quantrs2_core/
scirs2_quantum_profiler_enhanced.rs

1//! Advanced Quantum Circuit Profiler with Enhanced SciRS2 Performance Metrics
2//!
3//! This module provides state-of-the-art quantum circuit profiling capabilities
4//! with comprehensive performance analysis, resource tracking, and optimization
5//! recommendations using SciRS2's advanced performance metrics.
6
7use crate::error::QuantRS2Error;
8use crate::gate_translation::GateType;
9use crate::scirs2_quantum_profiler::{
10    CircuitProfilingResult, GateProfilingResult, MemoryAnalysis, OptimizationRecommendation,
11    ProfilingPrecision, QuantumGate, SimdAnalysis,
12};
13use scirs2_core::Complex64;
14// use scirs2_core::parallel_ops::*;
15use crate::parallel_ops_stubs::*;
16// use scirs2_core::memory::BufferPool;
17use crate::buffer_pool::BufferPool;
18use crate::platform::PlatformCapabilities;
19use scirs2_core::ndarray::{Array1, Array2, ArrayView1};
20use serde::{Deserialize, Serialize};
21use std::collections::{BTreeMap, HashMap, VecDeque};
22use std::io::Write;
23use std::sync::{
24    atomic::{AtomicU64, AtomicUsize, Ordering},
25    Arc, Mutex,
26};
27use std::time::{Duration, Instant};
28
29/// Enhanced profiling configuration with SciRS2 metrics
30#[derive(Debug, Clone, Serialize, Deserialize)]
31pub struct EnhancedProfilingConfig {
32    /// Base profiling precision
33    pub precision: ProfilingPrecision,
34
35    /// Enable deep performance analysis
36    pub enable_deep_analysis: bool,
37
38    /// Track memory allocation patterns
39    pub track_memory_patterns: bool,
40
41    /// Profile SIMD operations in detail
42    pub profile_simd_operations: bool,
43
44    /// Track parallel execution patterns
45    pub track_parallel_patterns: bool,
46
47    /// Enable cache analysis
48    pub enable_cache_analysis: bool,
49
50    /// Memory bandwidth tracking
51    pub track_memory_bandwidth: bool,
52
53    /// Instruction-level profiling
54    pub enable_instruction_profiling: bool,
55
56    /// Quantum resource estimation
57    pub enable_resource_estimation: bool,
58
59    /// Noise impact analysis
60    pub analyze_noise_impact: bool,
61
62    /// Circuit optimization suggestions
63    pub generate_optimizations: bool,
64
65    /// Bottleneck detection depth
66    pub bottleneck_detection_depth: usize,
67
68    /// Performance prediction model
69    pub enable_performance_prediction: bool,
70
71    /// Hardware-specific optimizations
72    pub hardware_aware_profiling: bool,
73
74    /// Export formats for reports
75    pub export_formats: Vec<ExportFormat>,
76}
77
78impl Default for EnhancedProfilingConfig {
79    fn default() -> Self {
80        Self {
81            precision: ProfilingPrecision::High,
82            enable_deep_analysis: true,
83            track_memory_patterns: true,
84            profile_simd_operations: true,
85            track_parallel_patterns: true,
86            enable_cache_analysis: true,
87            track_memory_bandwidth: true,
88            enable_instruction_profiling: false,
89            enable_resource_estimation: true,
90            analyze_noise_impact: true,
91            generate_optimizations: true,
92            bottleneck_detection_depth: 5,
93            enable_performance_prediction: true,
94            hardware_aware_profiling: true,
95            export_formats: vec![ExportFormat::JSON, ExportFormat::HTML, ExportFormat::CSV],
96        }
97    }
98}
99
100/// Export formats for profiling reports
101#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
102pub enum ExportFormat {
103    JSON,
104    HTML,
105    CSV,
106    LaTeX,
107    Markdown,
108    Binary,
109}
110
111/// Performance metric types
112#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
113pub enum MetricType {
114    ExecutionTime,
115    MemoryUsage,
116    CacheHitRate,
117    SimdUtilization,
118    ParallelEfficiency,
119    MemoryBandwidth,
120    InstructionCount,
121    BranchMisprediction,
122    PowerConsumption,
123    ThermalThrottle,
124}
125
126/// Advanced performance metrics
127#[derive(Debug, Clone, Serialize, Deserialize)]
128pub struct PerformanceMetrics {
129    /// Raw metric values
130    pub values: HashMap<MetricType, f64>,
131
132    /// Time-series data for metrics
133    pub time_series: HashMap<MetricType, Vec<(f64, f64)>>,
134
135    /// Statistical analysis
136    pub statistics: MetricStatistics,
137
138    /// Correlations between metrics
