1use crate::{
11 error::{QuantRS2Error, QuantRS2Result},
12 variational::VariationalCircuit,
13};
14use scirs2_core::ndarray::{Array1, Array2};
15use crate::optimization_stubs::{minimize, Method, OptimizeResult, Options};
17use crate::parallel_ops_stubs::*;
18use rustc_hash::FxHashMap;
20use std::sync::{Arc, Mutex};
21
22pub struct VariationalQuantumOptimizer {
31 method: OptimizationMethod,
33 config: OptimizationConfig,
35 history: OptimizationHistory,
37 fisher_cache: Option<FisherCache>,
39}
40
41#[derive(Debug, Clone)]
43pub enum OptimizationMethod {
44 GradientDescent { learning_rate: f64 },
46 Momentum { learning_rate: f64, momentum: f64 },
48 Adam {
50 learning_rate: f64,
51 beta1: f64,
52 beta2: f64,
53 epsilon: f64,
54 },
55 RMSprop {
57 learning_rate: f64,
58 decay_rate: f64,
59 epsilon: f64,
60 },
61 NaturalGradient {
63 learning_rate: f64,
64 regularization: f64,
65 },
66 BFGS,
68 LBFGS { memory_size: usize },
70 ConjugateGradient,
72 NelderMead,
74 Powell,
76 SPSA {
78 a: f64,
79 c: f64,
80 alpha: f64,
81 gamma: f64,
82 },
83 QNSPSA {
85 learning_rate: f64,
86 regularization: f64,
87 spsa_epsilon: f64,
88 },
89}
90
91#[derive(Clone)]
93pub struct OptimizationConfig {
94 pub max_iterations: usize,
96 pub f_tol: f64,
98 pub g_tol: f64,
100 pub x_tol: f64,
102 pub parallel_gradients: bool,
104 pub batch_size: Option<usize>,
106 pub seed: Option<u64>,
108 pub callback: Option<Arc<dyn Fn(&[f64], f64) + Send + Sync>>,
110 pub patience: Option<usize>,
112 pub grad_clip: Option<f64>,
114}
115
116impl Default for OptimizationConfig {
117 fn default() -> Self {
118 Self {
119 max_iterations: 100,
120 f_tol: 1e-8,
121 g_tol: 1e-8,
122 x_tol: 1e-8,
123 parallel_gradients: true,
124 batch_size: None,
125 seed: None,
126 callback: None,
127 patience: None,
128 grad_clip: None,
129 }
130 }
131}
132
133#[derive(Debug, Clone)]
135pub struct OptimizationHistory {
136 pub parameters: Vec<Vec<f64>>,
138 pub loss_values: Vec<f64>,
140 pub gradient_norms: Vec<f64>,
142 pub iteration_times: Vec<f64>,
144 pub total_iterations: usize,
146 pub converged: bool,
148}
149
150impl OptimizationHistory {
151 fn new() -> Self {
152 Self {
153 parameters: Vec::new(),
154 loss_values: Vec::new(),
155 gradient_norms: Vec::new(),
156 iteration_times: Vec::new(),
157 total_iterations: 0,
158 converged: false,
159 }
160 }
161}
162
163struct FisherCache {
165 matrix: Arc<Mutex<Option<Array2<f64>>>>,
167 params: Arc<Mutex<Option<Vec<f64>>>>,
169 threshold: f64,
171}
172
173struct OptimizerState {
175 momentum: FxHashMap<String, f64>,
177 adam_m: FxHashMap<String, f64>,
179 adam_v: FxHashMap<String, f64>,
181 rms_avg: FxHashMap<String, f64>,
183 iteration: usize,
185}
186
187impl VariationalQuantumOptimizer {
188 pub fn new(method: OptimizationMethod, config: OptimizationConfig) -> Self {
190 let fisher_cache = match &method {
191 OptimizationMethod::NaturalGradient { .. } | OptimizationMethod::QNSPSA { .. } => {
192 Some(FisherCache {
193 matrix: Arc::new(Mutex::new(None)),
194 params: Arc::new(Mutex::new(None)),
195 threshold: 1e-3,
196 })
197 }
198 _ => None,
199 };
200
201 Self {
202 method,
203 config,
204 history: OptimizationHistory::new(),
205 fisher_cache,
206 }
207 }
208
209 pub fn optimize(
211 &mut self,
212 circuit: &mut VariationalCircuit,
213 cost_fn: impl Fn(&VariationalCircuit) -> QuantRS2Result<f64> + Send + Sync + 'static,
214 ) -> QuantRS2Result<OptimizationResult> {
215 let cost_fn = Arc::new(cost_fn);
216
217 match &self.method {
218 OptimizationMethod::BFGS
219 | OptimizationMethod::LBFGS { .. }
220 | OptimizationMethod::ConjugateGradient
221 | OptimizationMethod::NelderMead
222 | OptimizationMethod::Powell => self.optimize_with_scirs2(circuit, cost_fn),
223 _ => self.optimize_custom(circuit, cost_fn),
224 }
225 }
226
227 fn optimize_with_scirs2(
229 &mut self,
230 circuit: &mut VariationalCircuit,
