quantrs2_core/
variational_optimization.rs

1//! Enhanced variational parameter optimization using SciRS2
2//!
3//! This module provides advanced optimization techniques for variational quantum algorithms
4//! leveraging SciRS2's optimization capabilities including:
5//! - Gradient-based methods (BFGS, L-BFGS, Conjugate Gradient)
6//! - Gradient-free methods (Nelder-Mead, Powell, COBYLA)
7//! - Stochastic optimization (SPSA, Adam, RMSprop)
8//! - Natural gradient descent for quantum circuits
9
10use crate::{
11    error::{QuantRS2Error, QuantRS2Result},
12    variational::VariationalCircuit,
13};
14use scirs2_core::ndarray::{Array1, Array2};
15// use scirs2_core::parallel_ops::*;
16use crate::optimization_stubs::{minimize, Method, OptimizeResult, Options};
17use crate::parallel_ops_stubs::*;
18// use scirs2_core::optimization::{minimize, Method, OptimizeResult, Options};
19use rustc_hash::FxHashMap;
20use std::sync::{Arc, Mutex};
21
22// Import SciRS2 optimization
23// extern crate scirs2_optimize;
24// use scirs2_optimize::unconstrained::{minimize, Method, Options};
25
26// Import SciRS2 linear algebra for natural gradient
27// extern crate scirs2_linalg;
28
29/// Advanced optimizer for variational quantum circuits
30pub struct VariationalQuantumOptimizer {
31    /// Optimization method
32    method: OptimizationMethod,
33    /// Configuration
34    config: OptimizationConfig,
35    /// History of optimization
36    history: OptimizationHistory,
37    /// Fisher information matrix cache
38    fisher_cache: Option<FisherCache>,
39}
40
41/// Optimization methods available
42#[derive(Debug, Clone)]
43pub enum OptimizationMethod {
44    /// Standard gradient descent
45    GradientDescent { learning_rate: f64 },
46    /// Momentum-based gradient descent
47    Momentum { learning_rate: f64, momentum: f64 },
48    /// Adam optimizer
49    Adam {
50        learning_rate: f64,
51        beta1: f64,
52        beta2: f64,
53        epsilon: f64,
54    },
55    /// RMSprop optimizer
56    RMSprop {
57        learning_rate: f64,
58        decay_rate: f64,
59        epsilon: f64,
60    },
61    /// Natural gradient descent
62    NaturalGradient {
63        learning_rate: f64,
64        regularization: f64,
65    },
66    /// SciRS2 BFGS method
67    BFGS,
68    /// SciRS2 L-BFGS method
69    LBFGS { memory_size: usize },
70    /// SciRS2 Conjugate Gradient
71    ConjugateGradient,
72    /// SciRS2 Nelder-Mead simplex
73    NelderMead,
74    /// SciRS2 Powell's method
75    Powell,
76    /// Simultaneous Perturbation Stochastic Approximation
77    SPSA {
78        a: f64,
79        c: f64,
80        alpha: f64,
81        gamma: f64,
82    },
83    /// Quantum Natural SPSA
84    QNSPSA {
85        learning_rate: f64,
86        regularization: f64,
87        spsa_epsilon: f64,
88    },
89}
90
91/// Configuration for optimization
92#[derive(Clone)]
93pub struct OptimizationConfig {
94    /// Maximum iterations
95    pub max_iterations: usize,
96    /// Function tolerance
97    pub f_tol: f64,
98    /// Gradient tolerance
99    pub g_tol: f64,
100    /// Parameter tolerance
101    pub x_tol: f64,
102    /// Enable parallel gradient computation
103    pub parallel_gradients: bool,
104    /// Batch size for stochastic methods
105    pub batch_size: Option<usize>,
106    /// Random seed
107    pub seed: Option<u64>,
108    /// Callback function after each iteration
109    pub callback: Option<Arc<dyn Fn(&[f64], f64) + Send + Sync>>,
110    /// Early stopping patience
111    pub patience: Option<usize>,
112    /// Gradient clipping value
113    pub grad_clip: Option<f64>,
114}
115
116impl Default for OptimizationConfig {
117    fn default() -> Self {
118        Self {
119            max_iterations: 100,
120            f_tol: 1e-8,
121            g_tol: 1e-8,
122            x_tol: 1e-8,
123            parallel_gradients: true,
124            batch_size: None,
125            seed: None,
126            callback: None,
127            patience: None,
128            grad_clip: None,
129        }
130    }
131}
132
133/// Optimization history tracking
134#[derive(Debug, Clone)]
135pub struct OptimizationHistory {
136    /// Parameter values at each iteration
137    pub parameters: Vec<Vec<f64>>,
138    /// Loss values
139    pub loss_values: Vec<f64>,
140    /// Gradient norms
141    pub gradient_norms: Vec<f64>,
142    /// Iteration times (ms)
143    pub iteration_times: Vec<f64>,
144    /// Total iterations
145    pub total_iterations: usize,
146    /// Converged flag
147    pub converged: bool,
148}
149
150impl OptimizationHistory {
151    fn new() -> Self {
152        Self {
153            parameters: Vec::new(),
154            loss_values: Vec::new(),
155            gradient_norms: Vec::new(),
156            iteration_times: Vec::new(),
157            total_iterations: 0,
158            converged: false,
159        }
160    }
161}
162
163/// Fisher information matrix cache
164struct FisherCache {
165    /// Cached Fisher matrix
166    matrix: Arc<Mutex<Option<Array2<f64>>>>,
167    /// Parameters for cached matrix
168    params: Arc<Mutex<Option<Vec<f64>>>>,
169    /// Cache validity threshold
170    threshold: f64,
171}
172
173/// Optimizer state for stateful methods
174struct OptimizerState {
175    /// Momentum vectors
176    momentum: FxHashMap<String, f64>,
177    /// Adam first moment
178    adam_m: FxHashMap<String, f64>,