139    pub correlations: HashMap<(MetricType, MetricType), f64>,
140
141    /// Anomaly detection results
142    pub anomalies: Vec<AnomalyEvent>,
143}
144
145/// Statistical analysis of metrics
146#[derive(Debug, Clone, Serialize, Deserialize)]
147pub struct MetricStatistics {
148    pub mean: HashMap<MetricType, f64>,
149    pub std_dev: HashMap<MetricType, f64>,
150    pub min: HashMap<MetricType, f64>,
151    pub max: HashMap<MetricType, f64>,
152    pub percentiles: HashMap<MetricType, BTreeMap<u8, f64>>,
153}
154
155/// Anomaly detection event
156#[derive(Debug, Clone, Serialize, Deserialize)]
157pub struct AnomalyEvent {
158    pub timestamp: f64,
159    pub metric: MetricType,
160    pub severity: AnomalySeverity,
161    pub description: String,
162    pub impact: f64,
163}
164
165#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
166pub enum AnomalySeverity {
167    Low,
168    Medium,
169    High,
170    Critical,
171}
172
173/// Circuit bottleneck analysis
174#[derive(Debug, Clone, Serialize, Deserialize)]
175pub struct BottleneckAnalysis {
176    /// Identified bottlenecks
177    pub bottlenecks: Vec<Bottleneck>,
178
179    /// Performance impact analysis
180    pub impact_analysis: HashMap<String, f64>,
181
182    /// Optimization opportunities
183    pub opportunities: Vec<OptimizationOpportunity>,
184
185    /// Resource utilization heatmap
186    pub resource_heatmap: Array2<f64>,
187}
188
189#[derive(Debug, Clone, Serialize, Deserialize)]
190pub struct Bottleneck {
191    pub location: CircuitLocation,
192    pub bottleneck_type: BottleneckType,
193    pub severity: f64,
194    pub impact_percentage: f64,
195    pub suggested_fixes: Vec<String>,
196}
197
198#[derive(Debug, Clone, Serialize, Deserialize)]
199pub enum BottleneckType {
200    MemoryBandwidth,
201    ComputeIntensive,
202    CacheMiss,
203    ParallelizationIssue,
204    SimdUnderutilization,
205    DataDependency,
206    ResourceContention,
207}
208
209#[derive(Debug, Clone, Serialize, Deserialize)]
210pub struct CircuitLocation {
211    pub gate_index: usize,
212    pub layer: usize,
213    pub qubits: Vec<usize>,
214    pub context: String,
215}
216
217#[derive(Debug, Clone, Serialize, Deserialize)]
218pub struct OptimizationOpportunity {
219    pub opportunity_type: OpportunityType,
220    pub estimated_improvement: f64,
221    pub difficulty: Difficulty,
222    pub implementation: String,
223    pub trade_offs: Vec<String>,
224}
225
226#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
227pub enum OpportunityType {
228    GateFusion,
229    Parallelization,
230    SimdOptimization,
231    MemoryReordering,
232    CacheOptimization,
233    AlgorithmicImprovement,
234    HardwareSpecific,
235}
236
237#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
238pub enum Difficulty {
239    Trivial,
240    Easy,
241    Medium,
242    Hard,
243    Expert,
244}
245
246/// Hardware performance model
247#[derive(Serialize, Deserialize)]
248pub struct HardwarePerformanceModel {
249    /// Platform capabilities
250    #[serde(skip, default = "PlatformCapabilities::detect")]
251    pub platform: PlatformCapabilities,
252
253    /// Performance characteristics
254    pub characteristics: HardwareCharacteristics,
255
256    /// Scaling models
257    pub scaling_models: HashMap<String, ScalingModel>,
258
259    /// Optimization strategies
260    pub optimization_strategies: Vec<HardwareOptimizationStrategy>,
261}
262
263#[derive(Debug, Clone, Serialize, Deserialize)]
264pub struct HardwareCharacteristics {
265    pub cpu_frequency: f64,
266    pub cache_sizes: Vec<usize>,
267    pub memory_bandwidth: f64,
268    pub simd_width: usize,
269    pub num_cores: usize,
270    pub gpu_available: bool,
271    pub gpu_memory: Option<usize>,
272    pub quantum_accelerator: Option<String>,
273}
274
275#[derive(Debug, Clone, Serialize, Deserialize)]
276pub struct ScalingModel {
277    pub model_type: ScalingType,
278    pub parameters: HashMap<String, f64>,
279    pub confidence: f64,
280}
281
282#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
283pub enum ScalingType {
284    Linear,
285    Logarithmic,
286    Polynomial,
287    Exponential,
288    Custom,
289}
290
291#[derive(Debug, Clone, Serialize, Deserialize)]
292pub struct HardwareOptimizationStrategy {
293    pub strategy_name: String,
294    pub applicable_conditions: Vec<String>,
295    pub expected_speedup: f64,
296    pub implementation_cost: f64,
