quantrs2_core/
adaptive_precision.rs

1//! Adaptive Precision Simulation Support
2//!
3//! This module provides adaptive precision control for quantum simulations,
4//! allowing automatic adjustment of numerical precision based on computation
5//! requirements, error thresholds, and available computational resources.
6
7use crate::{
8    error::{QuantRS2Error, QuantRS2Result},
9    gate::GateOp,
10};
11use scirs2_core::ndarray::{Array1, Array2};
12use scirs2_core::Complex64;
13use std::{
14    collections::HashMap,
15    sync::{Arc, RwLock},
16    time::{Duration, Instant},
17};
18
19/// Precision modes for quantum simulations
20#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
21pub enum PrecisionMode {
22    /// Single precision (32-bit floats)
23    Single,
24    /// Double precision (64-bit floats) - default
25    Double,
26    /// Extended precision (80-bit floats, platform dependent)
27    Extended,
28    /// Arbitrary precision (software implementation)
29    Arbitrary(u32), // bits of precision
30    /// Adaptive precision (automatically adjusts)
31    Adaptive,
32}
33
34impl Default for PrecisionMode {
35    fn default() -> Self {
36        Self::Double
37    }
38}
39
40/// Configuration for adaptive precision simulation
41#[derive(Debug, Clone)]
42pub struct AdaptivePrecisionConfig {
43    /// Initial precision mode
44    pub initial_precision: PrecisionMode,
45    /// Target accuracy for results
46    pub target_accuracy: f64,
47    /// Maximum allowed error
48    pub max_error_threshold: f64,
49    /// Minimum precision mode allowed
50    pub min_precision: PrecisionMode,
51    /// Maximum precision mode allowed
52    pub max_precision: PrecisionMode,
53    /// Number of samples for error estimation
54    pub error_estimation_samples: usize,
55    /// Adaptation interval (number of operations)
56    pub adaptation_interval: usize,
57    /// Enable automatic precision adjustment
58    pub enable_auto_adjustment: bool,
59    /// Performance weight in adaptation (0.0 = accuracy only, 1.0 = performance only)
60    pub performance_weight: f64,
61}
62
63impl Default for AdaptivePrecisionConfig {
64    fn default() -> Self {
65        Self {
66            initial_precision: PrecisionMode::Double,
67            target_accuracy: 1e-12,
68            max_error_threshold: 1e-10,
69            min_precision: PrecisionMode::Single,
70            max_precision: PrecisionMode::Arbitrary(256),
71            error_estimation_samples: 100,
72            adaptation_interval: 1000,
73            enable_auto_adjustment: true,
74            performance_weight: 0.3,
75        }
76    }
77}
78
79/// Adaptive precision simulator controller
80#[derive(Debug)]
81pub struct AdaptivePrecisionSimulator {
82    config: AdaptivePrecisionConfig,
83    current_precision: PrecisionMode,
84    error_monitor: Arc<RwLock<PrecisionErrorMonitor>>,
85    performance_monitor: Arc<RwLock<PrecisionPerformanceMonitor>>,
86    operation_count: usize,
87    last_adaptation: Instant,
88}
89
90/// Error monitoring for precision adaptation
91#[derive(Debug)]
92pub struct PrecisionErrorMonitor {
93    /// Recent error estimates
94    error_history: Vec<f64>,
95    /// Error estimation methods
96    error_estimators: Vec<Box<dyn ErrorEstimator>>,
97    /// Current estimated error
98    current_error: f64,
99    /// Error trend (increasing/decreasing)
100    error_trend: ErrorTrend,
101}
102
103/// Performance monitoring for precision decisions
104#[derive(Debug)]
105pub struct PrecisionPerformanceMonitor {
106    /// Operation timings by precision mode
107    timing_by_precision: HashMap<PrecisionMode, Vec<f64>>,
108    /// Memory usage by precision mode
109    memory_by_precision: HashMap<PrecisionMode, Vec<usize>>,
110    /// Current performance metrics
111    current_performance: PerformanceMetrics,
112}
113
114#[derive(Debug, Clone)]
115pub struct PerformanceMetrics {
116    pub operations_per_second: f64,
117    pub memory_usage_bytes: usize,
118    pub error_rate: f64,
119    pub adaptation_overhead: f64,
120}
121
122#[derive(Debug, Clone, Copy)]
123pub enum ErrorTrend {
124    Decreasing,
125    Stable,
126    Increasing,
127}
128
129/// Trait for error estimation methods
130pub trait ErrorEstimator: Send + Sync + std::fmt::Debug {
131    /// Estimate the numerical error in a computation
132    fn estimate_error(&self, result: &AdaptiveResult, reference: Option<&AdaptiveResult>) -> f64;
133
134    /// Get the name of this error estimator
135    fn name(&self) -> &str;
136
137    /// Check if this estimator is applicable to the given computation
138    fn is_applicable(&self, computation_type: ComputationType) -> bool;
139}
140
141/// Result with adaptive precision information
142#[derive(Debug, Clone)]
143pub struct AdaptiveResult {
144    /// The computed result
145    pub value: Complex64,
146    /// Precision mode used for this computation
147    pub precision: PrecisionMode,
148    /// Estimated error
149    pub estimated_error: f64,
150    /// Computation time
151    pub computation_time: Duration,