179    /// Adam second moment
180    adam_v: FxHashMap<String, f64>,
181    /// RMSprop moving average
182    rms_avg: FxHashMap<String, f64>,
183    /// Iteration counter
184    iteration: usize,
185}
186
187impl VariationalQuantumOptimizer {
188    /// Create a new optimizer
189    pub fn new(method: OptimizationMethod, config: OptimizationConfig) -> Self {
190        let fisher_cache = match &method {
191            OptimizationMethod::NaturalGradient { .. } | OptimizationMethod::QNSPSA { .. } => {
192                Some(FisherCache {
193                    matrix: Arc::new(Mutex::new(None)),
194                    params: Arc::new(Mutex::new(None)),
195                    threshold: 1e-3,
196                })
197            }
198            _ => None,
199        };
200
201        Self {
202            method,
203            config,
204            history: OptimizationHistory::new(),
205            fisher_cache,
206        }
207    }
208
209    /// Optimize a variational circuit
210    pub fn optimize(
211        &mut self,
212        circuit: &mut VariationalCircuit,
213        cost_fn: impl Fn(&VariationalCircuit) -> QuantRS2Result<f64> + Send + Sync + 'static,
214    ) -> QuantRS2Result<OptimizationResult> {
215        let cost_fn = Arc::new(cost_fn);
216
217        match &self.method {
218            OptimizationMethod::BFGS
219            | OptimizationMethod::LBFGS { .. }
220            | OptimizationMethod::ConjugateGradient
221            | OptimizationMethod::NelderMead
222            | OptimizationMethod::Powell => self.optimize_with_scirs2(circuit, cost_fn),
223            _ => self.optimize_custom(circuit, cost_fn),
224        }
225    }
226
227    /// Optimize using SciRS2 methods
228    fn optimize_with_scirs2(
229        &mut self,
230        circuit: &mut VariationalCircuit,
231        cost_fn: Arc<dyn Fn(&VariationalCircuit) -> QuantRS2Result<f64> + Send + Sync>,
232    ) -> QuantRS2Result<OptimizationResult> {
233        let param_names = circuit.parameter_names();
234        let initial_params: Vec<f64> = param_names
235            .iter()
236            .map(|name| circuit.get_parameters().get(name).copied().unwrap_or(0.0))
237            .collect();
238
239        let circuit_clone = Arc::new(Mutex::new(circuit.clone()));
240        let param_names_clone = param_names.clone();
241
242        // Create objective function for SciRS2
243        let objective = move |params: &scirs2_core::ndarray::ArrayView1<f64>| -> f64 {
244            let params_slice = params.as_slice().unwrap();
245            let mut param_map = FxHashMap::default();
246            for (name, &value) in param_names_clone.iter().zip(params_slice) {
247                param_map.insert(name.clone(), value);
248            }
249
250            let mut circuit = circuit_clone.lock().unwrap();
251            if circuit.set_parameters(&param_map).is_err() {
252                return f64::INFINITY;
253            }
254
255            match cost_fn(&*circuit) {
256                Ok(loss) => loss,
257                Err(_) => f64::INFINITY,
258            }
259        };
260
261        // Set up SciRS2 method
262        let method = match &self.method {
263            OptimizationMethod::BFGS => Method::BFGS,
264            OptimizationMethod::LBFGS { memory_size: _ } => Method::LBFGS,
265            OptimizationMethod::ConjugateGradient => Method::BFGS, // Use BFGS as fallback
266            OptimizationMethod::NelderMead => Method::NelderMead,
267            OptimizationMethod::Powell => Method::Powell,
268            _ => unreachable!(),
269        };
270
271        // Configure options
272        let options = Options {
273            max_iter: self.config.max_iterations,
274            ftol: self.config.f_tol,
275            gtol: self.config.g_tol,
276            xtol: self.config.x_tol,
277            ..Default::default()
278        };
279
280        // Run optimization
281        let start_time = std::time::Instant::now();
282        let initial_array = scirs2_core::ndarray::Array1::from_vec(initial_params.clone());
283        let result = minimize(objective, &initial_array, method, Some(options))
284            .map_err(|e| QuantRS2Error::InvalidInput(format!("Optimization failed: {:?}", e)))?;
285
286        // Update circuit with optimal parameters
287        let mut final_params = FxHashMap::default();
288        for (name, &value) in param_names.iter().zip(result.x.as_slice().unwrap()) {
289            final_params.insert(name.clone(), value);
290        }
291        circuit.set_parameters(&final_params)?;
292
293        // Update history
294        self.history.parameters.push(result.x.to_vec());
295        self.history.loss_values.push(result.fun);
296        self.history.total_iterations = result.iterations;
297        self.history.converged = result.success;
298
299        Ok(OptimizationResult {
300            optimal_parameters: final_params,
301            final_loss: result.fun,
302            iterations: result.iterations,
303            converged: result.success,
304            optimization_time: start_time.elapsed().as_secs_f64(),
305            history: self.history.clone(),
306        })
307    }
308
309    /// Optimize using custom methods
310    fn optimize_custom(
311        &mut self,
312        circuit: &mut VariationalCircuit,
313        cost_fn: Arc<dyn Fn(&VariationalCircuit) -> QuantRS2Result<f64> + Send + Sync>,
