quantrs2_core/
equivalence_checker.rs

1//! Quantum Circuit Equivalence Checker with SciRS2 Numerical Tolerance
2//!
3//! This module provides sophisticated quantum circuit equivalence checking
4//! using SciRS2's advanced numerical analysis capabilities.
5
6use crate::error::QuantRS2Error;
7use crate::gate_translation::GateType;
8use scirs2_core::Complex64;
9// use scirs2_core::parallel_ops::*;
10use crate::parallel_ops_stubs::*;
11// use scirs2_core::memory::BufferPool;
12use crate::buffer_pool::BufferPool;
13
14/// Simplified quantum gate representation for equivalence checking
15#[derive(Debug, Clone)]
16pub struct QuantumGate {
17    gate_type: GateType,
18    target_qubits: Vec<usize>,
19    control_qubits: Option<Vec<usize>>,
20}
21
22impl QuantumGate {
23    pub const fn new(
24        gate_type: GateType,
25        target_qubits: Vec<usize>,
26        control_qubits: Option<Vec<usize>>,
27    ) -> Self {
28        Self {
29            gate_type,
30            target_qubits,
31            control_qubits,
32        }
33    }
34
35    pub const fn gate_type(&self) -> &GateType {
36        &self.gate_type
37    }
38
39    pub fn target_qubits(&self) -> &[usize] {
40        &self.target_qubits
41    }
42
43    pub fn control_qubits(&self) -> Option<&[usize]> {
44        self.control_qubits.as_deref()
45    }
46}
47
48/// Configuration for equivalence checking with SciRS2 numerical tolerance
49#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
50pub struct EquivalenceConfig {
51    /// Absolute tolerance for complex number comparisons
52    pub absolute_tolerance: f64,
53    /// Relative tolerance for complex number comparisons
54    pub relative_tolerance: f64,
55    /// Maximum number of qubits for exact verification
56    pub max_exact_qubits: usize,
57    /// Use probabilistic verification for large circuits
58    pub use_probabilistic: bool,
59    /// Number of random state vectors for probabilistic testing
60    pub num_test_vectors: usize,
61    /// Enable advanced symmetry detection
62    pub enable_symmetry_detection: bool,
63    /// Enable SIMD acceleration
64    pub enable_simd: bool,
65    /// Enable parallel computation
66    pub enable_parallel: bool,
67    /// Memory optimization level
68    pub memory_optimization_level: u8,
69    /// Matrix comparison method
70    pub matrix_comparison_method: MatrixComparisonMethod,
71}
72
73impl Default for EquivalenceConfig {
74    fn default() -> Self {
75        Self {
76            absolute_tolerance: 1e-12,
77            relative_tolerance: 1e-10,
78            max_exact_qubits: 20,
79            use_probabilistic: true,
80            num_test_vectors: 100,
81            enable_symmetry_detection: true,
82            enable_simd: true,
83            enable_parallel: true,
84            memory_optimization_level: 2,
85            matrix_comparison_method: MatrixComparisonMethod::FrobeniusNorm,
86        }
87    }
88}
89
90/// Matrix comparison methods available through SciRS2
91#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
92pub enum MatrixComparisonMethod {
93    /// Frobenius norm-based comparison
94    FrobeniusNorm,
95    /// Spectral norm-based comparison
96    SpectralNorm,
97    /// Element-wise comparison with tolerance
98    ElementWise,
99    /// SVD-based comparison for numerical stability
100    SvdBased,
101}
102
103/// Quantum circuit equivalence checker using SciRS2 numerical methods
104pub struct EquivalenceChecker {
105    config: EquivalenceConfig,
106    buffer_pool: Option<BufferPool<Complex64>>,
107}
108
109impl EquivalenceChecker {
110    /// Create a new equivalence checker with default configuration
111    pub fn new() -> Self {
112        let config = EquivalenceConfig::default();
113        Self::with_config(config)
114    }
115
116    /// Create a new equivalence checker with custom configuration
117    pub const fn with_config(config: EquivalenceConfig) -> Self {
118        let buffer_pool = if config.memory_optimization_level > 0 {
119            Some(BufferPool::<Complex64>::new()) // Default buffer pool
120        } else {
121            None
122        };
123
124        Self {
125            config,
126            buffer_pool,
127        }
128    }
129
130    /// Check if two quantum circuits are equivalent
131    pub fn are_circuits_equivalent(
132        &self,
133        circuit1: &[QuantumGate],
134        circuit2: &[QuantumGate],
135        num_qubits: usize,
136    ) -> Result<bool, QuantRS2Error> {
137        if num_qubits <= self.config.max_exact_qubits {
138            self.exact_equivalence_check(circuit1, circuit2, num_qubits)
139        } else if self.config.use_probabilistic {
140            self.probabilistic_equivalence_check(circuit1, circuit2, num_qubits)
141        } else {
142            Err(QuantRS2Error::UnsupportedOperation(
143                "Circuit too large for exact verification and probabilistic checking disabled"
144                    .into(),
145            ))
146        }
147    }
148
149    /// Perform exact equivalence checking using matrix computation
150    fn exact_equivalence_check(
151        &self,
152        circuit1: &[QuantumGate],
153        circuit2: &[QuantumGate],
154        num_qubits: usize,
155    ) -> Result<bool, QuantRS2Error> {
156        let matrix1 = self.compute_circuit_matrix(circuit1, num_qubits)?;
157        let matrix2 = self.compute_circuit_matrix(circuit2, num_qubits)?;
158
159        Ok(self.matrices_equivalent(&matrix1, &matrix2))
160    }
161
162    /// Perform probabilistic equivalence checking using random state vectors
163    fn probabilistic_equivalence_check(
164        &self,
165        circuit1: &[QuantumGate],
166        circuit2: &[QuantumGate],
167        num_qubits: usize,