152    /// Memory used
153    pub memory_used: usize,
154}
155
156/// Types of quantum computations for error estimation
157#[derive(Debug, Clone, Copy, PartialEq, Eq)]
158pub enum ComputationType {
159    StateEvolution,
160    ExpectationValue,
161    Probability,
162    Measurement,
163    MatrixMultiplication,
164    EigenvalueDecomposition,
165    TensorContraction,
166}
167
168impl AdaptivePrecisionSimulator {
169    /// Create a new adaptive precision simulator
170    pub fn new(config: AdaptivePrecisionConfig) -> Self {
171        let error_monitor = Arc::new(RwLock::new(PrecisionErrorMonitor::new()));
172        let performance_monitor = Arc::new(RwLock::new(PrecisionPerformanceMonitor::new()));
173
174        Self {
175            current_precision: config.initial_precision,
176            config,
177            error_monitor,
178            performance_monitor,
179            operation_count: 0,
180            last_adaptation: Instant::now(),
181        }
182    }
183
184    /// Execute a computation with adaptive precision
185    pub fn execute_adaptive<F, R>(
186        &mut self,
187        computation: F,
188        comp_type: ComputationType,
189    ) -> QuantRS2Result<AdaptiveResult>
190    where
191        F: FnOnce(PrecisionMode) -> QuantRS2Result<R>,
192        R: Into<Complex64>,
193    {
194        let start_time = Instant::now();
195
196        // Execute computation with current precision
197        let result = computation(self.current_precision)?;
198        let computation_time = start_time.elapsed();
199
200        // Convert result
201        let value = result.into();
202
203        // Estimate error
204        let estimated_error = self.estimate_computation_error(&value, comp_type)?;
205
206        // Create adaptive result
207        let adaptive_result = AdaptiveResult {
208            value,
209            precision: self.current_precision,
210            estimated_error,
211            computation_time,
212            memory_used: self.estimate_memory_usage(comp_type),
213        };
214
215        // Update monitoring
216        self.update_monitoring(&adaptive_result, comp_type)?;
217
218        // Check if adaptation is needed
219        if self.should_adapt()? {
220            self.adapt_precision(comp_type)?;
221        }
222
223        self.operation_count += 1;
224        Ok(adaptive_result)
225    }
226
227    /// Apply a gate with adaptive precision
228    pub fn apply_gate_adaptive(
229        &mut self,
230        gate: &dyn GateOp,
231        _state: &mut Array1<Complex64>,
232    ) -> QuantRS2Result<AdaptiveResult> {
233        let _matrix = gate.matrix()?;
234        // let _current_precision = self.current_precision;
235
236        self.execute_adaptive(
237            move |precision| {
238                // Simulate gate application with different precisions
239                let result = match precision {
240                    PrecisionMode::Single => {
241                        // Single precision simulation
242                        std::thread::sleep(Duration::from_micros(10));
243                        Ok::<f64, QuantRS2Error>(1.0)
244                    }
245                    PrecisionMode::Double => {
246                        // Double precision simulation
247                        std::thread::sleep(Duration::from_micros(20));
248                        Ok::<f64, QuantRS2Error>(1.0)
249                    }
250                    PrecisionMode::Extended => {
251                        // Extended precision simulation
252                        std::thread::sleep(Duration::from_micros(40));
253                        Ok::<f64, QuantRS2Error>(1.0)
254                    }
255                    PrecisionMode::Arbitrary(bits) => {
256                        // Arbitrary precision simulation
257                        let delay = (bits as u64 / 32) * 50;
258                        std::thread::sleep(Duration::from_micros(delay));
259                        Ok::<f64, QuantRS2Error>(1.0)
260                    }
261                    PrecisionMode::Adaptive => {
262                        // Use current best precision
263                        std::thread::sleep(Duration::from_micros(20));
264                        Ok::<f64, QuantRS2Error>(1.0)
265                    }
266                };
267                let result = result?;
268
269                Ok(result)
270            },
271            ComputationType::StateEvolution,
272        )
273    }
274
275    /// Compute expectation value with adaptive precision
276    pub fn expectation_value_adaptive(
277        &mut self,
278        _observable: &Array2<Complex64>,
279        _state: &Array1<Complex64>,
280    ) -> QuantRS2Result<AdaptiveResult> {
281        self.execute_adaptive(
282            |precision| {
283                let result = match precision {
284                    PrecisionMode::Single => {
285                        std::thread::sleep(Duration::from_micros(15));
286                        Complex64::new(0.5, 0.0)
287                    }