231 cost_fn: Arc<dyn Fn(&VariationalCircuit) -> QuantRS2Result<f64> + Send + Sync>,
232 ) -> QuantRS2Result<OptimizationResult> {
233 let param_names = circuit.parameter_names();
234 let initial_params: Vec<f64> = param_names
235 .iter()
236 .map(|name| circuit.get_parameters().get(name).copied().unwrap_or(0.0))
237 .collect();
238
239 let circuit_clone = Arc::new(Mutex::new(circuit.clone()));
240 let param_names_clone = param_names.clone();
241
242 let objective = move |params: &scirs2_core::ndarray::ArrayView1<f64>| -> f64 {
244 let params_slice = params.as_slice().unwrap();
245 let mut param_map = FxHashMap::default();
246 for (name, &value) in param_names_clone.iter().zip(params_slice) {
247 param_map.insert(name.clone(), value);
248 }
249
250 let mut circuit = circuit_clone.lock().unwrap();
251 if circuit.set_parameters(¶m_map).is_err() {
252 return f64::INFINITY;
253 }
254
255 match cost_fn(&*circuit) {
256 Ok(loss) => loss,
257 Err(_) => f64::INFINITY,
258 }
259 };
260
261 let method = match &self.method {
263 OptimizationMethod::BFGS => Method::BFGS,
264 OptimizationMethod::LBFGS { memory_size: _ } => Method::LBFGS,
265 OptimizationMethod::ConjugateGradient => Method::BFGS, OptimizationMethod::NelderMead => Method::NelderMead,
267 OptimizationMethod::Powell => Method::Powell,
268 _ => unreachable!(),
269 };
270
271 let options = Options {
273 max_iter: self.config.max_iterations,
274 ftol: self.config.f_tol,
275 gtol: self.config.g_tol,
276 xtol: self.config.x_tol,
277 ..Default::default()
278 };
279
280 let start_time = std::time::Instant::now();
282 let initial_array = scirs2_core::ndarray::Array1::from_vec(initial_params.clone());
283 let result = minimize(objective, &initial_array, method, Some(options))
284 .map_err(|e| QuantRS2Error::InvalidInput(format!("Optimization failed: {:?}", e)))?;
285
286 let mut final_params = FxHashMap::default();
288 for (name, &value) in param_names.iter().zip(result.x.as_slice().unwrap()) {
289 final_params.insert(name.clone(), value);
290 }
291 circuit.set_parameters(&final_params)?;
292
293 self.history.parameters.push(result.x.to_vec());
295 self.history.loss_values.push(result.fun);
296 self.history.total_iterations = result.iterations;
297 self.history.converged = result.success;
298
299 Ok(OptimizationResult {
300 optimal_parameters: final_params,
301 final_loss: result.fun,
302 iterations: result.iterations,
303 converged: result.success,
304 optimization_time: start_time.elapsed().as_secs_f64(),
305 history: self.history.clone(),
306 })
307 }
308
309 fn optimize_custom(
311 &mut self,
312 circuit: &mut VariationalCircuit,
313 cost_fn: Arc<dyn Fn(&VariationalCircuit) -> QuantRS2Result<f64> + Send + Sync>,
314 ) -> QuantRS2Result<OptimizationResult> {
315 let mut state = OptimizerState {
316 momentum: FxHashMap::default(),
317 adam_m: FxHashMap::default(),
318 adam_v: FxHashMap::default(),
319 rms_avg: FxHashMap::default(),
320 iteration: 0,
321 };
322
323 let param_names = circuit.parameter_names();
324 let start_time = std::time::Instant::now();
325 let mut best_loss = f64::INFINITY;
326 let mut patience_counter = 0;
327
328 for iter in 0..self.config.max_iterations {
329 let iter_start = std::time::Instant::now();
330
331 let loss = cost_fn(circuit)?;
333
334 if loss < best_loss - self.config.f_tol {
336 best_loss = loss;
337 patience_counter = 0;
338 } else if let Some(patience) = self.config.patience {
339 patience_counter += 1;
340 if patience_counter >= patience {
341 self.history.converged = true;
342 break;
343 }
344 }
345
346 let gradients = self.compute_gradients(circuit, &cost_fn)?;
348
349 let gradients = if let Some(max_norm) = self.config.grad_clip {
351 self.clip_gradients(gradients, max_norm)
352 } else {
353 gradients
354 };
355
356 self.update_parameters(circuit, &gradients, &mut state)?;
358
359 let current_params: Vec<f64> = param_names
361 .iter()