168    ) -> Result<bool, QuantRS2Error> {
169        use scirs2_core::random::prelude::*;
170        let mut rng = thread_rng();
171
172        for _ in 0..self.config.num_test_vectors {
173            // Generate random state vector
174            let mut state: Vec<Complex64> = (0..(1 << num_qubits))
175                .map(|_| Complex64::new(rng.gen::<f64>() - 0.5, rng.gen::<f64>() - 0.5))
176                .collect();
177
178            // Normalize the state
179            let norm: f64 = state.iter().map(|c| c.norm_sqr()).sum::<f64>().sqrt();
180            state.iter_mut().for_each(|c| *c /= norm);
181
182            let result1 = self.apply_circuit_to_state(circuit1, &state, num_qubits)?;
183            let result2 = self.apply_circuit_to_state(circuit2, &state, num_qubits)?;
184
185            if !self.states_equivalent(&result1, &result2) {
186                return Ok(false);
187            }
188        }
189
190        Ok(true)
191    }
192
193    /// Compute the unitary matrix representation of a quantum circuit
194    fn compute_circuit_matrix(
195        &self,
196        circuit: &[QuantumGate],
197        num_qubits: usize,
198    ) -> Result<Vec<Vec<Complex64>>, QuantRS2Error> {
199        let dim = 1 << num_qubits;
200        let mut matrix = vec![vec![Complex64::new(0.0, 0.0); dim]; dim];
201
202        // Initialize as identity matrix
203        for i in 0..dim {
204            matrix[i][i] = Complex64::new(1.0, 0.0);
205        }
206
207        // Apply each gate in sequence
208        for gate in circuit {
209            let gate_matrix = self.gate_to_matrix(gate, num_qubits)?;
210            matrix = self.multiply_matrices(&gate_matrix, &matrix);
211        }
212
213        Ok(matrix)
214    }
215
216    /// Convert a quantum gate to its matrix representation
217    fn gate_to_matrix(
218        &self,
219        gate: &QuantumGate,
220        num_qubits: usize,
221    ) -> Result<Vec<Vec<Complex64>>, QuantRS2Error> {
222        use crate::gate_translation::GateType;
223
224        let dim = 1 << num_qubits;
225        let mut matrix = vec![vec![Complex64::new(0.0, 0.0); dim]; dim];
226
227        // Initialize as identity
228        for i in 0..dim {
229            matrix[i][i] = Complex64::new(1.0, 0.0);
230        }
231
232        match gate.gate_type() {
233            GateType::X => {
234                self.apply_single_qubit_gate(
235                    &mut matrix,
236                    gate.target_qubits()[0],
237                    &[
238                        [Complex64::new(0.0, 0.0), Complex64::new(1.0, 0.0)],
239                        [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)],
240                    ],
241                    num_qubits,
242                );
243            }
244            GateType::Y => {
245                self.apply_single_qubit_gate(
246                    &mut matrix,
247                    gate.target_qubits()[0],
248                    &[
249                        [Complex64::new(0.0, 0.0), Complex64::new(0.0, -1.0)],
250                        [Complex64::new(0.0, 1.0), Complex64::new(0.0, 0.0)],
251                    ],
252                    num_qubits,
253                );
254            }
255            GateType::Z => {
256                self.apply_single_qubit_gate(
257                    &mut matrix,
258                    gate.target_qubits()[0],
259                    &[
260                        [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)],
261                        [Complex64::new(0.0, 0.0), Complex64::new(-1.0, 0.0)],
262                    ],
263                    num_qubits,
264                );
265            }
266            GateType::H => {
267                let inv_sqrt2 = 1.0 / std::f64::consts::SQRT_2;
268                self.apply_single_qubit_gate(
269                    &mut matrix,
270                    gate.target_qubits()[0],
271                    &[
272                        [
273                            Complex64::new(inv_sqrt2, 0.0),
274                            Complex64::new(inv_sqrt2, 0.0),
275                        ],
276                        [
277                            Complex64::new(inv_sqrt2, 0.0),
278                            Complex64::new(-inv_sqrt2, 0.0),
279                        ],
280                    ],
281                    num_qubits,
282                );
283            }
284            GateType::CNOT => {
285                if gate.target_qubits().len() >= 2 {
286                    self.apply_cnot_gate(
287                        &mut matrix,
288                        gate.target_qubits()[0],
289                        gate.target_qubits()[1],
290                        num_qubits,
291                    );
292                }
293            }
294            GateType::S | GateType::SqrtZ => {
295                self.apply_single_qubit_gate(
296                    &mut matrix,
297                    gate.target_qubits()[0],
298                    &[
299                        [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)],
300                        [Complex64::new(0.0, 0.0), Complex64::new(0.0, 1.0)],
301                    ],
302                    num_qubits,
303                );
304            }
305            GateType::T => {
306                let sqrt2_inv = 1.0 / std::f64::consts::SQRT_2;
307                self.apply_single_qubit_gate(
308                    &mut matrix,
309                    gate.target_qubits()[0],
310                    &[
311                        [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)],
312                        [
313                            Complex64::new(0.0, 0.0),
314                            Complex64::new(sqrt2_inv, sqrt2_inv),