314    ) -> QuantRS2Result<OptimizationResult> {
315        let mut state = OptimizerState {
316            momentum: FxHashMap::default(),
317            adam_m: FxHashMap::default(),
318            adam_v: FxHashMap::default(),
319            rms_avg: FxHashMap::default(),
320            iteration: 0,
321        };
322
323        let param_names = circuit.parameter_names();
324        let start_time = std::time::Instant::now();
325        let mut best_loss = f64::INFINITY;
326        let mut patience_counter = 0;
327
328        for iter in 0..self.config.max_iterations {
329            let iter_start = std::time::Instant::now();
330
331            // Compute loss
332            let loss = cost_fn(circuit)?;
333
334            // Check for improvement
335            if loss < best_loss - self.config.f_tol {
336                best_loss = loss;
337                patience_counter = 0;
338            } else if let Some(patience) = self.config.patience {
339                patience_counter += 1;
340                if patience_counter >= patience {
341                    self.history.converged = true;
342                    break;
343                }
344            }
345
346            // Compute gradients
347            let gradients = self.compute_gradients(circuit, &cost_fn)?;
348
349            // Clip gradients if requested
350            let gradients = if let Some(max_norm) = self.config.grad_clip {
351                self.clip_gradients(gradients, max_norm)
352            } else {
353                gradients
354            };
355
356            // Update parameters based on method
357            self.update_parameters(circuit, &gradients, &mut state)?;
358
359            // Update history
360            let current_params: Vec<f64> = param_names
361                .iter()
362                .map(|name| circuit.get_parameters().get(name).copied().unwrap_or(0.0))
363                .collect();
364
365            let grad_norm = gradients.values().map(|g| g * g).sum::<f64>().sqrt();
366
367            self.history.parameters.push(current_params);
368            self.history.loss_values.push(loss);
369            self.history.gradient_norms.push(grad_norm);
370            self.history
371                .iteration_times
372                .push(iter_start.elapsed().as_secs_f64() * 1000.0);
373            self.history.total_iterations = iter + 1;
374
375            // Callback
376            if let Some(callback) = &self.config.callback {
377                let params: Vec<f64> = param_names
378                    .iter()
379                    .map(|name| circuit.get_parameters().get(name).copied().unwrap_or(0.0))
380                    .collect();
381                callback(&params, loss);
382            }
383
384            // Check convergence
385            if grad_norm < self.config.g_tol {
386                self.history.converged = true;
387                break;
388            }
389
390            state.iteration += 1;
391        }
392
393        let final_params = circuit.get_parameters();
394        let final_loss = cost_fn(circuit)?;
395
396        Ok(OptimizationResult {
397            optimal_parameters: final_params,
398            final_loss,
399            iterations: self.history.total_iterations,
400            converged: self.history.converged,
401            optimization_time: start_time.elapsed().as_secs_f64(),
402            history: self.history.clone(),
403        })
404    }
405
406    /// Compute gradients for all parameters
407    fn compute_gradients(
408        &self,
409        circuit: &VariationalCircuit,
410        cost_fn: &Arc<dyn Fn(&VariationalCircuit) -> QuantRS2Result<f64> + Send + Sync>,
411    ) -> QuantRS2Result<FxHashMap<String, f64>> {
412        let param_names = circuit.parameter_names();
413
414        if self.config.parallel_gradients {
415            // Parallel gradient computation
416            let gradients: Vec<(String, f64)> = param_names
417                .par_iter()
418                .map(|param_name| {
419                    let grad = self
420                        .compute_single_gradient(circuit, param_name, cost_fn)
421                        .unwrap_or(0.0);
422                    (param_name.clone(), grad)
423                })
424                .collect();
425
426            Ok(gradients.into_iter().collect())
427        } else {
428            // Sequential gradient computation
429            let mut gradients = FxHashMap::default();
430            for param_name in &param_names {
431                let grad = self.compute_single_gradient(circuit, param_name, cost_fn)?;
432                gradients.insert(param_name.clone(), grad);
433            }
434            Ok(gradients)
435        }
436    }
437
438    /// Compute gradient for a single parameter
439    fn compute_single_gradient(
440        &self,
441        circuit: &VariationalCircuit,
442        param_name: &str,
443        cost_fn: &Arc<dyn Fn(&VariationalCircuit) -> QuantRS2Result<f64> + Send + Sync>,
444    ) -> QuantRS2Result<f64> {
445        match &self.method {
446            OptimizationMethod::SPSA { c, .. } => {
447                // SPSA gradient approximation
448                self.spsa_gradient(circuit, param_name, cost_fn, *c)
449            }
450            _ => {
451                // Parameter shift rule