362 .map(|name| circuit.get_parameters().get(name).copied().unwrap_or(0.0))
363 .collect();
364
365 let grad_norm = gradients.values().map(|g| g * g).sum::<f64>().sqrt();
366
367 self.history.parameters.push(current_params);
368 self.history.loss_values.push(loss);
369 self.history.gradient_norms.push(grad_norm);
370 self.history
371 .iteration_times
372 .push(iter_start.elapsed().as_secs_f64() * 1000.0);
373 self.history.total_iterations = iter + 1;
374
375 if let Some(callback) = &self.config.callback {
377 let params: Vec<f64> = param_names
378 .iter()
379 .map(|name| circuit.get_parameters().get(name).copied().unwrap_or(0.0))
380 .collect();
381 callback(¶ms, loss);
382 }
383
384 if grad_norm < self.config.g_tol {
386 self.history.converged = true;
387 break;
388 }
389
390 state.iteration += 1;
391 }
392
393 let final_params = circuit.get_parameters();
394 let final_loss = cost_fn(circuit)?;
395
396 Ok(OptimizationResult {
397 optimal_parameters: final_params,
398 final_loss,
399 iterations: self.history.total_iterations,
400 converged: self.history.converged,
401 optimization_time: start_time.elapsed().as_secs_f64(),
402 history: self.history.clone(),
403 })
404 }
405
406 fn compute_gradients(
408 &self,
409 circuit: &VariationalCircuit,
410 cost_fn: &Arc<dyn Fn(&VariationalCircuit) -> QuantRS2Result<f64> + Send + Sync>,
411 ) -> QuantRS2Result<FxHashMap<String, f64>> {
412 let param_names = circuit.parameter_names();
413
414 if self.config.parallel_gradients {
415 let gradients: Vec<(String, f64)> = param_names
417 .par_iter()
418 .map(|param_name| {
419 let grad = self
420 .compute_single_gradient(circuit, param_name, cost_fn)
421 .unwrap_or(0.0);
422 (param_name.clone(), grad)
423 })
424 .collect();
425
426 Ok(gradients.into_iter().collect())
427 } else {
428 let mut gradients = FxHashMap::default();
430 for param_name in ¶m_names {
431 let grad = self.compute_single_gradient(circuit, param_name, cost_fn)?;
432 gradients.insert(param_name.clone(), grad);
433 }
434 Ok(gradients)
435 }
436 }
437
438 fn compute_single_gradient(
440 &self,
441 circuit: &VariationalCircuit,
442 param_name: &str,
443 cost_fn: &Arc<dyn Fn(&VariationalCircuit) -> QuantRS2Result<f64> + Send + Sync>,
444 ) -> QuantRS2Result<f64> {
445 match &self.method {
446 OptimizationMethod::SPSA { c, .. } => {
447 self.spsa_gradient(circuit, param_name, cost_fn, *c)
449 }
450 _ => {
451 self.parameter_shift_gradient(circuit, param_name, cost_fn)
453 }
454 }
455 }
456
457 fn parameter_shift_gradient(
459 &self,
460 circuit: &VariationalCircuit,
461 param_name: &str,
462 cost_fn: &Arc<dyn Fn(&VariationalCircuit) -> QuantRS2Result<f64> + Send + Sync>,
463 ) -> QuantRS2Result<f64> {
464 let current_params = circuit.get_parameters();
465 let current_value = *current_params.get(param_name).ok_or_else(|| {
466 QuantRS2Error::InvalidInput(format!("Parameter {} not found", param_name))
467 })?;
468
469 let mut circuit_plus = circuit.clone();
471 let mut params_plus = current_params.clone();
472 params_plus.insert(
473 param_name.to_string(),
474 current_value + std::f64::consts::PI / 2.0,
475 );
476 circuit_plus.set_parameters(¶ms_plus)?;
477 let loss_plus = cost_fn(&circuit_plus)?;
478
479 let mut circuit_minus = circuit.clone();
481 let mut params_minus = current_params.clone();
482 params_minus.insert(
483 param_name.to_string(),
484 current_value - std::f64::consts::PI / 2.0,
485 );
486 circuit_minus.set_parameters(¶ms_minus)?;
487 let loss_minus = cost_fn(&circuit_minus)?;
488
489 Ok((loss_plus - loss_minus) / 2.0)
490 }
491
492 fn spsa_gradient(
494 &self,
495 circuit: &VariationalCircuit,
496 param_name: &str,
497 cost_fn: &Arc<dyn Fn(&VariationalCircuit) -> QuantRS2Result<f64> + Send + Sync>,
498 epsilon: f64,
499 ) -> QuantRS2Result<f64> {
500 use scirs2_core::random::prelude::*;
501
502 let mut rng = if let Some(seed) = self.config.seed {
503 StdRng::seed_from_u64(seed)