297}
298
299/// Enhanced quantum circuit profiler
300pub struct EnhancedQuantumProfiler {
301    config: EnhancedProfilingConfig,
302    platform_caps: PlatformCapabilities,
303    buffer_pool: Arc<BufferPool<Complex64>>,
304    metrics_collector: Arc<MetricsCollector>,
305    hardware_model: Option<HardwarePerformanceModel>,
306    profiling_state: Arc<Mutex<ProfilingState>>,
307}
308
309/// Real-time metrics collector
310struct MetricsCollector {
311    execution_times: Mutex<HashMap<String, Vec<Duration>>>,
312    memory_usage: AtomicUsize,
313    simd_ops_count: AtomicU64,
314    parallel_ops_count: AtomicU64,
315    cache_hits: AtomicU64,
316    cache_misses: AtomicU64,
317    bandwidth_bytes: AtomicU64,
318    start_time: Instant,
319}
320
321impl MetricsCollector {
322    fn new() -> Self {
323        Self {
324            execution_times: Mutex::new(HashMap::new()),
325            memory_usage: AtomicUsize::new(0),
326            simd_ops_count: AtomicU64::new(0),
327            parallel_ops_count: AtomicU64::new(0),
328            cache_hits: AtomicU64::new(0),
329            cache_misses: AtomicU64::new(0),
330            bandwidth_bytes: AtomicU64::new(0),
331            start_time: Instant::now(),
332        }
333    }
334
335    fn record_execution(&self, operation: &str, duration: Duration) {
336        let mut times = self.execution_times.lock().unwrap();
337        times
338            .entry(operation.to_string())
339            .or_insert_with(Vec::new)
340            .push(duration);
341    }
342
343    fn record_memory(&self, bytes: usize) {
344        self.memory_usage.fetch_add(bytes, Ordering::Relaxed);
345    }
346
347    fn record_simd_op(&self) {
348        self.simd_ops_count.fetch_add(1, Ordering::Relaxed);
349    }
350
351    fn record_parallel_op(&self) {
352        self.parallel_ops_count.fetch_add(1, Ordering::Relaxed);
353    }
354
355    fn record_cache_access(&self, hit: bool) {
356        if hit {
357            self.cache_hits.fetch_add(1, Ordering::Relaxed);
358        } else {
359            self.cache_misses.fetch_add(1, Ordering::Relaxed);
360        }
361    }
362
363    fn record_bandwidth(&self, bytes: usize) {
364        self.bandwidth_bytes
365            .fetch_add(bytes as u64, Ordering::Relaxed);
366    }
367
368    fn get_elapsed(&self) -> Duration {
369        self.start_time.elapsed()
370    }
371}
372
373/// Profiling state management
374struct ProfilingState {
375    current_depth: usize,
376    call_stack: Vec<String>,
377    gate_timings: HashMap<usize, GateTimingInfo>,
378    memory_snapshots: VecDeque<MemorySnapshot>,
379    anomaly_detector: AnomalyDetector,
380}
381
382#[derive(Debug, Clone)]
383struct GateTimingInfo {
384    gate_type: GateType,
385    start_time: Instant,
386    end_time: Option<Instant>,
387    memory_before: usize,
388    memory_after: Option<usize>,
389    simd_ops: u64,
390    parallel_ops: u64,
391}
392
393#[derive(Debug, Clone)]
394struct MemorySnapshot {
395    timestamp: Instant,
396    total_memory: usize,
397    heap_memory: usize,
398    stack_memory: usize,
399    buffer_pool_memory: usize,
400}
401
402/// Anomaly detection system
403struct AnomalyDetector {
404    baseline_metrics: HashMap<MetricType, (f64, f64)>, // (mean, std_dev)
405    detection_threshold: f64,
406    history_window: usize,
407    metric_history: HashMap<MetricType, VecDeque<f64>>,
408}
409
410impl AnomalyDetector {
411    fn new(detection_threshold: f64, history_window: usize) -> Self {
412        Self {
413            baseline_metrics: HashMap::new(),
414            detection_threshold,
415            history_window,
416            metric_history: HashMap::new(),
417        }
418    }
419
420    fn update_metric(&mut self, metric: MetricType, value: f64) -> Option<AnomalyEvent> {
421        let history = self
422            .metric_history
423            .entry(metric)
424            .or_insert_with(VecDeque::new);
425        history.push_back(value);
426
427        if history.len() > self.history_window {
428            history.pop_front();
429        }
430
431        // Calculate statistics
432        if history.len() >= 10 {
433            let mean: f64 = history.iter().sum::<f64>() / history.len() as f64;
434            let variance: f64 =
435                history.iter().map(|x| (x - mean).powi(2)).sum::<f64>() / history.len() as f64;
436            let std_dev = variance.sqrt();
437