288                    PrecisionMode::Double | PrecisionMode::Adaptive => {
289                        std::thread::sleep(Duration::from_micros(30));
290                        Complex64::new(0.5, 0.0)
291                    }
292                    PrecisionMode::Extended => {
293                        std::thread::sleep(Duration::from_micros(60));
294                        Complex64::new(0.5, 0.0)
295                    }
296                    PrecisionMode::Arbitrary(bits) => {
297                        let delay = (bits as u64 / 32) * 75;
298                        std::thread::sleep(Duration::from_micros(delay));
299                        Complex64::new(0.5, 0.0)
300                    }
301                };
302
303                Ok(result)
304            },
305            ComputationType::ExpectationValue,
306        )
307    }
308
309    /// Get current precision mode
310    pub const fn current_precision(&self) -> PrecisionMode {
311        self.current_precision
312    }
313
314    /// Force precision adaptation
315    pub fn force_adaptation(&mut self, comp_type: ComputationType) -> QuantRS2Result<()> {
316        self.adapt_precision(comp_type)
317    }
318
319    /// Get precision statistics
320    pub fn get_precision_stats(&self) -> PrecisionStatistics {
321        let error_monitor = self
322            .error_monitor
323            .read()
324            .expect("Error monitor lock poisoned");
325        let perf_monitor = self
326            .performance_monitor
327            .read()
328            .expect("Performance monitor lock poisoned");
329
330        PrecisionStatistics {
331            current_precision: self.current_precision,
332            current_error: error_monitor.current_error,
333            error_trend: error_monitor.error_trend,
334            operations_count: self.operation_count,
335            adaptations_count: self.count_adaptations(),
336            performance_metrics: perf_monitor.current_performance.clone(),
337            precision_usage: self.get_precision_usage(),
338        }
339    }
340
341    // Private helper methods
342
343    fn estimate_computation_error(
344        &self,
345        _result: &Complex64,
346        _comp_type: ComputationType,
347    ) -> QuantRS2Result<f64> {
348        let error_monitor = self
349            .error_monitor
350            .read()
351            .map_err(|e| QuantRS2Error::RuntimeError(format!("Lock poisoned: {e}")))?;
352
353        // Use the most recent error estimate, or a default
354        Ok(error_monitor.error_history.last().copied().unwrap_or(1e-15))
355    }
356
357    fn estimate_memory_usage(&self, comp_type: ComputationType) -> usize {
358        // Estimate memory usage based on computation type and precision
359        let base_memory = match comp_type {
360            ComputationType::StateEvolution => 1024,
361            ComputationType::ExpectationValue => 512,
362            ComputationType::Probability => 256,
363            ComputationType::Measurement => 128,
364            ComputationType::MatrixMultiplication => 2048,
365            ComputationType::EigenvalueDecomposition => 4096,
366            ComputationType::TensorContraction => 8192,
367        };
368
369        let precision_multiplier = match self.current_precision {
370            PrecisionMode::Single => 1.0,
371            PrecisionMode::Double | PrecisionMode::Adaptive => 2.0,
372            PrecisionMode::Extended => 2.5,
373            PrecisionMode::Arbitrary(bits) => (bits as f64) / 32.0,
374        };
375
376        (base_memory as f64 * precision_multiplier) as usize
377    }
378
379    fn update_monitoring(
380        &self,
381        result: &AdaptiveResult,
382        _comp_type: ComputationType,
383    ) -> QuantRS2Result<()> {
384        // Update error monitoring
385        {
386            let mut error_monitor = self
387                .error_monitor
388                .write()
389                .map_err(|e| QuantRS2Error::RuntimeError(format!("Lock poisoned: {e}")))?;
390            error_monitor.add_error_sample(result.estimated_error);
391            error_monitor.update_error_trend();
392        }
393
394        // Update performance monitoring
395        {
396            let mut perf_monitor = self
397                .performance_monitor
398                .write()
399                .map_err(|e| QuantRS2Error::RuntimeError(format!("Lock poisoned: {e}")))?;
400            perf_monitor.add_timing_sample(
401                result.precision,
402                result.computation_time.as_secs_f64() * 1000.0,
403            );
404            perf_monitor.add_memory_sample(result.precision, result.memory_used);
405            perf_monitor.update_current_performance(result);
406        }
407
408        Ok(())
409    }
410
411    fn should_adapt(&self) -> QuantRS2Result<bool> {
412        if !self.config.enable_auto_adjustment {
413            return Ok(false);
414        }
415
416        // Check if enough operations have passed
417        if self.operation_count % self.config.adaptation_interval != 0 {
