quantrs2_core/batch/
optimization.rs

1//! Batch optimization for parameterized quantum circuits using SciRS2
2
3use super::execution::{BatchCircuit, BatchCircuitExecutor};
4use super::BatchStateVector;
5use crate::error::{QuantRS2Error, QuantRS2Result};
6use scirs2_core::ndarray::{Array1, Array2};
7use scirs2_core::Complex64;
8// use scirs2_core::parallel_ops::*;
9use crate::optimization_stubs::{minimize, Method, OptimizeResult, Options};
10use crate::parallel_ops_stubs::*;
11// use scirs2_core::optimization::{minimize, Method, OptimizeResult, Options};
12use std::sync::Arc;
13
14// Import SciRS2 optimization
15// extern crate scirs2_optimize;
16// use scirs2_optimize::unconstrained::{minimize, Method, OptimizeResult, Options};
17
18/// Batch optimizer for parameterized quantum circuits
19pub struct BatchParameterOptimizer {
20    /// Circuit executor
21    executor: BatchCircuitExecutor,
22    /// Optimization configuration
23    config: OptimizationConfig,
24    /// Cache for gradient computations
25    gradient_cache: Option<GradientCache>,
26}
27
28/// Optimization configuration
29#[derive(Debug, Clone)]
30pub struct OptimizationConfig {
31    /// Maximum iterations
32    pub max_iterations: usize,
33    /// Convergence tolerance
34    pub tolerance: f64,
35    /// Learning rate
36    pub learning_rate: f64,
37    /// Use parallel gradient computation
38    pub parallel_gradients: bool,
39    /// Optimization method
40    pub method: Method,
41    /// Enable gradient caching
42    pub enable_cache: bool,
43}
44
45impl Default for OptimizationConfig {
46    fn default() -> Self {
47        Self {
48            max_iterations: 100,
49            tolerance: 1e-6,
50            learning_rate: 0.1,
51            parallel_gradients: true,
52            method: Method::BFGS,
53            enable_cache: true,
54        }
55    }
56}
57
58/// Gradient cache for repeated computations
59#[derive(Debug, Clone)]
60struct GradientCache {
61    /// Cached gradients
62    gradients: Vec<Array1<f64>>,
63    /// Parameter values for cached gradients
64    parameters: Vec<Vec<f64>>,
65    /// Maximum cache size
66    max_size: usize,
67}
68
69impl BatchParameterOptimizer {
70    /// Create a new batch parameter optimizer
71    pub const fn new(executor: BatchCircuitExecutor, config: OptimizationConfig) -> Self {
72        let gradient_cache = if config.enable_cache {
73            Some(GradientCache {
74                gradients: Vec::new(),
75                parameters: Vec::new(),
76                max_size: 100,
77            })
78        } else {
79            None
80        };
81
82        Self {
83            executor,
84            config,
85            gradient_cache,
86        }
87    }
88
89    /// Optimize parameters for a batch of circuits
90    pub fn optimize_batch(
91        &mut self,
92        circuit_fn: impl Fn(&[f64]) -> QuantRS2Result<BatchCircuit> + Sync + Send + Clone + 'static,
93        initial_params: &[f64],
94        cost_fn: impl Fn(&BatchStateVector) -> f64 + Sync + Send + Clone + 'static,
95        initial_states: &BatchStateVector,
96    ) -> QuantRS2Result<OptimizeResult<f64>> {
97        let _num_params = initial_params.len();
98
99        // Define objective function
100        let executor = Arc::new(self.executor.clone());
101        let states = Arc::new(initial_states.clone());
102        let circuit_fn = Arc::new(circuit_fn);
103        let cost_fn = Arc::new(cost_fn);
104
105        let objective = {
106            let executor = executor;
107            let states = states;
108            let circuit_fn = circuit_fn;
109            let cost_fn = cost_fn;
110
111            move |params: &scirs2_core::ndarray::ArrayView1<f64>| -> f64 {
112                let params_slice = match params.as_slice() {
113                    Some(slice) => slice,
114                    None => return f64::INFINITY,
115                };