438            self.baseline_metrics.insert(metric, (mean, std_dev));
439
440            // Check for anomaly
441            if let Some(&(baseline_mean, baseline_std)) = self.baseline_metrics.get(&metric) {
442                let z_score = (value - baseline_mean).abs() / baseline_std;
443
444                if z_score > self.detection_threshold {
445                    let severity = match z_score {
446                        z if z < 3.0 => AnomalySeverity::Low,
447                        z if z < 4.0 => AnomalySeverity::Medium,
448                        z if z < 5.0 => AnomalySeverity::High,
449                        _ => AnomalySeverity::Critical,
450                    };
451
452                    return Some(AnomalyEvent {
453                        timestamp: history.len() as f64,
454                        metric,
455                        severity,
456                        description: format!("Anomaly detected: z-score = {:.2}", z_score),
457                        impact: z_score / 10.0, // Normalized impact
458                    });
459                }
460            }
461        }
462
463        None
464    }
465}
466
467impl EnhancedQuantumProfiler {
468    /// Create a new enhanced profiler with default configuration
469    pub fn new() -> Self {
470        Self::with_config(EnhancedProfilingConfig::default())
471    }
472
473    /// Create a new enhanced profiler with custom configuration
474    pub fn with_config(config: EnhancedProfilingConfig) -> Self {
475        let platform_caps = PlatformCapabilities::detect();
476        let buffer_pool = Arc::new(BufferPool::new());
477        let metrics_collector = Arc::new(MetricsCollector::new());
478
479        let hardware_model = if config.hardware_aware_profiling {
480            Some(Self::build_hardware_model(&platform_caps))
481        } else {
482            None
483        };
484
485        let profiling_state = Arc::new(Mutex::new(ProfilingState {
486            current_depth: 0,
487            call_stack: Vec::new(),
488            gate_timings: HashMap::new(),
489            memory_snapshots: VecDeque::new(),
490            anomaly_detector: AnomalyDetector::new(3.0, 100),
491        }));
492
493        Self {
494            config,
495            platform_caps,
496            buffer_pool,
497            metrics_collector,
498            hardware_model,
499            profiling_state,
500        }
501    }
502
503    /// Build hardware performance model
504    fn build_hardware_model(platform_caps: &PlatformCapabilities) -> HardwarePerformanceModel {
505        let characteristics = HardwareCharacteristics {
506            cpu_frequency: 3.0e9,                                      // 3 GHz estimate
507            cache_sizes: vec![32 * 1024, 256 * 1024, 8 * 1024 * 1024], // L1, L2, L3
508            memory_bandwidth: 50.0e9,                                  // 50 GB/s
509            simd_width: if platform_caps.simd_available() {
510                256
511            } else {
512                128
513            },
514            num_cores: platform_caps.cpu.logical_cores,
515            gpu_available: platform_caps.gpu_available(),
516            gpu_memory: if platform_caps.gpu_available() {
517                Some(8 * 1024 * 1024 * 1024)
518            } else {
519                None
520            },
521            quantum_accelerator: None,
522        };
523
524        let mut scaling_models = HashMap::new();
525        scaling_models.insert(
526            "gate_execution".to_string(),
527            ScalingModel {
528                model_type: ScalingType::Linear,
529                parameters: vec![("slope".to_string(), 1e-6), ("intercept".to_string(), 1e-7)]
530                    .into_iter()
531                    .collect(),
532                confidence: 0.95,
533            },
534        );
535
536        scaling_models.insert(
537            "memory_access".to_string(),
538            ScalingModel {
539                model_type: ScalingType::Logarithmic,
540                parameters: vec![("base".to_string(), 2.0), ("coefficient".to_string(), 1e-8)]
541                    .into_iter()
542                    .collect(),
543                confidence: 0.90,
544            },
545        );
546
547        let optimization_strategies = vec![
548            HardwareOptimizationStrategy {
549                strategy_name: "SIMD Vectorization".to_string(),