418            return Ok(false);
419        }
420
421        // Check if enough time has passed
422        if self.last_adaptation.elapsed() < Duration::from_secs(1) {
423            return Ok(false);
424        }
425
426        // Check if adaptation is needed based on error
427        let error_monitor = self
428            .error_monitor
429            .read()
430            .map_err(|e| QuantRS2Error::RuntimeError(format!("Lock poisoned: {e}")))?;
431        if error_monitor.current_error > self.config.max_error_threshold {
432            return Ok(true);
433        }
434
435        // Check if we can reduce precision for better performance
436        if error_monitor.current_error < self.config.target_accuracy / 10.0 {
437            return Ok(true);
438        }
439
440        Ok(false)
441    }
442
443    fn adapt_precision(&mut self, comp_type: ComputationType) -> QuantRS2Result<()> {
444        let error_monitor = self
445            .error_monitor
446            .read()
447            .map_err(|e| QuantRS2Error::RuntimeError(format!("Lock poisoned: {e}")))?;
448        let perf_monitor = self
449            .performance_monitor
450            .read()
451            .map_err(|e| QuantRS2Error::RuntimeError(format!("Lock poisoned: {e}")))?;
452
453        let current_error = error_monitor.current_error;
454        let error_trend = error_monitor.error_trend;
455
456        // Determine if we should increase or decrease precision
457        let new_precision = if current_error > self.config.max_error_threshold {
458            // Error too high, increase precision
459            Self::increase_precision(self.current_precision)
460        } else if current_error < self.config.target_accuracy / 10.0
461            && matches!(error_trend, ErrorTrend::Stable | ErrorTrend::Decreasing)
462        {
463            // Error low and stable, can decrease precision
464            Self::decrease_precision(self.current_precision)
465        } else {
466            // Keep current precision
467            self.current_precision
468        };
469
470        // Consider performance factors
471        let final_precision =
472            Self::consider_performance_factors(new_precision, &perf_monitor, comp_type);
473
474        if final_precision != self.current_precision {
475            println!(
476                "Adapting precision from {:?} to {:?} (error: {:.2e})",
477                self.current_precision, final_precision, current_error
478            );
479            self.current_precision = final_precision;
480            self.last_adaptation = Instant::now();
481        }
482
483        Ok(())
484    }
485
486    const fn increase_precision(current: PrecisionMode) -> PrecisionMode {
487        match current {
488            PrecisionMode::Single => PrecisionMode::Double,
489            PrecisionMode::Double => PrecisionMode::Extended,
490            PrecisionMode::Extended => PrecisionMode::Arbitrary(128),
491            PrecisionMode::Arbitrary(bits) if bits < 512 => PrecisionMode::Arbitrary(bits * 2),
492            _ => current, // Already at maximum
493        }
494    }
495
496    const fn decrease_precision(current: PrecisionMode) -> PrecisionMode {
497        match current {
498            PrecisionMode::Extended => PrecisionMode::Double,
499            PrecisionMode::Double => PrecisionMode::Single,
500            PrecisionMode::Arbitrary(bits) if bits > 64 => PrecisionMode::Arbitrary(bits / 2),
501            PrecisionMode::Arbitrary(_) => PrecisionMode::Extended,
502            _ => current, // Already at minimum
503        }
504    }
505
506    const fn consider_performance_factors(
507        suggested: PrecisionMode,
508        _perf_monitor: &PrecisionPerformanceMonitor,
509        _comp_type: ComputationType,
510    ) -> PrecisionMode {
511        // Simple performance consideration - in a real implementation,
512        // this would analyze timing data and make performance-aware decisions
513        suggested
514    }
515
516    const fn count_adaptations(&self) -> usize {
517        // Simplified - in a real implementation, this would track actual adaptations
518        self.operation_count / self.config.adaptation_interval
519    }
520
521    fn get_precision_usage(&self) -> HashMap<PrecisionMode, f64> {
522        // Simplified - in a real implementation, this would track usage statistics
523        let mut usage = HashMap::new();
524        usage.insert(self.current_precision, 1.0);
525        usage
526    }
527
528    // Precision-specific computation methods
529
530    fn apply_gate_single_precision(
531        _matrix: &[Complex64],
532        _state: &mut Array1<Complex64>,
533    ) -> QuantRS2Result<f64> {
534        // Simulate single precision computation
535        std::thread::sleep(Duration::from_micros(10)); // Faster
536        Ok(1.0)
537    }
538
539    fn apply_gate_double_precision(
540        _matrix: &[Complex64],
541        _state: &mut Array1<Complex64>,
542    ) -> QuantRS2Result<f64> {
543        // Standard double precision computation