504 } else {
505 StdRng::from_seed(thread_rng().gen())
506 };
507
508 let current_params = circuit.get_parameters();
509 let perturbation = if rng.gen::<bool>() { epsilon } else { -epsilon };
510
511 let mut circuit_plus = circuit.clone();
513 let mut params_plus = current_params.clone();
514 for (name, value) in params_plus.iter_mut() {
515 if name == param_name {
516 *value += perturbation;
517 }
518 }
519 circuit_plus.set_parameters(¶ms_plus)?;
520 let loss_plus = cost_fn(&circuit_plus)?;
521
522 let mut circuit_minus = circuit.clone();
524 let mut params_minus = current_params.clone();
525 for (name, value) in params_minus.iter_mut() {
526 if name == param_name {
527 *value -= perturbation;
528 }
529 }
530 circuit_minus.set_parameters(¶ms_minus)?;
531 let loss_minus = cost_fn(&circuit_minus)?;
532
533 Ok((loss_plus - loss_minus) / (2.0 * perturbation))
534 }
535
536 fn clip_gradients(
538 &self,
539 mut gradients: FxHashMap<String, f64>,
540 max_norm: f64,
541 ) -> FxHashMap<String, f64> {
542 let norm = gradients.values().map(|g| g * g).sum::<f64>().sqrt();
543
544 if norm > max_norm {
545 let scale = max_norm / norm;
546 for grad in gradients.values_mut() {
547 *grad *= scale;
548 }
549 }
550
551 gradients
552 }
553
554 fn update_parameters(
556 &self,
557 circuit: &mut VariationalCircuit,
558 gradients: &FxHashMap<String, f64>,
559 state: &mut OptimizerState,
560 ) -> QuantRS2Result<()> {
561 let mut new_params = circuit.get_parameters();
562
563 match &self.method {
564 OptimizationMethod::GradientDescent { learning_rate } => {
565 for (param_name, &grad) in gradients {
567 if let Some(value) = new_params.get_mut(param_name) {
568 *value -= learning_rate * grad;
569 }
570 }
571 }
572 OptimizationMethod::Momentum {
573 learning_rate,
574 momentum,
575 } => {
576 for (param_name, &grad) in gradients {
578 let velocity = state.momentum.entry(param_name.clone()).or_insert(0.0);
579 *velocity = momentum * *velocity - learning_rate * grad;
580
581 if let Some(value) = new_params.get_mut(param_name) {
582 *value += *velocity;
583 }
584 }
585 }
586 OptimizationMethod::Adam {
587 learning_rate,
588 beta1,
589 beta2,
590 epsilon,
591 } => {
592 let t = state.iteration as f64 + 1.0;
594 let lr_t = learning_rate * (1.0 - beta2.powf(t)).sqrt() / (1.0 - beta1.powf(t));
595
596 for (param_name, &grad) in gradients {
597 let m = state.adam_m.entry(param_name.clone()).or_insert(0.0);
598 let v = state.adam_v.entry(param_name.clone()).or_insert(0.0);
599
600 *m = beta1 * *m + (1.0 - beta1) * grad;
601 *v = beta2 * *v + (1.0 - beta2) * grad * grad;
602
603 if let Some(value) = new_params.get_mut(param_name) {
604 *value -= lr_t * *m / (v.sqrt() + epsilon);
605 }
606 }
607 }
608 OptimizationMethod::RMSprop {
609 learning_rate,
610 decay_rate,
611 epsilon,
612 } => {
613 for (param_name, &grad) in gradients {
615 let avg = state.rms_avg.entry(param_name.clone()).or_insert(0.0);
616 *avg = decay_rate * *avg + (1.0 - decay_rate) * grad * grad;
617
618 if let Some(value) = new_params.get_mut(param_name) {
619 *value -= learning_rate * grad / (avg.sqrt() + epsilon);
620 }
621 }
622 }
623 OptimizationMethod::NaturalGradient {
624 learning_rate,
625 regularization,
626 } => {
627 let fisher_inv =
629 self.compute_fisher_inverse(circuit, gradients, *regularization)?;
630 let natural_grad = self.apply_fisher_inverse(&fisher_inv, gradients);
631
632 for (param_name, &nat_grad) in &natural_grad {
633 if let Some(value) = new_params.get_mut(param_name) {
634 *value -= learning_rate * nat_grad;
635 }
636 }
637 }
638 OptimizationMethod::SPSA { a, alpha, .. } => {
639 let ak = a / (state.iteration as f64 + 1.0).powf(*alpha);
641
642 for (param_name, &grad) in gradients {
643 if let Some(value) = new_params.get_mut(param_name) {
644 *value -= ak * grad;
645 }
646 }
647 }
648 OptimizationMethod::QNSPSA {
649 learning_rate,
650 regularization,
651 ..