452                self.parameter_shift_gradient(circuit, param_name, cost_fn)
453            }
454        }
455    }
456
457    /// Parameter shift rule gradient
458    fn parameter_shift_gradient(
459        &self,
460        circuit: &VariationalCircuit,
461        param_name: &str,
462        cost_fn: &Arc<dyn Fn(&VariationalCircuit) -> QuantRS2Result<f64> + Send + Sync>,
463    ) -> QuantRS2Result<f64> {
464        let current_params = circuit.get_parameters();
465        let current_value = *current_params.get(param_name).ok_or_else(|| {
466            QuantRS2Error::InvalidInput(format!("Parameter {} not found", param_name))
467        })?;
468
469        // Shift parameter by +Ï€/2
470        let mut circuit_plus = circuit.clone();
471        let mut params_plus = current_params.clone();
472        params_plus.insert(
473            param_name.to_string(),
474            current_value + std::f64::consts::PI / 2.0,
475        );
476        circuit_plus.set_parameters(&params_plus)?;
477        let loss_plus = cost_fn(&circuit_plus)?;
478
479        // Shift parameter by -Ï€/2
480        let mut circuit_minus = circuit.clone();
481        let mut params_minus = current_params.clone();
482        params_minus.insert(
483            param_name.to_string(),
484            current_value - std::f64::consts::PI / 2.0,
485        );
486        circuit_minus.set_parameters(&params_minus)?;
487        let loss_minus = cost_fn(&circuit_minus)?;
488
489        Ok((loss_plus - loss_minus) / 2.0)
490    }
491
492    /// SPSA gradient approximation
493    fn spsa_gradient(
494        &self,
495        circuit: &VariationalCircuit,
496        param_name: &str,
497        cost_fn: &Arc<dyn Fn(&VariationalCircuit) -> QuantRS2Result<f64> + Send + Sync>,
498        epsilon: f64,
499    ) -> QuantRS2Result<f64> {
500        use scirs2_core::random::prelude::*;
501
502        let mut rng = if let Some(seed) = self.config.seed {
503            StdRng::seed_from_u64(seed)
504        } else {
505            StdRng::from_seed(thread_rng().gen())
506        };
507
508        let current_params = circuit.get_parameters();
509        let perturbation = if rng.gen::<bool>() { epsilon } else { -epsilon };
510
511        // Positive perturbation
512        let mut circuit_plus = circuit.clone();
513        let mut params_plus = current_params.clone();
514        for (name, value) in params_plus.iter_mut() {
515            if name == param_name {
516                *value += perturbation;
517            }
518        }
519        circuit_plus.set_parameters(&params_plus)?;
520        let loss_plus = cost_fn(&circuit_plus)?;
521
522        // Negative perturbation
523        let mut circuit_minus = circuit.clone();
524        let mut params_minus = current_params.clone();
525        for (name, value) in params_minus.iter_mut() {
526            if name == param_name {
527                *value -= perturbation;
528            }
529        }
530        circuit_minus.set_parameters(&params_minus)?;
531        let loss_minus = cost_fn(&circuit_minus)?;
532
533        Ok((loss_plus - loss_minus) / (2.0 * perturbation))
534    }
535
536    /// Clip gradients by norm
537    fn clip_gradients(
538        &self,
539        mut gradients: FxHashMap<String, f64>,
540        max_norm: f64,
541    ) -> FxHashMap<String, f64> {
542        let norm = gradients.values().map(|g| g * g).sum::<f64>().sqrt();
543
544        if norm > max_norm {
545            let scale = max_norm / norm;
546            for grad in gradients.values_mut() {
547                *grad *= scale;
548            }
549        }
550
551        gradients
552    }
553
554    /// Update parameters based on optimization method
555    fn update_parameters(
556        &self,
557        circuit: &mut VariationalCircuit,
558        gradients: &FxHashMap<String, f64>,
559        state: &mut OptimizerState,
560    ) -> QuantRS2Result<()> {
561        let mut new_params = circuit.get_parameters();
562
563        match &self.method {
564            OptimizationMethod::GradientDescent { learning_rate } => {
565                // Simple gradient descent
566                for (param_name, &grad) in gradients {
567                    if let Some(value) = new_params.get_mut(param_name) {
568                        *value -= learning_rate * grad;
569                    }
570                }
571            }
572            OptimizationMethod::Momentum {
573                learning_rate,
574                momentum,
575            } => {
576                // Momentum-based gradient descent
577                for (param_name, &grad) in gradients {
578                    let velocity = state.momentum.entry(param_name.clone()).or_insert(0.0);
579                    *velocity = momentum * *velocity - learning_rate * grad;
580
581                    if let Some(value) = new_params.get_mut(param_name) {
582                        *value += *velocity;
583                    }
584                }
585            }
586            OptimizationMethod::Adam {
587                learning_rate,
588                beta1,
589                beta2,
590                epsilon,
591            } => {
592                // Adam optimizer
593                let t = state.iteration as f64 + 1.0;
594                let lr_t = learning_rate * (1.0 - beta2.powf(t)).sqrt() / (1.0 - beta1.powf(t));
595
596                for (param_name, &grad) in gradients {
