfig::default();
3750
3751        let mut estimator = AdaptiveThresholdEstimator::new(noise_model, algorithm, config);
3752
3753        // Test initial threshold estimation
3754        let syndrome = vec![true, false];
3755        let env = EnvironmentalConditions::default();
3756        let threshold = estimator.estimate_threshold(&syndrome, &env);
3757        assert!(threshold > 0.0);
3758        assert!(threshold < 1.0);
3759
3760        // Test adding observations
3761        let observation = ErrorObservation {
3762            syndrome: syndrome.clone(),
3763            correction: PauliString::new(vec![Pauli::X, Pauli::I]),
3764            success: true,
3765            observed_error_rate: 0.01,
3766            timestamp: std::time::Instant::now(),
3767            environment: env.clone(),
3768        };
3769
3770        estimator.add_observation(observation);
3771
3772        // Test threshold recommendation
3773        let recommendation = estimator.get_threshold_recommendation(&syndrome);
3774        assert!(recommendation.threshold > 0.0);
3775        assert!(recommendation.confidence >= 0.0 && recommendation.confidence <= 1.0);
3776        assert!(recommendation.predicted_error_rate >= 0.0);
3777    }
3778
3779    #[test]
3780    fn test_performance_tracker() {
3781        use crate::error_correction::adaptive_threshold::*;
3782
3783        let mut tracker = PerformanceTracker::new();
3784
3785        // Test initial state
3786        assert_eq!(tracker.successful_corrections, 0);
3787        assert_eq!(tracker.failed_corrections, 0);
3788        assert_eq!(tracker.precision(), 1.0); // Default when no data
3789        assert_eq!(tracker.recall(), 1.0);
3790        assert_eq!(tracker.f1_score(), 1.0); // Perfect when precision and recall are both 1.0
3791
3792        // Simulate some corrections
3793        tracker.successful_corrections = 8;
3794        tracker.failed_corrections = 2;
3795        tracker.false_positives = 1;
3796        tracker.false_negatives = 1;
3797
3798        // Test metrics
3799        assert_eq!(tracker.precision(), 8.0 / 9.0); // 8 / (8 + 1)
3800        assert_eq!(tracker.recall(), 8.0 / 9.0); // 8 / (8 + 1)
3801        assert!(tracker.f1_score() > 0.0);
3802    }
3803
3804    #[test]
3805    fn test_environmental_conditions() {
3806        use crate::error_correction::adaptive_threshold::*;
3807
3808        let mut env = EnvironmentalConditions::default();
3809        assert_eq!(env.temperature, 300.0); // Room temperature
3810        assert_eq!(env.magnetic_field, 0.0);
3811
3812        // Test modification
3813        env.temperature = 310.0; // Higher temperature
3814        env.vibration_level = 0.1;
3815
3816        let noise_model = NoiseModel::default();
3817        let algorithm = ThresholdEstimationAlgorithm::ExponentialAverage { alpha: 0.5 };
3818        let config = AdaptiveConfig::default();
3819
3820        let estimator = AdaptiveThresholdEstimator::new(noise_model, algorithm, config);
3821
3822        // Test that environmental conditions affect threshold
3823        let syndrome = vec![false, false];
3824        let threshold_normal =
3825            estimator.estimate_threshold(&syndrome, &EnvironmentalConditions::default());
3826        let threshold_hot = estimator.estimate_threshold(&syndrome, &env);
3827
3828        // Thresholds may be different due to environmental factors
3829        assert!(threshold_normal >= 0.0);
3830        assert!(threshold_hot >= 0.0);
3831    }
3832
3833    #[test]
3834    fn test_different_threshold_algorithms() {
3835        use crate::error_correction::adaptive_threshold::*;
3836
3837        let noise_model = NoiseModel::default();
3838        let config = AdaptiveConfig::default();
3839
3840        // Test Bayesian algorithm
3841        let bayesian_alg = ThresholdEstimationAlgorithm::Bayesian {
3842            prior_strength: 1.0,
3843            update_rate: 0.1,
3844        };
3845        let bayesian_estimator =
3846            AdaptiveThresholdEstimator::new(noise_model.clone(), bayesian_alg, config.clone());
3847
3848        // Test Kalman filter algorithm
3849        let kalman_alg = ThresholdEstimationAlgorithm::KalmanFilter {
3850            process_noise: 0.01,
3851            measurement_noise: 0.1,
3852        };
3853        let kalman_estimator =
3854            AdaptiveThresholdEstimator::new(noise_model.clone(), kalman_alg, config.clone());
3855
3856        // Test exponential average algorithm
3857        let exp_alg = ThresholdEstimationAlgorithm::ExponentialAverage { alpha: 0.3 };
3858        let exp_estimator =
3859            AdaptiveThresholdEstimator::new(noise_model.clone(), exp_alg, config.clone());
3860
3861        // Test ML algorithm
3862        let ml_alg = ThresholdEstimationAlgorithm::MachineLearning {
3863            model_type: MLModelType::LinearRegression,
3864            training_window: 50,
3865        };
3866        let ml_estimator = AdaptiveThresholdEstimator::new(noise_model, ml_alg, config);
3867
3868        let syndrome = vec![true, false];
3869        let env = EnvironmentalConditions::default();
3870
3871        // All algorithms should produce valid thresholds
3872        let bayesian_threshold = bayesian_estimator.estimate_threshold(&syndrome, &env);
3873        let kalman_threshold = kalman_estimator.estimate_threshold(&syndrome, &env);
3874        let exp_threshold = exp_estimator.estimate_threshold(&syndrome, &env);
3875        let ml_threshold = ml_estimator.estimate_threshold(&syndrome, &env);
3876
3877        assert!(bayesian_threshold > 0.0);
3878        assert!(kalman_threshold > 0.0);
3879        assert!(exp_threshold > 0.0);
3880        assert!(ml_threshold > 0.0);
3881    }
3882
3883    #[test]
3884    fn test_noise_model_updates() {
3885        use crate::error_correction::adaptive_threshold::*;
3886
3887        let noise_model = NoiseModel::default();
3888        let algorithm = ThresholdEstimationAlgorithm::Bayesian {
3889            prior_strength: 1.0,
3890            update_rate: 0.1,
3891        };
3892        let config = AdaptiveConfig {
3893            min_observations: 2, // Low threshold for testing
3894            real_time_adaptation: true,
3895            ..AdaptiveConfig::default()
3896        };
3897
3898        let mut estimator = AdaptiveThresholdEstimator::new(noise_model, algorithm, config);
3899
3900        // Add multiple observations to trigger model updates
3901        for i in 0..5 {
3902            let observation = ErrorObservation {
3903                syndrome: vec![i % 2 == 0, i % 3 == 0],
3904                correction: PauliString::new(vec![Pauli::X, Pauli::I]),
3905                success: i % 4 != 0, // Most succeed
3906                observed_error_rate: 0.01,
3907                timestamp: std::time::Instant::now(),
3908                environment: EnvironmentalConditions::default(),
3909            };
3910            estimator.add_observation(observation);
3911        }
3912
3913        // The estimator should have updated its internal model
3914        let recommendation = estimator.get_threshold_recommendation(&[true, false]);
3915        assert!(recommendation.confidence > 0.0);
3916        assert!(recommendation.recommendation_quality > 0.0);
3917    }
3918}