652 } => {
653 let fisher_inv =
655 self.compute_fisher_inverse(circuit, gradients, *regularization)?;
656 let natural_grad = self.apply_fisher_inverse(&fisher_inv, gradients);
657
658 for (param_name, &nat_grad) in &natural_grad {
659 if let Some(value) = new_params.get_mut(param_name) {
660 *value -= learning_rate * nat_grad;
661 }
662 }
663 }
664 _ => {
665 return Err(QuantRS2Error::InvalidInput(
667 "Invalid optimization method".to_string(),
668 ));
669 }
670 }
671
672 circuit.set_parameters(&new_params)
673 }
674
675 fn compute_fisher_inverse(
677 &self,
678 circuit: &VariationalCircuit,
679 gradients: &FxHashMap<String, f64>,
680 regularization: f64,
681 ) -> QuantRS2Result<Array2<f64>> {
682 let param_names: Vec<_> = gradients.keys().cloned().collect();
683 let n_params = param_names.len();
684
685 if let Some(cache) = &self.fisher_cache {
687 if let Some(cached_matrix) = cache.matrix.lock().unwrap().as_ref() {
688 if let Some(cached_params) = cache.params.lock().unwrap().as_ref() {
689 let current_params: Vec<f64> = param_names
690 .iter()
691 .map(|name| circuit.get_parameters().get(name).copied().unwrap_or(0.0))
692 .collect();
693
694 let diff_norm: f64 = current_params
695 .iter()
696 .zip(cached_params.iter())
697 .map(|(a, b)| (a - b).powi(2))
698 .sum::<f64>()
699 .sqrt();
700
701 if diff_norm < cache.threshold {
702 return Ok(cached_matrix.clone());
703 }
704 }
705 }
706 }
707
708 let mut fisher = Array2::zeros((n_params, n_params));
710
711 for i in 0..n_params {
714 for j in i..n_params {
715 let value = gradients[¶m_names[i]] * gradients[¶m_names[j]];
717 fisher[[i, j]] = value;
718 fisher[[j, i]] = value;
719 }
720 }
721
722 for i in 0..n_params {
724 fisher[[i, i]] += regularization;
725 }
726
727 let n = fisher.nrows();
731 let mut fisher_inv = Array2::eye(n);
732
733 if n == 1 {
736 fisher_inv[[0, 0]] = 1.0 / fisher[[0, 0]];
737 } else if n == 2 {
738 let det = fisher[[0, 0]] * fisher[[1, 1]] - fisher[[0, 1]] * fisher[[1, 0]];
739 if det.abs() < 1e-10 {
740 return Err(QuantRS2Error::InvalidInput(
741 "Fisher matrix is singular".to_string(),
742 ));
743 }
744 fisher_inv[[0, 0]] = fisher[[1, 1]] / det;
745 fisher_inv[[0, 1]] = -fisher[[0, 1]] / det;
746 fisher_inv[[1, 0]] = -fisher[[1, 0]] / det;
747 fisher_inv[[1, 1]] = fisher[[0, 0]] / det;
748 } else {
749 }
752
753 if let Some(cache) = &self.fisher_cache {
755 let current_params: Vec<f64> = param_names
756 .iter()
757 .map(|name| circuit.get_parameters().get(name).copied().unwrap_or(0.0))
758 .collect();
759
760 *cache.matrix.lock().unwrap() = Some(fisher_inv.clone());
761 *cache.params.lock().unwrap() = Some(current_params);
762 }
763
764 Ok(fisher_inv)
765 }
766
767 fn apply_fisher_inverse(
769 &self,
770 fisher_inv: &Array2<f64>,
771 gradients: &FxHashMap<String, f64>,
772 ) -> FxHashMap<String, f64> {
773 let param_names: Vec<_> = gradients.keys().cloned().collect();
774 let grad_vec: Vec<f64> = param_names.iter().map(|name| gradients[name]).collect();
775
776 let grad_array = Array1::from_vec(grad_vec);
777 let natural_grad = fisher_inv.dot(&grad_array);
778
779 let mut result = FxHashMap::default();
780 for (i, name) in param_names.iter().enumerate() {
781 result.insert(name.clone(), natural_grad[i]);
782 }
783
784 result
785 }