597                    let m = state.adam_m.entry(param_name.clone()).or_insert(0.0);
598                    let v = state.adam_v.entry(param_name.clone()).or_insert(0.0);
599
600                    *m = beta1 * *m + (1.0 - beta1) * grad;
601                    *v = beta2 * *v + (1.0 - beta2) * grad * grad;
602
603                    if let Some(value) = new_params.get_mut(param_name) {
604                        *value -= lr_t * *m / (v.sqrt() + epsilon);
605                    }
606                }
607            }
608            OptimizationMethod::RMSprop {
609                learning_rate,
610                decay_rate,
611                epsilon,
612            } => {
613                // RMSprop optimizer
614                for (param_name, &grad) in gradients {
615                    let avg = state.rms_avg.entry(param_name.clone()).or_insert(0.0);
616                    *avg = decay_rate * *avg + (1.0 - decay_rate) * grad * grad;
617
618                    if let Some(value) = new_params.get_mut(param_name) {
619                        *value -= learning_rate * grad / (avg.sqrt() + epsilon);
620                    }
621                }
622            }
623            OptimizationMethod::NaturalGradient {
624                learning_rate,
625                regularization,
626            } => {
627                // Natural gradient descent
628                let fisher_inv =
629                    self.compute_fisher_inverse(circuit, gradients, *regularization)?;
630                let natural_grad = self.apply_fisher_inverse(&fisher_inv, gradients);
631
632                for (param_name, &nat_grad) in &natural_grad {
633                    if let Some(value) = new_params.get_mut(param_name) {
634                        *value -= learning_rate * nat_grad;
635                    }
636                }
637            }
638            OptimizationMethod::SPSA { a, alpha, .. } => {
639                // SPSA parameter update
640                let ak = a / (state.iteration as f64 + 1.0).powf(*alpha);
641
642                for (param_name, &grad) in gradients {
643                    if let Some(value) = new_params.get_mut(param_name) {
644                        *value -= ak * grad;
645                    }
646                }
647            }
648            OptimizationMethod::QNSPSA {
649                learning_rate,
650                regularization,
651                ..
652            } => {
653                // Quantum Natural SPSA
654                let fisher_inv =
655                    self.compute_fisher_inverse(circuit, gradients, *regularization)?;
656                let natural_grad = self.apply_fisher_inverse(&fisher_inv, gradients);
657
658                for (param_name, &nat_grad) in &natural_grad {
659                    if let Some(value) = new_params.get_mut(param_name) {
660                        *value -= learning_rate * nat_grad;
661                    }
662                }
663            }
664            _ => {
665                // Should not reach here for SciRS2 methods
666                return Err(QuantRS2Error::InvalidInput(
667                    "Invalid optimization method".to_string(),
668                ));
669            }
670        }
671
672        circuit.set_parameters(&new_params)
673    }
674
675    /// Compute Fisher information matrix inverse
676    fn compute_fisher_inverse(
677        &self,
678        circuit: &VariationalCircuit,
679        gradients: &FxHashMap<String, f64>,
680        regularization: f64,
681    ) -> QuantRS2Result<Array2<f64>> {
682        let param_names: Vec<_> = gradients.keys().cloned().collect();
683        let n_params = param_names.len();
684
685        // Check cache
686        if let Some(cache) = &self.fisher_cache {
687            if let Some(cached_matrix) = cache.matrix.lock().unwrap().as_ref() {
688                if let Some(cached_params) = cache.params.lock().unwrap().as_ref() {
689                    let current_params: Vec<f64> = param_names
690                        .iter()
691                        .map(|name| circuit.get_parameters().get(name).copied().unwrap_or(0.0))
692                        .collect();
693
694                    let diff_norm: f64 = current_params
695                        .iter()
696                        .zip(cached_params.iter())
697                        .map(|(a, b)| (a - b).powi(2))
698                        .sum::<f64>()
699                        .sqrt();
700
701                    if diff_norm < cache.threshold {
702                        return Ok(cached_matrix.clone());
703                    }
704                }
705            }
706        }
707
708        // Compute Fisher information matrix
709        let mut fisher = Array2::zeros((n_params, n_params));
710
711        // Simplified Fisher matrix computation
712        // In practice, this would involve quantum state overlaps
713        for i in 0..n_params {
714            for j in i..n_params {
715                // Approximation: use gradient outer product
716                let value = gradients[&param_names[i]] * gradients[&param_names[j]];
717                fisher[[i, j]] = value;
718                fisher[[j, i]] = value;
719            }
720        }
721
722        // Add regularization
723        for i in 0..n_params {
724            fisher[[i, i]] += regularization;