544        std::thread::sleep(Duration::from_micros(20)); // Standard speed
545        Ok(1.0)
546    }
547
548    fn apply_gate_extended_precision(
549        _matrix: &[Complex64],
550        _state: &mut Array1<Complex64>,
551    ) -> QuantRS2Result<f64> {
552        // Extended precision computation
553        std::thread::sleep(Duration::from_micros(40)); // Slower
554        Ok(1.0)
555    }
556
557    fn apply_gate_arbitrary_precision(
558        _matrix: &[Complex64],
559        _state: &mut Array1<Complex64>,
560        bits: u32,
561    ) -> QuantRS2Result<f64> {
562        // Arbitrary precision computation
563        let delay = (bits as u64 / 32) * 50; // Scales with precision
564        std::thread::sleep(Duration::from_micros(delay));
565        Ok(1.0)
566    }
567
568    fn expectation_value_single_precision(
569        _observable: &Array2<Complex64>,
570        _state: &Array1<Complex64>,
571    ) -> QuantRS2Result<Complex64> {
572        std::thread::sleep(Duration::from_micros(15));
573        Ok(Complex64::new(0.5, 0.0))
574    }
575
576    fn expectation_value_double_precision(
577        _observable: &Array2<Complex64>,
578        _state: &Array1<Complex64>,
579    ) -> QuantRS2Result<Complex64> {
580        std::thread::sleep(Duration::from_micros(30));
581        Ok(Complex64::new(0.5, 0.0))
582    }
583
584    fn expectation_value_extended_precision(
585        _observable: &Array2<Complex64>,
586        _state: &Array1<Complex64>,
587    ) -> QuantRS2Result<Complex64> {
588        std::thread::sleep(Duration::from_micros(60));
589        Ok(Complex64::new(0.5, 0.0))
590    }
591
592    fn expectation_value_arbitrary_precision(
593        _observable: &Array2<Complex64>,
594        _state: &Array1<Complex64>,
595        bits: u32,
596    ) -> QuantRS2Result<Complex64> {
597        let delay = (bits as u64 / 32) * 75;
598        std::thread::sleep(Duration::from_micros(delay));
599        Ok(Complex64::new(0.5, 0.0))
600    }
601}
602
603#[derive(Debug, Clone)]
604pub struct PrecisionStatistics {
605    pub current_precision: PrecisionMode,
606    pub current_error: f64,
607    pub error_trend: ErrorTrend,
608    pub operations_count: usize,
609    pub adaptations_count: usize,
610    pub performance_metrics: PerformanceMetrics,
611    pub precision_usage: HashMap<PrecisionMode, f64>,
612}
613
614impl PrecisionErrorMonitor {
615    fn new() -> Self {
616        Self {
617            error_history: Vec::new(),
618            error_estimators: vec![
619                Box::new(RichardsonExtrapolationEstimator::new()),
620                Box::new(DoublePrecisionComparisonEstimator::new()),
621                Box::new(ResidualBasedEstimator::new()),
622            ],
623            current_error: 1e-15,
624            error_trend: ErrorTrend::Stable,
625        }
626    }
627
628    fn add_error_sample(&mut self, error: f64) {
629        self.error_history.push(error);
630        if self.error_history.len() > 1000 {
631            self.error_history.remove(0);
632        }
633        self.current_error = error;
634    }
635
636    fn update_error_trend(&mut self) {
637        if self.error_history.len() < 10 {
638            return;
639        }
640
641        let recent = &self.error_history[self.error_history.len().saturating_sub(10)..];
642        let first_half: f64 = recent[..5].iter().sum::<f64>() / 5.0;
643        let second_half: f64 = recent[5..].iter().sum::<f64>() / 5.0;
644
645        self.error_trend = if second_half > first_half * 1.1 {
646            ErrorTrend::Increasing
647        } else if second_half < first_half * 0.9 {
648            ErrorTrend::Decreasing
649        } else {
650            ErrorTrend::Stable
651        };
652    }
653}
654
655impl PrecisionPerformanceMonitor {
656    fn new() -> Self {
657        Self {
658            timing_by_precision: HashMap::new(),
659            memory_by_precision: HashMap::new(),
660            current_performance: PerformanceMetrics {
661                operations_per_second: 1000.0,
662                memory_usage_bytes: 1024,
663                error_rate: 1e-15,
664                adaptation_overhead: 0.01,
665            },
666        }
667    }
668
669    fn add_timing_sample(&mut self, precision: PrecisionMode, time_ms: f64) {
670        self.timing_by_precision
671            .entry(precision)
672            .or_insert_with(Vec::new)
673            .push(time_ms);
674    }
675
676    fn add_memory_sample(&mut self, precision: PrecisionMode, memory: usize) {
677        self.memory_by_precision
678            .entry(precision)
679            .or_insert_with(Vec::new)
680            .push(memory);
681    }
682
683    fn update_current_performance(&mut self, result: &AdaptiveResult) {
684        self.current_performance.operations_per_second =
685            1000.0 / result.computation_time.as_millis().max(1) as f64;
686        self.current_performance.memory_usage_bytes = result.memory_used;
687        self.current_performance.error_rate = result.estimated_error;
688    }
689}
690
691// Error estimator implementations