786}
787
788#[derive(Debug, Clone)]
790pub struct OptimizationResult {
791 pub optimal_parameters: FxHashMap<String, f64>,
793 pub final_loss: f64,
795 pub iterations: usize,
797 pub converged: bool,
799 pub optimization_time: f64,
801 pub history: OptimizationHistory,
803}
804
805pub fn create_vqe_optimizer() -> VariationalQuantumOptimizer {
807 let config = OptimizationConfig {
808 max_iterations: 200,
809 f_tol: 1e-10,
810 g_tol: 1e-10,
811 parallel_gradients: true,
812 grad_clip: Some(1.0),
813 ..Default::default()
814 };
815
816 VariationalQuantumOptimizer::new(OptimizationMethod::LBFGS { memory_size: 10 }, config)
817}
818
819pub fn create_qaoa_optimizer() -> VariationalQuantumOptimizer {
821 let config = OptimizationConfig {
822 max_iterations: 100,
823 parallel_gradients: true,
824 ..Default::default()
825 };
826
827 VariationalQuantumOptimizer::new(OptimizationMethod::BFGS, config)
828}
829
830pub fn create_natural_gradient_optimizer(learning_rate: f64) -> VariationalQuantumOptimizer {
832 let config = OptimizationConfig {
833 max_iterations: 100,
834 parallel_gradients: true,
835 ..Default::default()
836 };
837
838 VariationalQuantumOptimizer::new(
839 OptimizationMethod::NaturalGradient {
840 learning_rate,
841 regularization: 1e-4,
842 },
843 config,
844 )
845}
846
847pub fn create_spsa_optimizer() -> VariationalQuantumOptimizer {
849 let config = OptimizationConfig {
850 max_iterations: 500,
851 seed: Some(42),
852 ..Default::default()
853 };
854
855 VariationalQuantumOptimizer::new(
856 OptimizationMethod::SPSA {
857 a: 0.1,
858 c: 0.1,
859 alpha: 0.602,
860 gamma: 0.101,
861 },
862 config,
863 )
864}
865
866pub struct ConstrainedVariationalOptimizer {
868 base_optimizer: VariationalQuantumOptimizer,
870 constraints: Vec<Constraint>,
872}
873
874#[derive(Clone)]
876pub struct Constraint {
877 pub function: Arc<dyn Fn(&FxHashMap<String, f64>) -> f64 + Send + Sync>,
879 pub constraint_type: ConstraintType,
881 pub value: f64,
883}
884
885#[derive(Debug, Clone, Copy)]
887pub enum ConstraintType {
888 Eq,
890 Ineq,
892}
893
894impl ConstrainedVariationalOptimizer {
895 pub fn new(base_optimizer: VariationalQuantumOptimizer) -> Self {
897 Self {
898 base_optimizer,
899 constraints: Vec::new(),
900 }
901 }
902
903 pub fn add_equality_constraint(
905 &mut self,
906 constraint_fn: impl Fn(&FxHashMap<String, f64>) -> f64 + Send + Sync + 'static,
907 value: f64,
908 ) {
909 self.constraints.push(Constraint {
910 function: Arc::new(constraint_fn),
911 constraint_type: ConstraintType::Eq,
912 value,
913 });
914 }
915
916 pub fn add_inequality_constraint(
918 &mut self,
919 constraint_fn: impl Fn(&FxHashMap<String, f64>) -> f64 + Send + Sync + 'static,
920 value: f64,
921 ) {
922 self.constraints.push(Constraint {
923 function: Arc::new(constraint_fn),
924 constraint_type: ConstraintType::Ineq,
925 value,
926 });
927 }
928
929 pub fn optimize(
931 &mut self,
932 circuit: &mut VariationalCircuit,
933 cost_fn: impl Fn(&VariationalCircuit) -> QuantRS2Result<f64> + Send + Sync + 'static,
934 ) -> QuantRS2Result<OptimizationResult> {
935 if self.constraints.is_empty() {
936 return self.base_optimizer.optimize(circuit, cost_fn);
937 }
938
939 let cost_fn = Arc::new(cost_fn);
941 let constraints = self.constraints.clone();