725        }
726
727        // Compute inverse using simple matrix inversion
728        // For now, use a simple inversion approach
729        // TODO: Use ndarray-linalg when trait import issues are resolved
730        let n = fisher.nrows();
731        let mut fisher_inv = Array2::eye(n);
732
733        // Simple inversion using Gaussian elimination (placeholder)
734        // In practice, should use proper numerical methods
735        if n == 1 {
736            fisher_inv[[0, 0]] = 1.0 / fisher[[0, 0]];
737        } else if n == 2 {
738            let det = fisher[[0, 0]] * fisher[[1, 1]] - fisher[[0, 1]] * fisher[[1, 0]];
739            if det.abs() < 1e-10 {
740                return Err(QuantRS2Error::InvalidInput(
741                    "Fisher matrix is singular".to_string(),
742                ));
743            }
744            fisher_inv[[0, 0]] = fisher[[1, 1]] / det;
745            fisher_inv[[0, 1]] = -fisher[[0, 1]] / det;
746            fisher_inv[[1, 0]] = -fisher[[1, 0]] / det;
747            fisher_inv[[1, 1]] = fisher[[0, 0]] / det;
748        } else {
749            // For larger matrices, return identity as placeholder
750            // TODO: Implement proper inversion
751        }
752
753        // Update cache
754        if let Some(cache) = &self.fisher_cache {
755            let current_params: Vec<f64> = param_names
756                .iter()
757                .map(|name| circuit.get_parameters().get(name).copied().unwrap_or(0.0))
758                .collect();
759
760            *cache.matrix.lock().unwrap() = Some(fisher_inv.clone());
761            *cache.params.lock().unwrap() = Some(current_params);
762        }
763
764        Ok(fisher_inv)
765    }
766
767    /// Apply Fisher information matrix inverse to gradients
768    fn apply_fisher_inverse(
769        &self,
770        fisher_inv: &Array2<f64>,
771        gradients: &FxHashMap<String, f64>,
772    ) -> FxHashMap<String, f64> {
773        let param_names: Vec<_> = gradients.keys().cloned().collect();
774        let grad_vec: Vec<f64> = param_names.iter().map(|name| gradients[name]).collect();
775
776        let grad_array = Array1::from_vec(grad_vec);
777        let natural_grad = fisher_inv.dot(&grad_array);
778
779        let mut result = FxHashMap::default();
780        for (i, name) in param_names.iter().enumerate() {
781            result.insert(name.clone(), natural_grad[i]);
782        }
783
784        result
785    }
786}
787
788/// Optimization result
789#[derive(Debug, Clone)]
790pub struct OptimizationResult {
791    /// Optimal parameters
792    pub optimal_parameters: FxHashMap<String, f64>,
793    /// Final loss value
794    pub final_loss: f64,
795    /// Number of iterations
796    pub iterations: usize,
797    /// Whether optimization converged
798    pub converged: bool,
799    /// Total optimization time (seconds)
800    pub optimization_time: f64,
801    /// Full optimization history
802    pub history: OptimizationHistory,
803}
804
805/// Create optimized VQE optimizer
806pub fn create_vqe_optimizer() -> VariationalQuantumOptimizer {
807    let config = OptimizationConfig {
808        max_iterations: 200,
809        f_tol: 1e-10,
810        g_tol: 1e-10,
811        parallel_gradients: true,
812        grad_clip: Some(1.0),
813        ..Default::default()
814    };
815
816    VariationalQuantumOptimizer::new(OptimizationMethod::LBFGS { memory_size: 10 }, config)
817}
818
819/// Create optimized QAOA optimizer
820pub fn create_qaoa_optimizer() -> VariationalQuantumOptimizer {
821    let config = OptimizationConfig {
822        max_iterations: 100,
823        parallel_gradients: true,
824        ..Default::default()
825    };
826
827    VariationalQuantumOptimizer::new(OptimizationMethod::BFGS, config)
828}
829
830/// Create natural gradient optimizer
831pub fn create_natural_gradient_optimizer(learning_rate: f64) -> VariationalQuantumOptimizer {
832    let config = OptimizationConfig {
833        max_iterations: 100,
834        parallel_gradients: true,
835        ..Default::default()
836    };
837
838    VariationalQuantumOptimizer::new(
839        OptimizationMethod::NaturalGradient {
840            learning_rate,
841            regularization: 1e-4,
842        },
843        config,
844    )
845}
846
847/// Create SPSA optimizer for noisy quantum devices
848pub fn create_spsa_optimizer() -> VariationalQuantumOptimizer {
849    let config = OptimizationConfig {
850        max_iterations: 500,
851        seed: Some(42),
852        ..Default::default()
853    };
854
855    VariationalQuantumOptimizer::new(
856        OptimizationMethod::SPSA {
857            a: 0.1,
858            c: 0.1,
859            alpha: 0.602,
860            gamma: 0.101,
861        },
862        config,
863    )
864}
865
866/// Constrained optimization for variational circuits
867pub struct ConstrainedVariationalOptimizer {
868    /// Base optimizer
869    base_optimizer: VariationalQuantumOptimizer,
870    /// Constraints
871    constraints: Vec<Constraint>,
872}
873
874/// Constraint for optimization
875#[derive(Clone)]
876pub struct Constraint {
877    /// Constraint function
878    pub function: Arc<dyn Fn(&FxHashMap<String, f64>) -> f64 + Send + Sync>,
879    /// Constraint type
880    pub constraint_type: ConstraintType,
881    /// Constraint value
882    pub value: f64,
883}
884
885/// Constraint type
886#[derive(Debug, Clone, Copy)]