315                        ],
316                    ],
317                    num_qubits,
318                );
319            }
320            GateType::SqrtX => {
321                let sqrt2_inv = 1.0 / std::f64::consts::SQRT_2;
322                self.apply_single_qubit_gate(
323                    &mut matrix,
324                    gate.target_qubits()[0],
325                    &[
326                        [Complex64::new(0.5, 0.5), Complex64::new(0.5, -0.5)],
327                        [Complex64::new(0.5, -0.5), Complex64::new(0.5, 0.5)],
328                    ],
329                    num_qubits,
330                );
331            }
332            GateType::SqrtY => {
333                let sqrt2_inv = 1.0 / std::f64::consts::SQRT_2;
334                self.apply_single_qubit_gate(
335                    &mut matrix,
336                    gate.target_qubits()[0],
337                    &[
338                        [
339                            Complex64::new(sqrt2_inv, 0.0),
340                            Complex64::new(-sqrt2_inv, 0.0),
341                        ],
342                        [
343                            Complex64::new(sqrt2_inv, 0.0),
344                            Complex64::new(sqrt2_inv, 0.0),
345                        ],
346                    ],
347                    num_qubits,
348                );
349            }
350            GateType::CZ => {
351                if gate.target_qubits().len() >= 2 {
352                    self.apply_cz_gate(
353                        &mut matrix,
354                        gate.target_qubits()[0],
355                        gate.target_qubits()[1],
356                        num_qubits,
357                    );
358                }
359            }
360            GateType::CY => {
361                if gate.target_qubits().len() >= 2 {
362                    self.apply_controlled_gate(
363                        &mut matrix,
364                        gate.target_qubits()[0],
365                        gate.target_qubits()[1],
366                        &[
367                            [Complex64::new(0.0, 0.0), Complex64::new(0.0, -1.0)],
368                            [Complex64::new(0.0, 1.0), Complex64::new(0.0, 0.0)],
369                        ],
370                        num_qubits,
371                    );
372                }
373            }
374            GateType::SWAP => {
375                if gate.target_qubits().len() >= 2 {
376                    self.apply_swap_gate(
377                        &mut matrix,
378                        gate.target_qubits()[0],
379                        gate.target_qubits()[1],
380                        num_qubits,
381                    );
382                }
383            }
384            GateType::ISwap => {
385                if gate.target_qubits().len() >= 2 {
386                    self.apply_iswap_gate(
387                        &mut matrix,
388                        gate.target_qubits()[0],
389                        gate.target_qubits()[1],
390                        num_qubits,
391                    );
392                }
393            }
394            _ => {
395                // For truly unsupported gates, log warning but continue
396                eprintln!(
397                    "Warning: Gate type {:?} not fully implemented in equivalence checker",
398                    gate.gate_type()
399                );
400            }
401        }
402
403        Ok(matrix)
404    }
405
406    /// Apply a single-qubit gate to the circuit matrix
407    fn apply_single_qubit_gate(
408        &self,
409        matrix: &mut [Vec<Complex64>],
410        target_qubit: usize,
411        gate_matrix: &[[Complex64; 2]; 2],
412        num_qubits: usize,
413    ) {
414        let dim = 1 << num_qubits;
415        let target_bit = 1 << target_qubit;
416
417        for i in 0..dim {
418            if i & target_bit == 0 {
419                let j = i | target_bit;
420                for k in 0..dim {
421                    let old_i = matrix[i][k];
422                    let old_j = matrix[j][k];
423                    matrix[i][k] = gate_matrix[0][0] * old_i + gate_matrix[0][1] * old_j;
424                    matrix[j][k] = gate_matrix[1][0] * old_i + gate_matrix[1][1] * old_j;
425                }
426            }
427        }
428    }
429
430    /// Apply a CNOT gate to the circuit matrix
431    fn apply_cnot_gate(
432        &self,
433        matrix: &mut [Vec<Complex64>],
434        control_qubit: usize,
435        target_qubit: usize,
436        num_qubits: usize,
437    ) {
438        let dim = 1 << num_qubits;
439        let control_bit = 1 << control_qubit;
440        let target_bit = 1 << target_qubit;
441
442        for i in 0..dim {
443            if i & control_bit != 0 {
444                let j = i ^ target_bit;
445                if i != j {
446                    for k in 0..dim {
447                        let temp = matrix[i][k];
448                        matrix[i][k] = matrix[j][k];
449                        matrix[j][k] = temp;
450                    }
451                }
452            }
453        }
454    }
455
456    /// Apply a CZ gate to the circuit matrix
457    fn apply_cz_gate(
458        &self,
459        matrix: &mut [Vec<Complex64>],
460        control_qubit: usize,
461        target_qubit: usize,
462        num_qubits: usize,
463    ) {
464        let dim = 1 << num_qubits;
465        let control_bit = 1 << control_qubit;
466        let target_bit = 1 << target_qubit;
467
468        for i in 0..dim {
469            if (i & control_bit != 0) && (i & target_bit != 0) {
470                for k in 0..dim {
471                    matrix[i][k] *= -1.0;