942 let penalty_weight = 1000.0;
943
944 let penalized_cost = move |circuit: &VariationalCircuit| -> QuantRS2Result<f64> {
945 let base_cost = cost_fn(circuit)?;
946 let params = circuit.get_parameters();
947
948 let mut penalty = 0.0;
949 for constraint in &constraints {
950 let constraint_value = (constraint.function)(¶ms);
951 match constraint.constraint_type {
952 ConstraintType::Eq => {
953 penalty += penalty_weight * (constraint_value - constraint.value).powi(2);
954 }
955 ConstraintType::Ineq => {
956 if constraint_value > constraint.value {
957 penalty +=
958 penalty_weight * (constraint_value - constraint.value).powi(2);
959 }
960 }
961 }
962 }
963
964 Ok(base_cost + penalty)
965 };
966
967 self.base_optimizer.optimize(circuit, penalized_cost)
968 }
969}
970
971pub struct HyperparameterOptimizer {
973 search_space: FxHashMap<String, (f64, f64)>,
975 n_trials: usize,
977 inner_method: OptimizationMethod,
979}
980
981impl HyperparameterOptimizer {
982 pub fn new(n_trials: usize) -> Self {
984 Self {
985 search_space: FxHashMap::default(),
986 n_trials,
987 inner_method: OptimizationMethod::BFGS,
988 }
989 }
990
991 pub fn add_hyperparameter(&mut self, name: String, min_value: f64, max_value: f64) {
993 self.search_space.insert(name, (min_value, max_value));
994 }
995
996 pub fn optimize(
998 &self,
999 circuit_builder: impl Fn(&FxHashMap<String, f64>) -> VariationalCircuit + Send + Sync,
1000 cost_fn: impl Fn(&VariationalCircuit) -> QuantRS2Result<f64> + Send + Sync + Clone + 'static,
1001 ) -> QuantRS2Result<HyperparameterResult> {
1002 use scirs2_core::random::prelude::*;
1003
1004 let mut rng = StdRng::from_seed(thread_rng().gen());
1005 let mut best_hyperparams = FxHashMap::default();
1006 let mut best_loss = f64::INFINITY;
1007 let mut all_trials = Vec::new();
1008
1009 for _trial in 0..self.n_trials {
1010 let mut hyperparams = FxHashMap::default();
1012 for (name, &(min_val, max_val)) in &self.search_space {
1013 let value = rng.gen_range(min_val..max_val);
1014 hyperparams.insert(name.clone(), value);
1015 }
1016
1017 let mut circuit = circuit_builder(&hyperparams);
1019
1020 let config = OptimizationConfig {
1022 max_iterations: 50,
1023 ..Default::default()
1024 };
1025
1026 let mut optimizer = VariationalQuantumOptimizer::new(self.inner_method.clone(), config);
1027
1028 let result = optimizer.optimize(&mut circuit, cost_fn.clone())?;
1029
1030 all_trials.push(HyperparameterTrial {
1031 hyperparameters: hyperparams.clone(),
1032 final_loss: result.final_loss,
1033 optimal_parameters: result.optimal_parameters,
1034 });
1035
1036 if result.final_loss < best_loss {
1037 best_loss = result.final_loss;
1038 best_hyperparams = hyperparams;
1039 }
1040 }
1041
1042 Ok(HyperparameterResult {
1043 best_hyperparameters: best_hyperparams,
1044 best_loss,
1045 all_trials,
1046 })
1047 }
1048}
1049
1050#[derive(Debug, Clone)]
1052pub struct HyperparameterResult {
1053 pub best_hyperparameters: FxHashMap<String, f64>,
1055 pub best_loss: f64,
1057 pub all_trials: Vec<HyperparameterTrial>,
1059}
1060
1061#[derive(Debug, Clone)]
1063pub struct HyperparameterTrial {
1064 pub hyperparameters: FxHashMap<String, f64>,
1066 pub final_loss: f64,
1068 pub optimal_parameters: FxHashMap<String, f64>,
1070}
1071