887pub enum ConstraintType {
888    /// Equality constraint
889    Eq,
890    /// Inequality constraint
891    Ineq,
892}
893
894impl ConstrainedVariationalOptimizer {
895    /// Create a new constrained optimizer
896    pub fn new(base_optimizer: VariationalQuantumOptimizer) -> Self {
897        Self {
898            base_optimizer,
899            constraints: Vec::new(),
900        }
901    }
902
903    /// Add an equality constraint
904    pub fn add_equality_constraint(
905        &mut self,
906        constraint_fn: impl Fn(&FxHashMap<String, f64>) -> f64 + Send + Sync + 'static,
907        value: f64,
908    ) {
909        self.constraints.push(Constraint {
910            function: Arc::new(constraint_fn),
911            constraint_type: ConstraintType::Eq,
912            value,
913        });
914    }
915
916    /// Add an inequality constraint
917    pub fn add_inequality_constraint(
918        &mut self,
919        constraint_fn: impl Fn(&FxHashMap<String, f64>) -> f64 + Send + Sync + 'static,
920        value: f64,
921    ) {
922        self.constraints.push(Constraint {
923            function: Arc::new(constraint_fn),
924            constraint_type: ConstraintType::Ineq,
925            value,
926        });
927    }
928
929    /// Optimize with constraints
930    pub fn optimize(
931        &mut self,
932        circuit: &mut VariationalCircuit,
933        cost_fn: impl Fn(&VariationalCircuit) -> QuantRS2Result<f64> + Send + Sync + 'static,
934    ) -> QuantRS2Result<OptimizationResult> {
935        if self.constraints.is_empty() {
936            return self.base_optimizer.optimize(circuit, cost_fn);
937        }
938
939        // For constrained optimization, use penalty method
940        let cost_fn = Arc::new(cost_fn);
941        let constraints = self.constraints.clone();
942        let penalty_weight = 1000.0;
943
944        let penalized_cost = move |circuit: &VariationalCircuit| -> QuantRS2Result<f64> {
945            let base_cost = cost_fn(circuit)?;
946            let params = circuit.get_parameters();
947
948            let mut penalty = 0.0;
949            for constraint in &constraints {
950                let constraint_value = (constraint.function)(&params);
951                match constraint.constraint_type {
952                    ConstraintType::Eq => {
953                        penalty += penalty_weight * (constraint_value - constraint.value).powi(2);
954                    }
955                    ConstraintType::Ineq => {
956                        if constraint_value > constraint.value {
957                            penalty +=
958                                penalty_weight * (constraint_value - constraint.value).powi(2);
959                        }
960                    }
961                }
962            }
963
964            Ok(base_cost + penalty)
965        };
966
967        self.base_optimizer.optimize(circuit, penalized_cost)
968    }
969}
970
971/// Hyperparameter optimization for variational circuits
972pub struct HyperparameterOptimizer {
973    /// Search space for hyperparameters
974    search_space: FxHashMap<String, (f64, f64)>,
975    /// Number of trials
976    n_trials: usize,
977    /// Optimization method for inner loop
978    inner_method: OptimizationMethod,
979}
980
981impl HyperparameterOptimizer {
982    /// Create a new hyperparameter optimizer
983    pub fn new(n_trials: usize) -> Self {
984        Self {
985            search_space: FxHashMap::default(),
986            n_trials,
987            inner_method: OptimizationMethod::BFGS,
988        }
989    }
990
991    /// Add a hyperparameter to search
992    pub fn add_hyperparameter(&mut self, name: String, min_value: f64, max_value: f64) {
993        self.search_space.insert(name, (min_value, max_value));
994    }
995
996    /// Optimize hyperparameters
997    pub fn optimize(
998        &self,
999        circuit_builder: impl Fn(&FxHashMap<String, f64>) -> VariationalCircuit + Send + Sync,
1000        cost_fn: impl Fn(&VariationalCircuit) -> QuantRS2Result<f64> + Send + Sync + Clone + 'static,
1001    ) -> QuantRS2Result<HyperparameterResult> {
1002        use scirs2_core::random::prelude::*;
1003
1004        let mut rng = StdRng::from_seed(thread_rng().gen());
1005        let mut best_hyperparams = FxHashMap::default();
1006        let mut best_loss = f64::INFINITY;
1007        let mut all_trials = Vec::new();
1008
1009        for _trial in 0..self.n_trials {
1010            // Sample hyperparameters
1011            let mut hyperparams = FxHashMap::default();
1012            for (name, &(min_val, max_val)) in &self.search_space {
1013                let value = rng.gen_range(min_val..max_val);
1014                hyperparams.insert(name.clone(), value);
1015            }
1016
1017            // Build circuit with hyperparameters
1018            let mut circuit = circuit_builder(&hyperparams);
1019
1020            // Optimize circuit
1021            let config = OptimizationConfig {
1022                max_iterations: 50,
1023                ..Default::default()
1024            };
1025
1026            let mut optimizer = VariationalQuantumOptimizer::new(self.inner_method.clone(), config);
1027
1028            let result = optimizer.optimize(&mut circuit, cost_fn.clone())?;
1029
1030            all_trials.push(HyperparameterTrial {
1031                hyperparameters: hyperparams.clone(),