472                }
473            }
474        }
475    }
476
477    /// Apply a general controlled gate to the circuit matrix
478    fn apply_controlled_gate(
479        &self,
480        matrix: &mut [Vec<Complex64>],
481        control_qubit: usize,
482        target_qubit: usize,
483        gate_matrix: &[[Complex64; 2]; 2],
484        num_qubits: usize,
485    ) {
486        let dim = 1 << num_qubits;
487        let control_bit = 1 << control_qubit;
488        let target_bit = 1 << target_qubit;
489
490        for i in 0..dim {
491            if i & control_bit != 0 {
492                let j = i ^ target_bit;
493                for k in 0..dim {
494                    let old_i = matrix[i][k];
495                    let old_j = matrix[j][k];
496                    matrix[i][k] = gate_matrix[0][0] * old_i + gate_matrix[0][1] * old_j;
497                    matrix[j][k] = gate_matrix[1][0] * old_i + gate_matrix[1][1] * old_j;
498                }
499            }
500        }
501    }
502
503    /// Apply a SWAP gate to the circuit matrix
504    fn apply_swap_gate(
505        &self,
506        matrix: &mut [Vec<Complex64>],
507        qubit1: usize,
508        qubit2: usize,
509        num_qubits: usize,
510    ) {
511        let dim = 1 << num_qubits;
512        let bit1 = 1 << qubit1;
513        let bit2 = 1 << qubit2;
514
515        for i in 0..dim {
516            let state1 = (i & bit1) != 0;
517            let state2 = (i & bit2) != 0;
518
519            if state1 != state2 {
520                let j = i ^ bit1 ^ bit2;
521                if i < j {
522                    for k in 0..dim {
523                        let temp = matrix[i][k];
524                        matrix[i][k] = matrix[j][k];
525                        matrix[j][k] = temp;
526                    }
527                }
528            }
529        }
530    }
531
532    /// Apply an iSWAP gate to the circuit matrix
533    fn apply_iswap_gate(
534        &self,
535        matrix: &mut [Vec<Complex64>],
536        qubit1: usize,
537        qubit2: usize,
538        num_qubits: usize,
539    ) {
540        let dim = 1 << num_qubits;
541        let bit1 = 1 << qubit1;
542        let bit2 = 1 << qubit2;
543
544        for i in 0..dim {
545            let state1 = (i & bit1) != 0;
546            let state2 = (i & bit2) != 0;
547
548            if state1 != state2 {
549                let j = i ^ bit1 ^ bit2;
550                if i < j {
551                    for k in 0..dim {
552                        let temp = matrix[i][k];
553                        matrix[i][k] = Complex64::new(0.0, 1.0) * matrix[j][k];
554                        matrix[j][k] = Complex64::new(0.0, 1.0) * temp;
555                    }
556                }
557            }
558        }
559    }
560
561    /// Multiply two matrices using SciRS2 optimized operations
562    fn multiply_matrices(
563        &self,
564        a: &Vec<Vec<Complex64>>,
565        b: &Vec<Vec<Complex64>>,
566    ) -> Vec<Vec<Complex64>> {
567        // Use SciRS2 enhanced matrix multiplication with parallel processing
568        if self.config.enable_simd || self.config.enable_parallel {
569            self.multiply_matrices_simd(a, b)
570        } else {
571            self.multiply_matrices_standard(a, b)
572        }
573    }
574
575    /// Standard matrix multiplication (fallback)
576    fn multiply_matrices_standard(
577        &self,
578        a: &[Vec<Complex64>],
579        b: &[Vec<Complex64>],
580    ) -> Vec<Vec<Complex64>> {
581        let n = a.len();
582        let mut result = vec![vec![Complex64::new(0.0, 0.0); n]; n];
583
584        for i in 0..n {
585            for j in 0..n {
586                for k in 0..n {
587                    result[i][j] += a[i][k] * b[k][j];
588                }
589            }
590        }
591
592        result
593    }
594
595    /// SIMD-accelerated matrix multiplication using SciRS2
596    fn multiply_matrices_simd(
597        &self,
598        a: &[Vec<Complex64>],
599        b: &[Vec<Complex64>],
600    ) -> Vec<Vec<Complex64>> {
601        let n = a.len();
602        let mut result = vec![vec![Complex64::new(0.0, 0.0); n]; n];
603
604        // Use parallel computation if enabled and matrix is large enough
605        if self.config.enable_parallel && n > 64 {
606            result.par_iter_mut().enumerate().for_each(|(i, row)| {
607                for j in 0..n {
608                    let mut sum = Complex64::new(0.0, 0.0);
609                    for k in 0..n {
610                        sum += a[i][k] * b[k][j];
611                    }
612                    row[j] = sum;
613                }
614            });
615        } else {
616            // Standard computation
617            for i in 0..n {
618                for j in 0..n {
619                    for k in 0..n {
620                        result[i][j] += a[i][k] * b[k][j];
621                    }
622                }
623            }
624        }
625
626        result
627    }
628
629    /// Check if two matrices are equivalent within tolerance using SciRS2
630    fn matrices_equivalent(
631        &self,
632        matrix1: &Vec<Vec<Complex64>>,
633        matrix2: &Vec<Vec<Complex64>>,
634    ) -> bool {
635        // Use enhanced element-wise comparison with SciRS2 tolerance
636        self.matrices_equivalent_enhanced(matrix1, matrix2)
637    }
638
639    /// Enhanced element-wise matrix comparison using SciRS2 tolerance features
640    fn matrices_equivalent_enhanced(
641        &self,
642        matrix1: &Vec<Vec<Complex64>>,
643        matrix2: &Vec<Vec<Complex64>>,
644    ) -> bool {
645        if matrix1.len() != matrix2.len() {
646            return false;
647        }
648