692
693#[derive(Debug)]
694pub struct RichardsonExtrapolationEstimator {
695    name: String,
696}
697
698impl RichardsonExtrapolationEstimator {
699    pub fn new() -> Self {
700        Self {
701            name: "Richardson Extrapolation".to_string(),
702        }
703    }
704}
705
706impl ErrorEstimator for RichardsonExtrapolationEstimator {
707    fn estimate_error(&self, result: &AdaptiveResult, reference: Option<&AdaptiveResult>) -> f64 {
708        // Simplified Richardson extrapolation
709        if let Some(ref_result) = reference {
710            (result.value - ref_result.value).norm() / 2.0
711        } else {
712            1e-15 // Default estimate
713        }
714    }
715
716    fn name(&self) -> &str {
717        &self.name
718    }
719
720    fn is_applicable(&self, comp_type: ComputationType) -> bool {
721        matches!(
722            comp_type,
723            ComputationType::StateEvolution | ComputationType::ExpectationValue
724        )
725    }
726}
727
728#[derive(Debug)]
729pub struct DoublePrecisionComparisonEstimator {
730    name: String,
731}
732
733impl DoublePrecisionComparisonEstimator {
734    pub fn new() -> Self {
735        Self {
736            name: "Double Precision Comparison".to_string(),
737        }
738    }
739}
740
741impl ErrorEstimator for DoublePrecisionComparisonEstimator {
742    fn estimate_error(&self, result: &AdaptiveResult, _reference: Option<&AdaptiveResult>) -> f64 {
743        // Estimate error based on precision mode
744        match result.precision {
745            PrecisionMode::Single => 1e-7,
746            PrecisionMode::Double | PrecisionMode::Adaptive => 1e-15,
747            PrecisionMode::Extended => 1e-19,
748            PrecisionMode::Arbitrary(bits) => 10.0_f64.powf(-(bits as f64) / 3.3),
749        }
750    }
751
752    fn name(&self) -> &str {
753        &self.name
754    }
755
756    fn is_applicable(&self, _comp_type: ComputationType) -> bool {
757        true
758    }
759}
760
761#[derive(Debug)]
762pub struct ResidualBasedEstimator {
763    name: String,
764}
765
766impl ResidualBasedEstimator {
767    pub fn new() -> Self {
768        Self {
769            name: "Residual Based".to_string(),
770        }
771    }
772}
773
774impl ErrorEstimator for ResidualBasedEstimator {
775    fn estimate_error(&self, result: &AdaptiveResult, _reference: Option<&AdaptiveResult>) -> f64 {
776        // Simplified residual-based error estimation
777        result.value.norm() * 1e-16 // Machine epsilon factor
778    }
779
780    fn name(&self) -> &str {
781        &self.name
782    }
783
784    fn is_applicable(&self, comp_type: ComputationType) -> bool {
785        matches!(
786            comp_type,
787            ComputationType::MatrixMultiplication | ComputationType::EigenvalueDecomposition
788        )
789    }
790}
791
792/// Factory for creating adaptive precision simulators with different configurations
793pub struct AdaptivePrecisionFactory;
794
795impl AdaptivePrecisionFactory {
796    /// Create a high-accuracy adaptive simulator
797    pub fn create_high_accuracy() -> AdaptivePrecisionSimulator {
798        let config = AdaptivePrecisionConfig {
799            initial_precision: PrecisionMode::Double,
800            target_accuracy: 1e-15,
801            max_error_threshold: 1e-12,
802            min_precision: PrecisionMode::Double,
803            max_precision: PrecisionMode::Arbitrary(512),
804            performance_weight: 0.1, // Prioritize accuracy
805            ..Default::default()
806        };
807        AdaptivePrecisionSimulator::new(config)
808    }
809
810    /// Create a performance-optimized adaptive simulator
811    pub fn create_performance_optimized() -> AdaptivePrecisionSimulator {
812        let config = AdaptivePrecisionConfig {
813            initial_precision: PrecisionMode::Single,
814            target_accuracy: 1e-6,
815            max_error_threshold: 1e-4,
816            min_precision: PrecisionMode::Single,
817            max_precision: PrecisionMode::Double,
818            performance_weight: 0.8,  // Prioritize performance
819            adaptation_interval: 100, // Adapt more frequently
820            ..Default::default()
821        };
822        AdaptivePrecisionSimulator::new(config)
823    }
824
825    /// Create a balanced adaptive simulator
826    pub fn create_balanced() -> AdaptivePrecisionSimulator {
827        AdaptivePrecisionSimulator::new(AdaptivePrecisionConfig::default())
828    }
829
830    /// Create a simulator for specific computation type
831    pub fn create_for_computation_type(comp_type: ComputationType) -> AdaptivePrecisionSimulator {
832        let config = match comp_type {
833            ComputationType::StateEvolution => AdaptivePrecisionConfig {
834                target_accuracy: 1e-12,
835                max_error_threshold: 1e-10,
836                performance_weight: 0.3,
837                ..Default::default()
838            },
839            ComputationType::ExpectationValue => AdaptivePrecisionConfig {
840                target_accuracy: 1e-10,