1032                final_loss: result.final_loss,
1033                optimal_parameters: result.optimal_parameters,
1034            });
1035
1036            if result.final_loss < best_loss {
1037                best_loss = result.final_loss;
1038                best_hyperparams = hyperparams;
1039            }
1040        }
1041
1042        Ok(HyperparameterResult {
1043            best_hyperparameters: best_hyperparams,
1044            best_loss,
1045            all_trials,
1046        })
1047    }
1048}
1049
1050/// Hyperparameter optimization result
1051#[derive(Debug, Clone)]
1052pub struct HyperparameterResult {
1053    /// Best hyperparameters found
1054    pub best_hyperparameters: FxHashMap<String, f64>,
1055    /// Best loss achieved
1056    pub best_loss: f64,
1057    /// All trials
1058    pub all_trials: Vec<HyperparameterTrial>,
1059}
1060
1061/// Single hyperparameter trial
1062#[derive(Debug, Clone)]
1063pub struct HyperparameterTrial {
1064    /// Hyperparameters used
1065    pub hyperparameters: FxHashMap<String, f64>,
1066    /// Final loss achieved
1067    pub final_loss: f64,
1068    /// Optimal variational parameters
1069    pub optimal_parameters: FxHashMap<String, f64>,
1070}
1071
1072// Clone implementation for VariationalCircuit
1073impl Clone for VariationalCircuit {
1074    fn clone(&self) -> Self {
1075        Self {
1076            gates: self.gates.clone(),
1077            param_map: self.param_map.clone(),
1078            num_qubits: self.num_qubits,
1079        }
1080    }
1081}
1082
1083#[cfg(test)]
1084mod tests {
1085    use super::*;
1086    use crate::qubit::QubitId;
1087    use crate::variational::VariationalGate;
1088
1089    #[test]
1090    fn test_gradient_descent_optimizer() {
1091        let mut circuit = VariationalCircuit::new(1);
1092        circuit.add_gate(VariationalGate::rx(QubitId(0), "theta".to_string(), 0.0));
1093
1094        let config = OptimizationConfig {
1095            max_iterations: 10,
1096            ..Default::default()
1097        };
1098
1099        let mut optimizer = VariationalQuantumOptimizer::new(
1100            OptimizationMethod::GradientDescent { learning_rate: 0.1 },
1101            config,
1102        );
1103
1104        // Simple cost function
1105        let cost_fn = |circuit: &VariationalCircuit| -> QuantRS2Result<f64> {
1106            let theta = circuit
1107                .get_parameters()
1108                .get("theta")
1109                .copied()
1110                .unwrap_or(0.0);
1111            Ok((theta - 1.0).powi(2))
1112        };
1113
1114        let result = optimizer.optimize(&mut circuit, cost_fn).unwrap();
1115
1116        assert!(result.converged || result.iterations == 10);
1117        assert!((result.optimal_parameters["theta"] - 1.0).abs() < 0.1);
1118    }
1119
1120    #[test]
1121    fn test_adam_optimizer() {
1122        let mut circuit = VariationalCircuit::new(2);
1123        circuit.add_gate(VariationalGate::ry(QubitId(0), "alpha".to_string(), 0.5));
1124        circuit.add_gate(VariationalGate::rz(QubitId(1), "beta".to_string(), 0.5));
1125
1126        let config = OptimizationConfig {
1127            max_iterations: 100,
1128            f_tol: 1e-6,
1129            g_tol: 1e-6,
1130            ..Default::default()
1131        };
1132
1133        let mut optimizer = VariationalQuantumOptimizer::new(
1134            OptimizationMethod::Adam {
1135                learning_rate: 0.1,
1136                beta1: 0.9,
1137                beta2: 0.999,
1138                epsilon: 1e-8,
1139            },
1140            config,
1141        );
1142
1143        // Cost function with multiple parameters
1144        let cost_fn = |circuit: &VariationalCircuit| -> QuantRS2Result<f64> {
1145            let params = circuit.get_parameters();
1146            let alpha = params.get("alpha").copied().unwrap_or(0.0);
1147            let beta = params.get("beta").copied().unwrap_or(0.0);
1148            Ok(alpha.powi(2) + beta.powi(2))
1149        };
1150
1151        let result = optimizer.optimize(&mut circuit, cost_fn).unwrap();
1152
1153        assert!(result.optimal_parameters["alpha"].abs() < 0.1);
1154        assert!(result.optimal_parameters["beta"].abs() < 0.1);
1155    }
1156
1157    #[test]
1158    fn test_constrained_optimization() {
1159        let mut circuit = VariationalCircuit::new(1);
1160        circuit.add_gate(VariationalGate::rx(QubitId(0), "x".to_string(), 2.0));
1161
1162        let base_optimizer =
1163            VariationalQuantumOptimizer::new(OptimizationMethod::BFGS, Default::default());
1164
1165        let mut constrained_opt = ConstrainedVariationalOptimizer::new(base_optimizer);
1166
1167        // Add constraint: x >= 1.0
1168        constrained_opt
1169            .add_inequality_constraint(|params| 1.0 - params.get("x").copied().unwrap_or(0.0), 0.0);
1170
1171        // Minimize x^2
1172        let cost_fn = |circuit: &VariationalCircuit| -> QuantRS2Result<f64> {
1173            let x = circuit.get_parameters().get("x").copied().unwrap_or(0.0);
1174            Ok(x.powi(2))
1175        };
1176
1177        let result = constrained_opt.optimize(&mut circuit, cost_fn).unwrap();
1178
1179        let optimized_x = result.optimal_parameters["x"];
1180        assert!(optimized_x >= 1.0 - 1e-6);
1181        assert!(optimized_x <= 2.0 + 1e-6);
1182    }
1183}