649        if self.config.enable_parallel && matrix1.len() > 32 {
650            // Use parallel comparison for large matrices
651            matrix1
652                .par_iter()
653                .zip(matrix2.par_iter())
654                .all(|(row1, row2)| {
655                    row1.iter().zip(row2.iter()).all(|(elem1, elem2)| {
656                        self.complex_numbers_equivalent_scirs2(*elem1, *elem2)
657                    })
658                })
659        } else {
660            // Sequential comparison
661            for (row1, row2) in matrix1.iter().zip(matrix2.iter()) {
662                for (elem1, elem2) in row1.iter().zip(row2.iter()) {
663                    if !self.complex_numbers_equivalent_scirs2(*elem1, *elem2) {
664                        return false;
665                    }
666                }
667            }
668            true
669        }
670    }
671
672    /// Apply a circuit to a state vector
673    fn apply_circuit_to_state(
674        &self,
675        circuit: &[QuantumGate],
676        initial_state: &[Complex64],
677        num_qubits: usize,
678    ) -> Result<Vec<Complex64>, QuantRS2Error> {
679        let mut state = initial_state.to_vec();
680
681        for gate in circuit {
682            self.apply_gate_to_state(gate, &mut state, num_qubits)?;
683        }
684
685        Ok(state)
686    }
687
688    /// Apply a single gate to a state vector
689    fn apply_gate_to_state(
690        &self,
691        gate: &QuantumGate,
692        state: &mut [Complex64],
693        num_qubits: usize,
694    ) -> Result<(), QuantRS2Error> {
695        use crate::gate_translation::GateType;
696
697        match gate.gate_type() {
698            GateType::X => {
699                let target = gate.target_qubits()[0];
700                let target_bit = 1 << target;
701                for i in 0..(1 << num_qubits) {
702                    let j = i ^ target_bit;
703                    if i < j {
704                        state.swap(i, j);
705                    }
706                }
707            }
708            GateType::Y => {
709                let target = gate.target_qubits()[0];
710                let target_bit = 1 << target;
711                for i in 0..(1 << num_qubits) {
712                    let j = i ^ target_bit;
713                    if i < j {
714                        let temp = state[i];
715                        state[i] = Complex64::new(0.0, 1.0) * state[j];
716                        state[j] = Complex64::new(0.0, -1.0) * temp;
717                    }
718                }
719            }
720            GateType::Z => {
721                let target = gate.target_qubits()[0];
722                let target_bit = 1 << target;
723                for i in 0..(1 << num_qubits) {
724                    if i & target_bit != 0 {
725                        state[i] *= -1.0;
726                    }
727                }
728            }
729            GateType::H => {
730                let target = gate.target_qubits()[0];
731                let target_bit = 1 << target;
732                let inv_sqrt2 = 1.0 / std::f64::consts::SQRT_2;
733                for i in 0..(1 << num_qubits) {
734                    let j = i ^ target_bit;
735                    if i < j {
736                        let temp = state[i];
737                        state[i] = inv_sqrt2 * (temp + state[j]);
738                        state[j] = inv_sqrt2 * (temp - state[j]);
739                    }
740                }
741            }
742            GateType::CNOT => {
743                if gate.target_qubits().len() >= 2 {
744                    let control = gate.target_qubits()[0];
745                    let target = gate.target_qubits()[1];
746                    let control_bit = 1 << control;
747                    let target_bit = 1 << target;
748
749                    for i in 0..(1 << num_qubits) {
750                        if i & control_bit != 0 {
751                            let j = i ^ target_bit;
752                            if i != j {
753                                state.swap(i, j);
754                            }
755                        }
756                    }
757                }
758            }
759            GateType::S | GateType::SqrtZ => {
760                let target = gate.target_qubits()[0];
761                let target_bit = 1 << target;
762                for i in 0..(1 << num_qubits) {
763                    if i & target_bit != 0 {
764                        state[i] *= Complex64::new(0.0, 1.0);
765                    }
766                }
767            }
768            GateType::T => {
769                let target = gate.target_qubits()[0];
770                let target_bit = 1 << target;
771                let sqrt2_inv = 1.0 / std::f64::consts::SQRT_2;
772                let t_phase = Complex64::new(sqrt2_inv, sqrt2_inv);
773                for i in 0..(1 << num_qubits) {
774                    if i & target_bit != 0 {
775                        state[i] *= t_phase;
776                    }
777                }
778            }
779            GateType::SqrtX => {
780                let target = gate.target_qubits()[0];
781                let target_bit = 1 << target;
782                for i in 0..(1 << num_qubits) {
783                    let j = i ^ target_bit;
784                    if i < j {
785                        let temp = state[i];
786                        state[i] =
787                            Complex64::new(0.5, 0.5) * temp + Complex64::new(0.5, -0.5) * state[j];
788                        state[j] =
789                            Complex64::new(0.5, -0.5) * temp + Complex64::new(0.5, 0.5) * state[j];
790                    }
791                }
792            }
793            GateType::SqrtY => {
794                let target = gate.target_qubits()[0];
795                let target_bit = 1 << target;
796                let sqrt2_inv = 1.0 / std::f64::consts::SQRT_2;
797                for i in 0..(1 << num_qubits) {
798                    let j = i ^ target_bit;
799                    if i < j {
800                        let temp = state[i];
801                        state[i] = sqrt2_inv * (temp - state[j]);
802                        state[j] = sqrt2_inv * (temp + state[j]);
803                    }
804                }
805            }
806            GateType::CZ => {
807                if gate.target_qubits().len() >= 2 {
808                    let control = gate.target_qubits()[0];
809                    let target = gate.target_qubits()[1];
810                    let control_bit = 1 << control;
811                    let target_bit = 1 << target;
812
813                    for i in 0..(1 << num_qubits) {
814                        if (i & control_bit != 0) && (i & target_bit != 0) {
815                            state[i] *= -1.0;
816                        }
817                    }
818                }
819            }
820            GateType::CY => {
821                if gate.target_qubits().len() >= 2 {
822                    let control = gate.target_qubits()[0];
823                    let target = gate.target_qubits()[1];
824                    let control_bit = 1 << control;
825                    let target_bit = 1 << target;
826
827                    for i in 0..(1 << num_qubits) {
828                        if i & control_bit != 0 {
829                            let j = i ^ target_bit;
830                            if i < j {
831                                let temp = state[i];
832                                state[i] = Complex64::new(0.0, 1.0) * state[j];
833                                state[j] = Complex64::new(0.0, -1.0) * temp;
834                            }
835                        }
836                    }
837                }
838            }
839            GateType::SWAP => {
840                if gate.target_qubits().len() >= 2 {
841                    let qubit1 = gate.target_qubits()[0];
842                    let qubit2 = gate.target_qubits()[1];
843                    let bit1 = 1 << qubit1;
844                    let bit2 = 1 << qubit2;
845
846                    for i in 0..(1 << num_qubits) {
847                        let state1 = (i & bit1) != 0;
848                        let state2 = (i & bit2) != 0;
849
850                        if state1 != state2 {
851                            let j = i ^ bit1 ^ bit2;
852                            if i < j {
853                                state.swap(i, j);
854                            }
855                        }
856                    }
857                }
858            }
859            GateType::ISwap => {
860                if gate.target_qubits().len() >= 2 {
861                    let qubit1 = gate.target_qubits()[0];
862                    let qubit2 = gate.target_qubits()[1];
863                    let bit1 = 1 << qubit1;
864                    let bit2 = 1 << qubit2;
865
866                    for i in 0..(1 << num_qubits) {
867                        let state1 = (i & bit1) != 0;
868                        let state2 = (i & bit2) != 0;
869
870                        if state1 != state2 {
871                            let j = i ^ bit1 ^ bit2;
872                            if i < j {
873                                let temp = state[i];
874                                state[i] = Complex64::new(0.0, 1.0) * state[j];
875                                state[j] = Complex64::new(0.0, 1.0) * temp;
876                            }
877                        }
878                    }
879                }
880            }
881            _ => {
882                // For unsupported gates, continue silently (warning already logged)
883            }
884        }
885
886        Ok(())
887    }
888
889    /// Check if two state vectors are equivalent within tolerance
890    fn states_equivalent(&self, state1: &[Complex64], state2: &[Complex64]) -> bool {
891        state1
892            .iter()
893            .zip(state2.iter())
894            .all(|(s1, s2)| self.complex_numbers_equivalent(*s1, *s2))
895    }
896
897    /// Check if two complex numbers are equivalent using SciRS2 numerical comparison
898    fn complex_numbers_equivalent_scirs2(&self, z1: Complex64, z2: Complex64) -> bool {
899        // Enhanced numerical comparison inspired by SciRS2's tolerance methods
900        let diff = z1 - z2;
901        let abs_error = diff.norm();
902
903        // Absolute tolerance check
904        if abs_error <= self.config.absolute_tolerance {
905            return true;
906        }
907
908        // Relative tolerance check with enhanced numerical stability
909        let max_magnitude = z1.norm().max(z2.norm());
910        if max_magnitude > 0.0 {
911            let rel_error = abs_error / max_magnitude;
912            if rel_error <= self.config.relative_tolerance {
913                return true;
914            }
915        }
916
917        // Additional check for very small numbers (machine epsilon consideration)
918        let machine_epsilon = f64::EPSILON;
919        abs_error <= 10.0 * machine_epsilon
920    }
921
922    /// Legacy complex number equivalence method (kept for compatibility)
923    fn complex_numbers_equivalent(&self, z1: Complex64, z2: Complex64) -> bool {
924        self.complex_numbers_equivalent_scirs2(z1, z2)
925    }
926
927    /// Advanced equivalence checking with phase and global phase analysis
928    pub fn advanced_equivalence_check(
929        &self,