1072impl Clone for VariationalCircuit {
1074 fn clone(&self) -> Self {
1075 Self {
1076 gates: self.gates.clone(),
1077 param_map: self.param_map.clone(),
1078 num_qubits: self.num_qubits,
1079 }
1080 }
1081}
1082
1083#[cfg(test)]
1084mod tests {
1085 use super::*;
1086 use crate::qubit::QubitId;
1087 use crate::variational::VariationalGate;
1088
1089 #[test]
1090 fn test_gradient_descent_optimizer() {
1091 let mut circuit = VariationalCircuit::new(1);
1092 circuit.add_gate(VariationalGate::rx(QubitId(0), "theta".to_string(), 0.0));
1093
1094 let config = OptimizationConfig {
1095 max_iterations: 10,
1096 ..Default::default()
1097 };
1098
1099 let mut optimizer = VariationalQuantumOptimizer::new(
1100 OptimizationMethod::GradientDescent { learning_rate: 0.1 },
1101 config,
1102 );
1103
1104 let cost_fn = |circuit: &VariationalCircuit| -> QuantRS2Result<f64> {
1106 let theta = circuit
1107 .get_parameters()
1108 .get("theta")
1109 .copied()
1110 .unwrap_or(0.0);
1111 Ok((theta - 1.0).powi(2))
1112 };
1113
1114 let result = optimizer.optimize(&mut circuit, cost_fn).unwrap();
1115
1116 assert!(result.converged || result.iterations == 10);
1117 assert!((result.optimal_parameters["theta"] - 1.0).abs() < 0.1);
1118 }
1119
1120 #[test]
1121 fn test_adam_optimizer() {
1122 let mut circuit = VariationalCircuit::new(2);
1123 circuit.add_gate(VariationalGate::ry(QubitId(0), "alpha".to_string(), 0.5));
1124 circuit.add_gate(VariationalGate::rz(QubitId(1), "beta".to_string(), 0.5));
1125
1126 let config = OptimizationConfig {
1127 max_iterations: 100,
1128 f_tol: 1e-6,
1129 g_tol: 1e-6,
1130 ..Default::default()
1131 };
1132
1133 let mut optimizer = VariationalQuantumOptimizer::new(
1134 OptimizationMethod::Adam {
1135 learning_rate: 0.1,
1136 beta1: 0.9,
1137 beta2: 0.999,
1138 epsilon: 1e-8,
1139 },
1140 config,
1141 );
1142
1143 let cost_fn = |circuit: &VariationalCircuit| -> QuantRS2Result<f64> {
1145 let params = circuit.get_parameters();
1146 let alpha = params.get("alpha").copied().unwrap_or(0.0);
1147 let beta = params.get("beta").copied().unwrap_or(0.0);
1148 Ok(alpha.powi(2) + beta.powi(2))
1149 };
1150
1151 let result = optimizer.optimize(&mut circuit, cost_fn).unwrap();
1152
1153 assert!(result.optimal_parameters["alpha"].abs() < 0.1);
1154 assert!(result.optimal_parameters["beta"].abs() < 0.1);
1155 }
1156
1157 #[test]
1158 fn test_constrained_optimization() {
1159 let mut circuit = VariationalCircuit::new(1);
1160 circuit.add_gate(VariationalGate::rx(QubitId(0), "x".to_string(), 2.0));
1161
1162 let base_optimizer =
1163 VariationalQuantumOptimizer::new(OptimizationMethod::BFGS, Default::default());
1164
1165 let mut constrained_opt = ConstrainedVariationalOptimizer::new(base_optimizer);
1166
1167 constrained_opt
1169 .add_inequality_constraint(|params| 1.0 - params.get("x").copied().unwrap_or(0.0), 0.0);
1170
1171 let cost_fn = |circuit: &VariationalCircuit| -> QuantRS2Result<f64> {
1173 let x = circuit.get_parameters().get("x").copied().unwrap_or(0.0);
1174 Ok(x.powi(2))
1175 };
1176
1177 let result = constrained_opt.optimize(&mut circuit, cost_fn).unwrap();
1178
1179 let optimized_x = result.optimal_parameters["x"];
1180 assert!(optimized_x >= 1.0 - 1e-6);
1181 assert!(optimized_x <= 2.0 + 1e-6);
1182 }
1183}