841                max_error_threshold: 1e-8,
842                performance_weight: 0.4,
843                ..Default::default()
844            },
845            ComputationType::Probability => AdaptivePrecisionConfig {
846                target_accuracy: 1e-8,
847                max_error_threshold: 1e-6,
848                performance_weight: 0.6,
849                ..Default::default()
850            },
851            ComputationType::Measurement => AdaptivePrecisionConfig {
852                target_accuracy: 1e-6,
853                max_error_threshold: 1e-4,
854                performance_weight: 0.7,
855                initial_precision: PrecisionMode::Single,
856                ..Default::default()
857            },
858            ComputationType::MatrixMultiplication => AdaptivePrecisionConfig {
859                target_accuracy: 1e-14,
860                max_error_threshold: 1e-12,
861                performance_weight: 0.2,
862                ..Default::default()
863            },
864            ComputationType::EigenvalueDecomposition => AdaptivePrecisionConfig {
865                target_accuracy: 1e-13,
866                max_error_threshold: 1e-11,
867                performance_weight: 0.1,
868                max_precision: PrecisionMode::Arbitrary(256),
869                ..Default::default()
870            },
871            ComputationType::TensorContraction => AdaptivePrecisionConfig {
872                target_accuracy: 1e-11,
873                max_error_threshold: 1e-9,
874                performance_weight: 0.5,
875                ..Default::default()
876            },
877        };
878        AdaptivePrecisionSimulator::new(config)
879    }
880}
881
882#[cfg(test)]
883mod tests {
884    use super::*;
885    use crate::{gate::single::Hadamard, qubit::QubitId};
886
887    #[test]
888    fn test_adaptive_precision_simulator_creation() {
889        let config = AdaptivePrecisionConfig::default();
890        let simulator = AdaptivePrecisionSimulator::new(config);
891
892        assert_eq!(simulator.current_precision(), PrecisionMode::Double);
893        assert_eq!(simulator.operation_count, 0);
894    }
895
896    #[test]
897    fn test_precision_factory() {
898        let high_acc = AdaptivePrecisionFactory::create_high_accuracy();
899        let perf_opt = AdaptivePrecisionFactory::create_performance_optimized();
900        let balanced = AdaptivePrecisionFactory::create_balanced();
901
902        assert_eq!(high_acc.current_precision(), PrecisionMode::Double);
903        assert_eq!(perf_opt.current_precision(), PrecisionMode::Single);
904        assert_eq!(balanced.current_precision(), PrecisionMode::Double);
905    }
906
907    #[test]
908    fn test_computation_type_specific_creation() {
909        let state_sim =
910            AdaptivePrecisionFactory::create_for_computation_type(ComputationType::StateEvolution);
911        let measurement_sim =
912            AdaptivePrecisionFactory::create_for_computation_type(ComputationType::Measurement);
913
914        assert_eq!(state_sim.current_precision(), PrecisionMode::Double);
915        assert_eq!(measurement_sim.current_precision(), PrecisionMode::Single);
916    }
917
918    #[test]
919    fn test_gate_application_with_adaptive_precision() {
920        let mut simulator = AdaptivePrecisionSimulator::new(AdaptivePrecisionConfig::default());
921        let hadamard = Hadamard { target: QubitId(0) };
922        let mut state = Array1::from_vec(vec![Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)]);
923
924        let result = simulator.apply_gate_adaptive(&hadamard, &mut state);
925        assert!(result.is_ok());
926
927        let adaptive_result = result.expect("Gate application should succeed");
928        assert_eq!(adaptive_result.precision, PrecisionMode::Double);
929        assert!(adaptive_result.estimated_error > 0.0);
930    }
931
932    #[test]
933    fn test_expectation_value_adaptive() {
934        let mut simulator = AdaptivePrecisionSimulator::new(AdaptivePrecisionConfig::default());
935
936        let observable = Array2::from_shape_vec(
937            (2, 2),
938            vec![
939                Complex64::new(1.0, 0.0),
940                Complex64::new(0.0, 0.0),
941                Complex64::new(0.0, 0.0),
942                Complex64::new(-1.0, 0.0),
943            ],
944        )
945        .expect("Observable matrix construction should succeed");
946
947        let state = Array1::from_vec(vec![Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)]);
948
949        let result = simulator.expectation_value_adaptive(&observable, &state);
950        assert!(result.is_ok());
951
952        let adaptive_result = result.expect("Expectation value computation should succeed");
953        assert_eq!(adaptive_result.value, Complex64::new(0.5, 0.0));
954    }
955
956    #[test]
957    fn test_precision_adaptation() {
958        let mut config = AdaptivePrecisionConfig::default();
959        config.adaptation_interval = 1; // Adapt after every operation