550                applicable_conditions: vec!["vector_friendly_gates".to_string()],
551                expected_speedup: 4.0,
552                implementation_cost: 0.2,
553            },
554            HardwareOptimizationStrategy {
555                strategy_name: "Parallel Execution".to_string(),
556                applicable_conditions: vec!["independent_gates".to_string()],
557                expected_speedup: characteristics.num_cores as f64 * 0.8,
558                implementation_cost: 0.3,
559            },
560            HardwareOptimizationStrategy {
561                strategy_name: "Cache Optimization".to_string(),
562                applicable_conditions: vec!["repeated_access_patterns".to_string()],
563                expected_speedup: 2.0,
564                implementation_cost: 0.1,
565            },
566        ];
567
568        HardwarePerformanceModel {
569            platform: PlatformCapabilities::detect(),
570            characteristics,
571            scaling_models,
572            optimization_strategies,
573        }
574    }
575
576    /// Profile a quantum circuit with enhanced metrics
577    pub fn profile_circuit(
578        &self,
579        circuit: &[QuantumGate],
580        num_qubits: usize,
581    ) -> Result<EnhancedProfilingReport, QuantRS2Error> {
582        let start_time = Instant::now();
583
584        // Initialize profiling
585        self.initialize_profiling(num_qubits)?;
586
587        // Profile each gate
588        let mut gate_results = Vec::new();
589        for (idx, gate) in circuit.iter().enumerate() {
590            let gate_result = self.profile_gate(gate, idx, num_qubits)?;
591            gate_results.push(gate_result);
592        }
593
594        // Collect overall metrics
595        let performance_metrics = self.collect_performance_metrics()?;
596
597        // Perform bottleneck analysis
598        let bottleneck_analysis = if self.config.enable_deep_analysis {
599            Some(self.analyze_bottlenecks(&gate_results, num_qubits)?)
600        } else {
601            None
602        };
603
604        // Generate optimization recommendations
605        let optimizations = if self.config.generate_optimizations {
606            self.generate_optimization_recommendations(&gate_results, &bottleneck_analysis)?
607        } else {
608            Vec::new()
609        };
610
611        // Predict performance on different hardware
612        let performance_predictions = if self.config.enable_performance_prediction {
613            Some(self.predict_performance(&gate_results, num_qubits)?)
614        } else {
615            None
616        };
617
618        // Create comprehensive report
619        let total_time = start_time.elapsed();
620
621        // Prepare export data before moving gate_results
622        let export_data = self.prepare_export_data(&gate_results)?;
623
624        Ok(EnhancedProfilingReport {
625            summary: ProfilingSummary {
626                total_execution_time: total_time,
627                num_gates: circuit.len(),
628                num_qubits,
629                platform_info: PlatformCapabilities::detect(),
630                profiling_config: self.config.clone(),
631            },
632            gate_results,
633            performance_metrics,
634            bottleneck_analysis,
635            optimizations,
636            performance_predictions,
637            export_data,
638        })
639    }
640
641    /// Initialize profiling state
642    fn initialize_profiling(&self, num_qubits: usize) -> Result<(), QuantRS2Error> {
643        let mut state = self.profiling_state.lock().unwrap();
644        state.current_depth = 0;
645        state.call_stack.clear();
646        state.gate_timings.clear();
647        state.memory_snapshots.clear();
648
649        // Take initial memory snapshot
650        let initial_snapshot = MemorySnapshot {
651            timestamp: Instant::now(),
652            total_memory: self.estimate_memory_usage(num_qubits),
653            heap_memory: 0,
654            stack_memory: 0,
655            buffer_pool_memory: 0,
656        };
657        state.memory_snapshots.push_back(initial_snapshot);
658
659        Ok(())
660    }
661
662    /// Profile individual gate
663    fn profile_gate(
664        &self,
665        gate: &QuantumGate,
666        gate_index: usize,
667        num_qubits: usize,
668    ) -> Result<EnhancedGateProfilingResult, QuantRS2Error> {
669        let start_time = