1use super::execution::{BatchCircuit, BatchCircuitExecutor};
4use super::BatchStateVector;
5use crate::error::{QuantRS2Error, QuantRS2Result};
6use scirs2_core::ndarray::{Array1, Array2};
7use scirs2_core::Complex64;
8use crate::optimization_stubs::{minimize, Method, OptimizeResult, Options};
10use crate::parallel_ops_stubs::*;
11use std::sync::Arc;
13
14pub struct BatchParameterOptimizer {
20 executor: BatchCircuitExecutor,
22 config: OptimizationConfig,
24 gradient_cache: Option<GradientCache>,
26}
27
28#[derive(Debug, Clone)]
30pub struct OptimizationConfig {
31 pub max_iterations: usize,
33 pub tolerance: f64,
35 pub learning_rate: f64,
37 pub parallel_gradients: bool,
39 pub method: Method,
41 pub enable_cache: bool,
43}
44
45impl Default for OptimizationConfig {
46 fn default() -> Self {
47 Self {
48 max_iterations: 100,
49 tolerance: 1e-6,
50 learning_rate: 0.1,
51 parallel_gradients: true,
52 method: Method::BFGS,
53 enable_cache: true,
54 }
55 }
56}
57
58#[derive(Debug, Clone)]
60struct GradientCache {
61 gradients: Vec<Array1<f64>>,
63 parameters: Vec<Vec<f64>>,
65 max_size: usize,
67}
68
69impl BatchParameterOptimizer {
70 pub const fn new(executor: BatchCircuitExecutor, config: OptimizationConfig) -> Self {
72 let gradient_cache = if config.enable_cache {
73 Some(GradientCache {
74 gradients: Vec::new(),
75 parameters: Vec::new(),
76 max_size: 100,
77 })
78 } else {
79 None
80 };
81
82 Self {
83 executor,
84 config,
85 gradient_cache,
86 }
87 }
88
89 pub fn optimize_batch(
91 &mut self,
92 circuit_fn: impl Fn(&[f64]) -> QuantRS2Result<BatchCircuit> + Sync + Send + Clone + 'static,
93 initial_params: &[f64],
94 cost_fn: impl Fn(&BatchStateVector) -> f64 + Sync + Send + Clone + 'static,
95 initial_states: &BatchStateVector,
96 ) -> QuantRS2Result<OptimizeResult<f64>> {
97 let _num_params = initial_params.len();
98
99 let executor = Arc::new(self.executor.clone());
101 let states = Arc::new(initial_states.clone());
102 let circuit_fn = Arc::new(circuit_fn);
103 let cost_fn = Arc::new(cost_fn);
104
105 let objective = {
106 let executor = executor;
107 let states = states;
108 let circuit_fn = circuit_fn;
109 let cost_fn = cost_fn;
110
111 move |params: &scirs2_core::ndarray::ArrayView1<f64>| -> f64 {
112 let params_slice = match params.as_slice() {
113 Some(slice) => slice,
114 None => return f64::INFINITY,
115 };
116 let circuit = match (*circuit_fn)(params_slice) {
117 Ok(c) => c,
118 Err(_) => return f64::INFINITY,
119 };
120
121 let mut batch_copy = (*states).clone();
122 match executor.execute_batch(&circuit, &mut batch_copy) {
123 Ok(_) => (*cost_fn)(&batch_copy),
124 Err(_) => f64::INFINITY,
125 }
126 }
127 };
128
129 let options = Options {
131 max_iter: self.config.max_iterations,
132 ftol: self.config.tolerance,
133 gtol: self.config.tolerance,
134 ..Default::default()
135 };
136
137 let initial_array = Array1::from_vec(initial_params.to_vec());
139 let result = minimize(objective, &initial_array, self.config.method, Some(options));
140
141 match result {
142 Ok(opt_result) => Ok(opt_result),
143 Err(e) => Err(QuantRS2Error::InvalidInput(format!(
144 "Optimization failed: {e:?}"
145 ))),
146 }
147 }
148
149 pub fn compute_gradients_batch(
151 &mut self,
152 circuit_fn: impl Fn(&[f64]) -> QuantRS2Result<BatchCircuit> + Sync + Send,
153 params: &[f64],
154 cost_fn: impl Fn(&BatchStateVector) -> f64 + Sync + Send,
155 initial_states: &BatchStateVector,
156 shift: f64,
157 ) -> QuantRS2Result<Vec<f64>> {
158 if let Some(cache) = &self.gradient_cache {
160 for (i, cached_params) in cache.parameters.iter().enumerate() {
161 if params
162 .iter()
163 .zip(cached_params)
164 .all(|(a, b)| (a - b).abs() < 1e-10)
165 {
166 return Ok(cache.gradients[i].to_vec());
167 }
168 }
169 }
170
171 let num_params = params.len();
172
173 if self.config.parallel_gradients {
174 let executor = self.executor.clone();
177 let gradients: Vec<f64> = (0..num_params)
178 .into_par_iter()
179 .map(|i| {
180 compute_single_gradient_static(
181 &executor,
182 &circuit_fn,
183 params,
184 i,
185 &cost_fn,
186 initial_states,
187 shift,
188 )
189 .unwrap_or(0.0)
190 })
191 .collect();
192
193 if let Some(cache) = &mut self.gradient_cache {
195 if cache.gradients.len() >= cache.max_size {
196 cache.gradients.remove(0);
197 cache.parameters.remove(0);
198 }
199 cache.gradients.push(Array1::from_vec(gradients.clone()));
200 cache.parameters.push(params.to_vec());
201 }
202
203 Ok(gradients)
204 } else {
205 let mut gradients = vec![0.0; num_params];
207
208 for i in 0..num_params {
209 gradients[i] = self.compute_single_gradient(
210 &circuit_fn,
211 params,
212 i,
213 &cost_fn,
214 initial_states,
215 shift,
216 )?;
217 }
218
219 Ok(gradients)
220 }
221 }
222
223 fn compute_single_gradient(
225 &self,
226 circuit_fn: impl Fn(&[f64]) -> QuantRS2Result<BatchCircuit>,
227 params: &[f64],
228 param_idx: usize,
229 cost_fn: impl Fn(&BatchStateVector) -> f64,
230 initial_states: &BatchStateVector,
231 shift: f64,
232 ) -> QuantRS2Result<f64> {
233 compute_single_gradient_static(
234 &self.executor,
235 &circuit_fn,
236 params,
237 param_idx,
238 &cost_fn,
239 initial_states,
240 shift,
241 )
242 }
243
244 pub fn optimize_parallel_batch(
246 &mut self,
247 circuit_fn: impl Fn(&[f64]) -> QuantRS2Result<BatchCircuit> + Sync + Send + Clone + 'static,
248 initial_param_sets: &[Vec<f64>],
249 cost_fn: impl Fn(&BatchStateVector) -> f64 + Sync + Send + Clone + 'static,
250 initial_states: &BatchStateVector,
251 ) -> QuantRS2Result<Vec<OptimizeResult<f64>>> {
252 let results: Vec<_> = initial_param_sets
253 .par_iter()
254 .map(|params| {
255 let mut optimizer = self.clone();
256 optimizer.optimize_batch(
257 circuit_fn.clone(),
258 params,
259 cost_fn.clone(),
260 initial_states,
261 )
262 })
263 .collect::<QuantRS2Result<Vec<_>>>()?;
264
265 Ok(results)
266 }
267}
268
269impl Clone for BatchParameterOptimizer {
270 fn clone(&self) -> Self {
271 Self {
272 executor: self.executor.clone(),
273 config: self.config.clone(),
274 gradient_cache: self.gradient_cache.clone(),
275 }
276 }
277}
278
279impl Clone for BatchCircuitExecutor {
280 fn clone(&self) -> Self {
281 Self {
282 config: self.config.clone(),
283 gpu_backend: self.gpu_backend.clone(),
284 }
286 }
287}
288
289fn compute_single_gradient_static(
291 executor: &BatchCircuitExecutor,
292 circuit_fn: &impl Fn(&[f64]) -> QuantRS2Result<BatchCircuit>,
293 params: &[f64],
294 param_idx: usize,
295 cost_fn: &impl Fn(&BatchStateVector) -> f64,
296 initial_states: &BatchStateVector,
297 shift: f64,
298) -> QuantRS2Result<f64> {
299 let mut params_plus = params.to_vec();
301 let mut params_minus = params.to_vec();
302
303 params_plus[param_idx] += shift;
304 params_minus[param_idx] -= shift;
305
306 let circuit_plus = circuit_fn(¶ms_plus)?;
308 let circuit_minus = circuit_fn(¶ms_minus)?;
309
310 let mut states_plus = initial_states.clone();
311 let mut states_minus = initial_states.clone();
312
313 let result_plus = executor.execute_batch(&circuit_plus, &mut states_plus);
314 let result_minus = executor.execute_batch(&circuit_minus, &mut states_minus);
315
316 result_plus?;
317 result_minus?;
318
319 let cost_plus = cost_fn(&states_plus);
320 let cost_minus = cost_fn(&states_minus);
321
322 Ok((cost_plus - cost_minus) / (2.0 * shift))
323}
324
325pub struct BatchVQE {
327 optimizer: BatchParameterOptimizer,
329 hamiltonian: Array2<Complex64>,
331}
332
333impl BatchVQE {
334 pub const fn new(
336 executor: BatchCircuitExecutor,
337 hamiltonian: Array2<Complex64>,
338 config: OptimizationConfig,
339 ) -> Self {
340 Self {
341 optimizer: BatchParameterOptimizer::new(executor, config),
342 hamiltonian,
343 }
344 }
345
346 pub fn optimize(
348 &mut self,
349 ansatz_fn: impl Fn(&[f64]) -> QuantRS2Result<BatchCircuit> + Sync + Send + Clone + 'static,
350 initial_params: &[f64],
351 num_samples: usize,
352 n_qubits: usize,
353 ) -> QuantRS2Result<VQEResult> {
354 let batch = BatchStateVector::new(num_samples, n_qubits, Default::default())?;
356
357 let hamiltonian = self.hamiltonian.clone();
359 let cost_fn = move |states: &BatchStateVector| -> f64 {
360 let mut total_energy = 0.0;
361
362 for i in 0..states.batch_size() {
363 if let Ok(state) = states.get_state(i) {
364 let energy = compute_energy(&state, &hamiltonian);
365 total_energy += energy;
366 }
367 }
368
369 total_energy / states.batch_size() as f64
370 };
371
372 let result = self
374 .optimizer
375 .optimize_batch(ansatz_fn, initial_params, cost_fn, &batch)?;
376
377 Ok(VQEResult {
378 optimal_params: result.x.to_vec(),
379 ground_state_energy: result.fun,
380 iterations: result.iterations,
381 converged: result.success,
382 })
383 }
384}
385
386#[derive(Debug, Clone)]
388pub struct VQEResult {
389 pub optimal_params: Vec<f64>,
391 pub ground_state_energy: f64,
393 pub iterations: usize,
395 pub converged: bool,
397}
398
399fn compute_energy(state: &Array1<Complex64>, hamiltonian: &Array2<Complex64>) -> f64 {
401 let temp = hamiltonian.dot(state);
402 let energy = state
403 .iter()
404 .zip(temp.iter())
405 .map(|(a, b)| a.conj() * b)
406 .sum::<Complex64>();
407
408 energy.re
409}
410
411pub struct BatchQAOA {
413 optimizer: BatchParameterOptimizer,
415 cost_hamiltonian: Array2<Complex64>,
417 mixer_hamiltonian: Array2<Complex64>,
419 p: usize,
421}
422
423impl BatchQAOA {
424 pub const fn new(
426 executor: BatchCircuitExecutor,
427 cost_hamiltonian: Array2<Complex64>,
428 mixer_hamiltonian: Array2<Complex64>,
429 p: usize,
430 config: OptimizationConfig,
431 ) -> Self {
432 Self {