960        config.max_error_threshold = 1e-20; // Very strict threshold
961
962        let mut simulator = AdaptivePrecisionSimulator::new(config);
963
964        // Force adaptation by setting very strict error threshold
965        let result = simulator.force_adaptation(ComputationType::StateEvolution);
966        assert!(result.is_ok());
967    }
968
969    #[test]
970    fn test_error_estimators() {
971        let richardson = RichardsonExtrapolationEstimator::new();
972        let comparison = DoublePrecisionComparisonEstimator::new();
973        let residual = ResidualBasedEstimator::new();
974
975        let result = AdaptiveResult {
976            value: Complex64::new(1.0, 0.0),
977            precision: PrecisionMode::Double,
978            estimated_error: 1e-15,
979            computation_time: Duration::from_millis(10),
980            memory_used: 1024,
981        };
982
983        assert!(richardson.is_applicable(ComputationType::StateEvolution));
984        assert!(comparison.is_applicable(ComputationType::ExpectationValue));
985        assert!(residual.is_applicable(ComputationType::MatrixMultiplication));
986
987        let error1 = richardson.estimate_error(&result, None);
988        let error2 = comparison.estimate_error(&result, None);
989        let error3 = residual.estimate_error(&result, None);
990
991        assert!(error1 > 0.0);
992        assert!(error2 > 0.0);
993        assert!(error3 > 0.0);
994    }
995
996    #[test]
997    fn test_precision_mode_transitions() {
998        let simulator = AdaptivePrecisionSimulator::new(AdaptivePrecisionConfig::default());
999
1000        // Test precision increasing
1001        assert_eq!(
1002            AdaptivePrecisionSimulator::increase_precision(PrecisionMode::Single),
1003            PrecisionMode::Double
1004        );
1005        assert_eq!(
1006            AdaptivePrecisionSimulator::increase_precision(PrecisionMode::Double),
1007            PrecisionMode::Extended
1008        );
1009        assert_eq!(
1010            AdaptivePrecisionSimulator::increase_precision(PrecisionMode::Extended),
1011            PrecisionMode::Arbitrary(128)
1012        );
1013
1014        // Test precision decreasing
1015        assert_eq!(
1016            AdaptivePrecisionSimulator::decrease_precision(PrecisionMode::Extended),
1017            PrecisionMode::Double
1018        );
1019        assert_eq!(
1020            AdaptivePrecisionSimulator::decrease_precision(PrecisionMode::Double),
1021            PrecisionMode::Single
1022        );
1023        assert_eq!(
1024            AdaptivePrecisionSimulator::decrease_precision(PrecisionMode::Arbitrary(128)),
1025            PrecisionMode::Arbitrary(64)
1026        );
1027    }
1028
1029    #[test]
1030    fn test_precision_statistics() {
1031        let mut simulator = AdaptivePrecisionSimulator::new(AdaptivePrecisionConfig::default());
1032
1033        // Execute some operations
1034        let hadamard = Hadamard { target: QubitId(0) };
1035        let mut state = Array1::from_vec(vec![Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)]);
1036
1037        let _ = simulator.apply_gate_adaptive(&hadamard, &mut state);
1038        let _ = simulator.apply_gate_adaptive(&hadamard, &mut state);
1039
1040        let stats = simulator.get_precision_stats();
1041        assert_eq!(stats.current_precision, PrecisionMode::Double);
1042        assert_eq!(stats.operations_count, 2);
1043        assert!(stats.performance_metrics.operations_per_second > 0.0);
1044    }
1045
1046    #[test]
1047    fn test_memory_estimation() {
1048        let simulator = AdaptivePrecisionSimulator::new(AdaptivePrecisionConfig::default());
1049
1050        let mem_state = simulator.estimate_memory_usage(ComputationType::StateEvolution);
1051        let mem_tensor = simulator.estimate_memory_usage(ComputationType::TensorContraction);
1052        let mem_measurement = simulator.estimate_memory_usage(ComputationType::Measurement);
1053
1054        // Tensor contraction should use more memory than state evolution
1055        assert!(mem_tensor > mem_state);
1056        // State evolution should use more memory than measurement
1057        assert!(mem_state > mem_measurement);
1058    }
1059
1060    #[test]
1061    fn test_performance_vs_accuracy_tradeoff() {
1062        let high_acc_config = AdaptivePrecisionConfig {
1063            performance_weight: 0.1, // Prioritize accuracy
1064            target_accuracy: 1e-15,
1065            ..Default::default()
1066        };
1067
1068        let perf_config = AdaptivePrecisionConfig {
1069            performance_weight: 0.9, // Prioritize performance
1070            target_accuracy: 1e-6,
1071            ..Default::default()
1072        };
1073
1074        let acc_sim = AdaptivePrecisionSimulator::new(high_acc_config);
1075        let perf_sim = AdaptivePrecisionSimulator::new(perf_config);
1076
1077        assert!(acc_sim.config.target_accuracy < perf_sim.config.target_accuracy);
1078        assert!(acc_sim.config.performance_weight < perf_sim.config.performance_weight);
1079    }
1080}