116                let circuit = match (*circuit_fn)(params_slice) {
117                    Ok(c) => c,
118                    Err(_) => return f64::INFINITY,
119                };
120
121                let mut batch_copy = (*states).clone();
122                match executor.execute_batch(&circuit, &mut batch_copy) {
123                    Ok(_) => (*cost_fn)(&batch_copy),
124                    Err(_) => f64::INFINITY,
125                }
126            }
127        };
128
129        // Create options
130        let options = Options {
131            max_iter: self.config.max_iterations,
132            ftol: self.config.tolerance,
133            gtol: self.config.tolerance,
134            ..Default::default()
135        };
136
137        // Run optimization using SciRS2
138        let initial_array = Array1::from_vec(initial_params.to_vec());
139        let result = minimize(objective, &initial_array, self.config.method, Some(options));
140
141        match result {
142            Ok(opt_result) => Ok(opt_result),
143            Err(e) => Err(QuantRS2Error::InvalidInput(format!(
144                "Optimization failed: {e:?}"
145            ))),
146        }
147    }
148
149    /// Compute gradients using parameter shift rule
150    pub fn compute_gradients_batch(
151        &mut self,
152        circuit_fn: impl Fn(&[f64]) -> QuantRS2Result<BatchCircuit> + Sync + Send,
153        params: &[f64],
154        cost_fn: impl Fn(&BatchStateVector) -> f64 + Sync + Send,
155        initial_states: &BatchStateVector,
156        shift: f64,
157    ) -> QuantRS2Result<Vec<f64>> {
158        // Check cache
159        if let Some(cache) = &self.gradient_cache {
160            for (i, cached_params) in cache.parameters.iter().enumerate() {
161                if params
162                    .iter()
163                    .zip(cached_params)
164                    .all(|(a, b)| (a - b).abs() < 1e-10)
165                {
166                    return Ok(cache.gradients[i].to_vec());
167                }
168            }
169        }
170
171        let num_params = params.len();
172
173        if self.config.parallel_gradients {
174            // Compute gradients in parallel
175            // Clone executor for parallel use
176            let executor = self.executor.clone();
177            let gradients: Vec<f64> = (0..num_params)
178                .into_par_iter()
179                .map(|i| {
180                    compute_single_gradient_static(
181                        &executor,
182                        &circuit_fn,
183                        params,
184                        i,
185                        &cost_fn,
186                        initial_states,
187                        shift,
188                    )
189                    .unwrap_or(0.0)
190                })
191                .collect();
192
193            // Update cache
194            if let Some(cache) = &mut self.gradient_cache {
195                if cache.gradients.len() >= cache.max_size {
196                    cache.gradients.remove(0);
197                    cache.parameters.remove(0);
198                }
199                cache.gradients.push(Array1::from_vec(gradients.clone()));
200                cache.parameters.push(params.to_vec());
201            }
202
203            Ok(gradients)
204        } else {
205            // Sequential gradient computation
206            let mut gradients = vec![0.0; num_params];
207
208            for i in 0..num_params {
209                gradients[i] = self.compute_single_gradient(
210                    &circuit_fn,
211                    params,
212                    i,
213                    &cost_fn,
214                    initial_states,
215                    shift,
216                )?;
217            }
218
219            Ok(gradients)
220        }
221    }
222
223    /// Compute gradient for a single parameter
224    fn compute_single_gradient(
225        &self,
226        circuit_fn: impl Fn(&[f64]) -> QuantRS2Result<BatchCircuit>,
227        params: &[f64],
228        param_idx: usize,
229        cost_fn: impl Fn(&BatchStateVector) -> f64,
230        initial_states: &BatchStateVector,
231        shift: f64,
232    ) -> QuantRS2Result<f64> {
233        compute_single_gradient_static(
234            &self.executor,
235            &circuit_fn,
236            params,
237            param_idx,
238            &cost_fn,
239            initial_states,
240            shift,
241        )
242    }
243
244    /// Optimize multiple parameter sets in parallel
245    pub fn optimize_parallel_batch(
246        &mut self,
247        circuit_fn: impl Fn(&[f64]) -> QuantRS2Result<BatchCircuit> + Sync + Send + Clone + 'static,
248        initial_param_sets: &[Vec<f64>],
249        cost_fn: impl Fn(&BatchStateVector) -> f64 + Sync + Send + Clone + 'static,
250        initial_states: &BatchStateVector,
251    ) -> QuantRS2Result<Vec<OptimizeResult<f64>>> {
252        let results: Vec<_> = initial_param_sets
253            .par_iter()
254            .map(|params| {
255                let mut optimizer = self.clone();
256                optimizer.optimize_batch(
257                    circuit_fn.clone(),
258                    params,
259                    cost_fn.clone(),
260                    initial_states,
261                )
262            })
263            .collect::<QuantRS2Result<Vec<_>>>()?;
264
265        Ok(results)
266    }
267}
268
269impl Clone for BatchParameterOptimizer {
270    fn clone(&self) -> Self {
271        Self {
272            executor: self.executor.clone(),
273            config: self.config.clone(),
274            gradient_cache: self.gradient_cache.clone(),
275        }
276    }
277}
278
279impl Clone for BatchCircuitExecutor {
280    fn clone(&self) -> Self {
281        Self {
282            config: self.config.clone(),
283            gpu_backend: self.gpu_backend.clone(),
284            // thread_pool: None, // Don't clone thread pool - removed per CORE_USAGE_POLICY
285        }
286    }
287}
288
289/// Static function to compute gradient for a single parameter
290fn compute_single_gradient_static(
291    executor: &BatchCircuitExecutor,
292    circuit_fn: &impl Fn(&[f64]) -> QuantRS2Result<BatchCircuit>,
293    params: &[f64],
294    param_idx: usize,
295    cost_fn: &impl Fn(&BatchStateVector) -> f64,
296    initial_states: &BatchStateVector,
297    shift: f64,
298) -> QuantRS2Result<f64> {
299    // Parameter shift rule: df/dθ = (f(θ+π/2) - f(θ-π/2)) / 2
300    let mut params_plus = params.to_vec();
301    let mut params_minus = params.to_vec();
302
303    params_plus[param_idx] += shift;
304    params_minus[param_idx] -= shift;
305
306    // Evaluate at shifted parameters
307    let circuit_plus = circuit_fn(&params_plus)?;
308    let circuit_minus = circuit_fn(&params_minus)?;
309
310    let mut states_plus = initial_states.clone();
311    let mut states_minus = initial_states.clone();
312
313    let result_plus = executor.execute_batch(&circuit_plus, &mut states_plus);
314    let result_minus = executor.execute_batch(&circuit_minus, &mut states_minus);
315
316    result_plus?;
317    result_minus?;
318
319    let cost_plus = cost_fn(&states_plus);
320    let cost_minus = cost_fn(&states_minus);
321
322    Ok((cost_plus - cost_minus) / (2.0 * shift))
323}
324
325/// Batch VQE (Variational Quantum Eigensolver) optimization
326pub struct BatchVQE {
327    /// Parameter optimizer
328    optimizer: BatchParameterOptimizer,
329    /// Hamiltonian to minimize
330    hamiltonian: Array2<Complex64>,
331}
332
333impl BatchVQE {
334    /// Create a new batch VQE optimizer
335    pub const fn new(
336        executor: BatchCircuitExecutor,
337        hamiltonian: Array2<Complex64>,
338        config: OptimizationConfig,
339    ) -> Self {
340        Self {
341            optimizer: BatchParameterOptimizer::new(executor, config),
342            hamiltonian,
343        }
344    }
345
346    /// Run VQE optimization
347    pub fn optimize(
348        &mut self,
349        ansatz_fn: impl Fn(&[f64]) -> QuantRS2Result<BatchCircuit> + Sync + Send + Clone + 'static,
350        initial_params: &[f64],
351        num_samples: usize,
352        n_qubits: usize,
353    ) -> QuantRS2Result<VQEResult> {
354        // Create batch of initial states
355        let batch = BatchStateVector::new(num_samples, n_qubits, Default::default())?;
356
357        // Define cost function (energy expectation)
358        let hamiltonian = self.hamiltonian.clone();
359        let cost_fn = move |states: &BatchStateVector| -> f64 {
360            let mut total_energy = 0.0;
361
362            for i in 0..states.batch_size() {
363                if let Ok(state) = states.get_state(i) {
364                    let energy = compute_energy(&state, &hamiltonian);
365                    total_energy += energy;
366                }
367            }
368
369            total_energy / states.batch_size() as f64
370        };
371
372        // Run optimization
373        let result = self
374            .optimizer
375            .optimize_batch(ansatz_fn, initial_params, cost_fn, &batch)?;
376
377        Ok(VQEResult {
378            optimal_params: result.x.to_vec(),
379            ground_state_energy: result.fun,
380            iterations: result.iterations,
381            converged: result.success,
382        })
383    }
384}
385
386/// VQE optimization result
387#[derive(Debug, Clone)]
388pub struct VQEResult {
389    /// Optimal parameters
390    pub optimal_params: Vec<f64>,
391    /// Ground state energy
392    pub ground_state_energy: f64,
393    /// Number of iterations
394    pub iterations: usize,
395    /// Whether optimization converged
396    pub converged: bool,
397}
398
399/// Compute energy expectation value
400fn compute_energy(state: &Array1<Complex64>, hamiltonian: &Array2<Complex64>) -> f64 {
401    let temp = hamiltonian.dot(state);
402    let energy = state
403        .iter()
404        .zip(temp.iter())
405        .map(|(a, b)| a.conj() * b)
406        .sum::<Complex64>();
407
408    energy.re
409}
410
411/// Batch QAOA (Quantum Approximate Optimization Algorithm)
412pub struct BatchQAOA {
413    /// Parameter optimizer
414    optimizer: BatchParameterOptimizer,
415    /// Problem Hamiltonian
416    cost_hamiltonian: Array2<Complex64>,
417    /// Mixer Hamiltonian
418    mixer_hamiltonian: Array2<Complex64>,
419    /// Number of QAOA layers
420    p: usize,
421}
422
423impl BatchQAOA {
424    /// Create a new batch QAOA optimizer
425    pub const fn new(
426        executor: BatchCircuitExecutor,
427        cost_hamiltonian: Array2<Complex64>,
428        mixer_hamiltonian: Array2<Complex64>,
429        p: usize,
430        config: OptimizationConfig,
431    ) -> Self {
432        Self {
433            optimizer: BatchParameterOptimizer::new(executor, config),
434            cost_hamiltonian,
435            mixer_hamiltonian,
436            p,
437        }
438    }
439
440    /// Run QAOA optimization
441    pub fn optimize(
442        &mut self,
443        initial_params: &[f64],
444        num_samples: usize,
445        n_qubits: usize,
446    ) -> QuantRS2Result<QAOAResult> {
447        if initial_params.len() != 2 * self.p {
448            return Err(QuantRS2Error::InvalidInput(format!(
449                "Expected {} parameters, got {}",
450                2 * self.p,
451                initial_params.len()
452            )));
453        }
454
455        // Create QAOA circuit constructor
456        // let _p = self.p;
457        let _cost_ham = self.cost_hamiltonian.clone();
458        let _mixer_ham = self.mixer_hamiltonian.clone();
459
460        let qaoa_circuit = move |_params: &[f64]| -> QuantRS2Result<BatchCircuit> {
461            // This is a placeholder - actual QAOA circuit construction would go here
462            let circuit = BatchCircuit::new(n_qubits);
463            // Add QAOA layers based on params, cost_ham, mixer_ham
464            Ok(circuit)
465        };
466
467        // Create batch of superposition initial states
468        let batch = BatchStateVector::new(num_samples, n_qubits, Default::default())?;
469        // Initialize to uniform superposition (would apply Hadamards)
470
471        // Define cost function
472        let cost_hamiltonian = self.cost_hamiltonian.clone();
473        let cost_fn = move |states: &BatchStateVector| -> f64 {
474            let mut total_cost = 0.0;
475
476            for i in 0..states.batch_size() {
477                if let Ok(state) = states.get_state(i) {
478                    let cost = compute_energy(&state, &cost_hamiltonian);
479                    total_cost += cost;
480                }
481            }
482
483            total_cost / states.batch_size() as f64
484        };
485
486        // Run optimization
487        let result =
488            self.optimizer
489                .optimize_batch(qaoa_circuit, initial_params, cost_fn, &batch)?;
490
491        Ok(QAOAResult {
492            optimal_params: result.x.to_vec(),
493            optimal_cost: result.fun,
494            iterations: result.iterations,
495            converged: result.success,
496        })
497    }
498}
499
500/// QAOA optimization result
501#[derive(Debug, Clone)]
502pub struct QAOAResult {
503    /// Optimal parameters (beta and gamma values)
504    pub optimal_params: Vec<f64>,
505    /// Optimal cost value
506    pub optimal_cost: f64,
507    /// Number of iterations
508    pub iterations: usize,
509    /// Whether optimization converged
510    pub converged: bool,
511}
512
513#[cfg(test)]
514mod tests {
515    use super::*;
516    use crate::gate::single::Hadamard;
517    use crate::qubit::QubitId;
518    use scirs2_core::ndarray::array;
519
520    #[test]
521    fn test_gradient_computation() {
522        let config = Default::default();
523        let executor = BatchCircuitExecutor::new(config)
524            .expect("BatchCircuitExecutor creation should succeed");
525        let mut optimizer = BatchParameterOptimizer::new(executor, Default::default());
526
527        // Simple circuit function
528        let circuit_fn = |_params: &[f64]| -> QuantRS2Result<BatchCircuit> {
529            let mut circuit = BatchCircuit::new(1);
530            // Add parameterized rotation based on params[0]
531            circuit.add_gate(Box::new(Hadamard { target: QubitId(0) }))?;
532            Ok(circuit)
533        };
534
535        // Simple cost function
536        let cost_fn = |_states: &BatchStateVector| -> f64 { 1.0 };
537
538        let batch = BatchStateVector::new(1, 1, Default::default())
539            .expect("BatchStateVector creation should succeed");
540        let params = vec![0.5];
541
542        let gradients = optimizer
543            .compute_gradients_batch(circuit_fn, &params, cost_fn, &batch, 0.01)
544            .expect("Gradient computation should succeed");
545
546        assert_eq!(gradients.len(), 1);
547    }
548
549    #[test]
550    fn test_vqe_setup() {
551        let executor = BatchCircuitExecutor::new(Default::default())
552            .expect("BatchCircuitExecutor creation should succeed");
553
554        // Simple 2x2 Hamiltonian
555        let hamiltonian = array![
556            [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)],
557            [Complex64::new(0.0, 0.0), Complex64::new(-1.0, 0.0)]
558        ];
559
560        let vqe = BatchVQE::new(executor, hamiltonian, Default::default());
561
562        // Just test creation
563        assert_eq!(vqe.hamiltonian.shape(), &[2, 2]);
564    }
565}