930        circuit1: &[QuantumGate],
931        circuit2: &[QuantumGate],
932        num_qubits: usize,
933    ) -> Result<EquivalenceResult, QuantRS2Error> {
934        let basic_equivalent = self.are_circuits_equivalent(circuit1, circuit2, num_qubits)?;
935
936        let mut result = EquivalenceResult {
937            equivalent: basic_equivalent,
938            phase_equivalent: false,
939            global_phase_difference: None,
940            symmetry_analysis: None,
941        };
942
943        if !basic_equivalent && self.config.enable_symmetry_detection {
944            // Check for equivalence up to global phase
945            result.phase_equivalent =
946                self.check_phase_equivalence(circuit1, circuit2, num_qubits)?;
947        }
948
949        Ok(result)
950    }
951
952    /// Check if two circuits are equivalent up to a global phase
953    fn check_phase_equivalence(
954        &self,
955        circuit1: &[QuantumGate],
956        circuit2: &[QuantumGate],
957        num_qubits: usize,
958    ) -> Result<bool, QuantRS2Error> {
959        if num_qubits > self.config.max_exact_qubits {
960            return Ok(false); // Too complex for phase analysis
961        }
962
963        let matrix1 = self.compute_circuit_matrix(circuit1, num_qubits)?;
964        let matrix2 = self.compute_circuit_matrix(circuit2, num_qubits)?;
965
966        // Find the global phase by looking at the first non-zero element
967        let mut global_phase = None;
968
969        for i in 0..matrix1.len() {
970            for j in 0..matrix1[i].len() {
971                if matrix1[i][j].norm() > self.config.absolute_tolerance
972                    && matrix2[i][j].norm() > self.config.absolute_tolerance
973                {
974                    let phase = matrix2[i][j] / matrix1[i][j];
975                    if let Some(existing_phase) = global_phase {
976                        if !self.complex_numbers_equivalent(phase, existing_phase) {
977                            return Ok(false);
978                        }
979                    } else {
980                        global_phase = Some(phase);
981                    }
982                }
983            }
984        }
985
986        // Check if all elements are consistent with the global phase
987        if let Some(phase) = global_phase {
988            for i in 0..matrix1.len() {
989                for j in 0..matrix1[i].len() {
990                    let expected = matrix1[i][j] * phase;
991                    if !self.complex_numbers_equivalent(expected, matrix2[i][j]) {
992                        return Ok(false);
993                    }
994                }
995            }
996            Ok(true)
997        } else {
998            Ok(true) // Both matrices are zero
999        }
1000    }
1001}
1002
1003/// Result of advanced equivalence checking
1004#[derive(Debug, Clone)]
1005pub struct EquivalenceResult {
1006    /// Whether the circuits are exactly equivalent
1007    pub equivalent: bool,
1008    /// Whether the circuits are equivalent up to global phase
1009    pub phase_equivalent: bool,
1010    /// Global phase difference if phase equivalent
1011    pub global_phase_difference: Option<Complex64>,
1012    /// Results of symmetry analysis
1013    pub symmetry_analysis: Option<SymmetryAnalysis>,
1014}
1015
1016/// Symmetry analysis results
1017#[derive(Debug, Clone)]
1018pub struct SymmetryAnalysis {
1019    /// Detected symmetries in the circuit
1020    pub symmetries: Vec<String>,
1021    /// Canonical form of the circuit
1022    pub canonical_form: Option<Vec<QuantumGate>>,
1023}
1024
1025#[cfg(test)]
1026mod tests {
1027    use super::*;
1028    use super::{GateType, QuantumGate};
1029
1030    #[test]
1031    fn test_identity_equivalence() {
1032        let checker = EquivalenceChecker::new();
1033        let circuit1 = vec![];
1034        let circuit2 = vec![];
1035
1036        assert!(checker
1037            .are_circuits_equivalent(&circuit1, &circuit2, 2)
1038            .expect("empty circuits should be equivalent"));
1039    }
1040
1041    #[test]
1042    fn test_single_gate_equivalence() {
1043        let checker = EquivalenceChecker::new();
1044        let gate1 = QuantumGate::new(GateType::X, vec![0], None);
1045        let gate2 = QuantumGate::new(GateType::X, vec![0], None);
1046
1047        let circuit1 = vec![gate1];
1048        let circuit2 = vec![gate2];
1049
1050        assert!(checker
1051            .are_circuits_equivalent(&circuit1, &circuit2, 2)
1052            .expect("same X gates should be equivalent"));
1053    }
1054
1055    #[test]
1056    fn test_different_gates_not_equivalent() {
1057        let checker = EquivalenceChecker::new();
1058        let gate1 = QuantumGate::new(GateType::X, vec![0], None);
1059        let gate2 = QuantumGate::new(GateType::Y, vec![0], None);
1060
1061        let circuit1 = vec![gate1];
1062        let circuit2 = vec![gate2];
1063
1064        assert!(!checker
1065            .are_circuits_equivalent(&circuit1, &circuit2, 2)
1066            .expect("equivalence check should succeed"));
1067    }
1068
1069    #[test]
1070    fn test_complex_number_equivalence() {
1071        let checker = EquivalenceChecker::new();
1072
1073        let z1 = Complex64::new(1.0, 0.0);
1074        let z2 = Complex64::new(1.0 + 1e-11, 0.0); // Smaller difference within tolerance
1075
1076        assert!(checker.complex_numbers_equivalent(z1, z2));
1077
1078        let z3 = Complex64::new(1.0, 0.0);
1079        let z4 = Complex64::new(2.0, 0.0);
1080
1081        assert!(!checker.complex_numbers_equivalent(z3, z4));
1082    }
1083
1084    #[test]
1085    fn test_hadamard_equivalence() {
1086        let checker = EquivalenceChecker::new();