433 optimizer: BatchParameterOptimizer::new(executor, config),
434 cost_hamiltonian,
435 mixer_hamiltonian,
436 p,
437 }
438 }
439
440 pub fn optimize(
442 &mut self,
443 initial_params: &[f64],
444 num_samples: usize,
445 n_qubits: usize,
446 ) -> QuantRS2Result<QAOAResult> {
447 if initial_params.len() != 2 * self.p {
448 return Err(QuantRS2Error::InvalidInput(format!(
449 "Expected {} parameters, got {}",
450 2 * self.p,
451 initial_params.len()
452 )));
453 }
454
455 let _cost_ham = self.cost_hamiltonian.clone();
458 let _mixer_ham = self.mixer_hamiltonian.clone();
459
460 let qaoa_circuit = move |_params: &[f64]| -> QuantRS2Result<BatchCircuit> {
461 let circuit = BatchCircuit::new(n_qubits);
463 Ok(circuit)
465 };
466
467 let batch = BatchStateVector::new(num_samples, n_qubits, Default::default())?;
469 let cost_hamiltonian = self.cost_hamiltonian.clone();
473 let cost_fn = move |states: &BatchStateVector| -> f64 {
474 let mut total_cost = 0.0;
475
476 for i in 0..states.batch_size() {
477 if let Ok(state) = states.get_state(i) {
478 let cost = compute_energy(&state, &cost_hamiltonian);
479 total_cost += cost;
480 }
481 }
482
483 total_cost / states.batch_size() as f64
484 };
485
486 let result =
488 self.optimizer
489 .optimize_batch(qaoa_circuit, initial_params, cost_fn, &batch)?;
490
491 Ok(QAOAResult {
492 optimal_params: result.x.to_vec(),
493 optimal_cost: result.fun,
494 iterations: result.iterations,
495 converged: result.success,
496 })
497 }
498}
499
500#[derive(Debug, Clone)]
502pub struct QAOAResult {
503 pub optimal_params: Vec<f64>,
505 pub optimal_cost: f64,
507 pub iterations: usize,
509 pub converged: bool,
511}
512
513#[cfg(test)]
514mod tests {
515 use super::*;
516 use crate::gate::single::Hadamard;
517 use crate::qubit::QubitId;
518 use scirs2_core::ndarray::array;
519
520 #[test]
521 fn test_gradient_computation() {
522 let config = Default::default();
523 let executor = BatchCircuitExecutor::new(config)
524 .expect("BatchCircuitExecutor creation should succeed");
525 let mut optimizer = BatchParameterOptimizer::new(executor, Default::default());
526
527 let circuit_fn = |_params: &[f64]| -> QuantRS2Result<BatchCircuit> {
529 let mut circuit = BatchCircuit::new(1);
530 circuit.add_gate(Box::new(Hadamard { target: QubitId(0) }))?;
532 Ok(circuit)
533 };
534
535 let cost_fn = |_states: &BatchStateVector| -> f64 { 1.0 };
537
538 let batch = BatchStateVector::new(1, 1, Default::default())
539 .expect("BatchStateVector creation should succeed");
540 let params = vec![0.5];
541
542 let gradients = optimizer
543 .compute_gradients_batch(circuit_fn, ¶ms, cost_fn, &batch, 0.01)
544 .expect("Gradient computation should succeed");
545
546 assert_eq!(gradients.len(), 1);
547 }
548
549 #[test]
550 fn test_vqe_setup() {
551 let executor = BatchCircuitExecutor::new(Default::default())
552 .expect("BatchCircuitExecutor creation should succeed");
553
554 let hamiltonian = array![
556 [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)],
557 [Complex64::new(0.0, 0.0), Complex64::new(-1.0, 0.0)]
558 ];
559
560 let vqe = BatchVQE::new(executor, hamiltonian, Default::default());
561
562 assert_eq!(vqe.hamiltonian.shape(), &[2, 2]);
564 }
565}