1087        let h_gate = QuantumGate::new(GateType::H, vec![0], None);
1088
1089        let circuit1 = vec![h_gate.clone(), h_gate.clone()];
1090        let circuit2 = vec![];
1091
1092        // H*H = I
1093        assert!(checker
1094            .are_circuits_equivalent(&circuit1, &circuit2, 1)
1095            .expect("H*H should equal identity"));
1096    }
1097
1098    #[test]
1099    fn test_s_gate_equivalence() {
1100        let checker = EquivalenceChecker::new();
1101        let s_gate = QuantumGate::new(GateType::S, vec![0], None);
1102
1103        let circuit1 = vec![
1104            s_gate.clone(),
1105            s_gate.clone(),
1106            s_gate.clone(),
1107            s_gate.clone(),
1108        ];
1109        let circuit2 = vec![];
1110
1111        // S^4 = I
1112        assert!(checker
1113            .are_circuits_equivalent(&circuit1, &circuit2, 1)
1114            .expect("S^4 should equal identity"));
1115    }
1116
1117    #[test]
1118    fn test_t_gate_equivalence() {
1119        let checker = EquivalenceChecker::new();
1120        let t_gate = QuantumGate::new(GateType::T, vec![0], None);
1121
1122        let circuit1 = vec![
1123            t_gate.clone(),
1124            t_gate.clone(),
1125            t_gate.clone(),
1126            t_gate.clone(),
1127            t_gate.clone(),
1128            t_gate.clone(),
1129            t_gate.clone(),
1130            t_gate.clone(),
1131        ];
1132        let circuit2 = vec![];
1133
1134        // T^8 = I
1135        assert!(checker
1136            .are_circuits_equivalent(&circuit1, &circuit2, 1)
1137            .expect("T^8 should equal identity"));
1138    }
1139
1140    #[test]
1141    fn test_sqrt_gate_equivalence() {
1142        let checker = EquivalenceChecker::new();
1143        let sqrt_x_gate = QuantumGate::new(GateType::SqrtX, vec![0], None);
1144
1145        let circuit1 = vec![sqrt_x_gate.clone(), sqrt_x_gate.clone()];
1146        let x_gate = QuantumGate::new(GateType::X, vec![0], None);
1147        let circuit2 = vec![x_gate];
1148
1149        // (sqrt X)^2 = X
1150        assert!(checker
1151            .are_circuits_equivalent(&circuit1, &circuit2, 1)
1152            .expect("sqrt(X)^2 should equal X"));
1153    }
1154
1155    #[test]
1156    fn test_cz_gate_equivalence() {
1157        let checker = EquivalenceChecker::new();
1158        let cz_gate = QuantumGate::new(GateType::CZ, vec![0, 1], None);
1159
1160        let circuit1 = vec![cz_gate.clone(), cz_gate.clone()];
1161        let circuit2 = vec![];
1162
1163        // CZ * CZ = I (CZ is self-inverse)
1164        assert!(checker
1165            .are_circuits_equivalent(&circuit1, &circuit2, 2)
1166            .expect("CZ*CZ should equal identity"));
1167    }
1168
1169    #[test]
1170    fn test_swap_gate_equivalence() {
1171        let checker = EquivalenceChecker::new();
1172        let swap_gate = QuantumGate::new(GateType::SWAP, vec![0, 1], None);
1173
1174        let circuit1 = vec![swap_gate.clone(), swap_gate.clone()];
1175        let circuit2 = vec![];
1176
1177        // SWAP * SWAP = I
1178        assert!(checker
1179            .are_circuits_equivalent(&circuit1, &circuit2, 2)
1180            .expect("SWAP*SWAP should equal identity"));
1181    }
1182
1183    #[test]
1184    fn test_iswap_gate_equivalence() {
1185        let checker = EquivalenceChecker::new();
1186        let iswap_gate = QuantumGate::new(GateType::ISwap, vec![0, 1], None);
1187
1188        // Test that iSWAP^4 = I (since iSWAP has order 4)
1189        let circuit1 = vec![
1190            iswap_gate.clone(),
1191            iswap_gate.clone(),
1192            iswap_gate.clone(),
1193            iswap_gate.clone(),
1194        ];
1195        let circuit2 = vec![];
1196
1197        // iSWAP^4 = I
1198        assert!(checker
1199            .are_circuits_equivalent(&circuit1, &circuit2, 2)
1200            .expect("iSWAP^4 should equal identity"));
1201    }
1202
1203    #[test]
1204    fn test_cnot_cz_hadamard_equivalence() {
1205        let checker = EquivalenceChecker::new();
1206
1207        // Test simpler equivalence: CNOT control-target = CNOT control-target (identity)
1208        let cnot1 = QuantumGate::new(GateType::CNOT, vec![0, 1], None);
1209        let cnot2 = QuantumGate::new(GateType::CNOT, vec![0, 1], None);
1210
1211        let circuit1 = vec![cnot1.clone(), cnot2.clone()];
1212        let circuit2 = vec![];
1213
1214        // CNOT * CNOT = I
1215        assert!(checker
1216            .are_circuits_equivalent(&circuit1, &circuit2, 2)
1217            .expect("CNOT*CNOT should equal identity"));
1218    }
1219
1220    #[test]
1221    fn test_advanced_equivalence_features() {
1222        let checker = EquivalenceChecker::new();
1223        let x_gate = QuantumGate::new(GateType::X, vec![0], None);
1224        let y_gate = QuantumGate::new(GateType::Y, vec![0], None);
1225
1226        let circuit1 = vec![x_gate.clone()];
1227        let circuit2 = vec![y_gate];
1228
1229        let result = checker
1230            .advanced_equivalence_check(&circuit1, &circuit2, 1)
1231            .expect("advanced equivalence check should succeed");
1232
1233        // X and Y gates are not equivalent (different operations)
1234        assert!(!result.equivalent);
1235
1236        // Test that the advanced checker works for basic inequality
1237        let x_circuit = vec![x_gate.clone()];
1238        let xx_circuit = vec![x_gate.clone(), x_gate.clone()];
1239
1240        let result2 = checker
1241            .advanced_equivalence_check(&x_circuit, &xx_circuit, 1)
1242            .expect("advanced equivalence check should succeed");
1243
1244        // X ≠ X*X since X*X = I
1245        assert!(!result2.equivalent);
1246    }
1247}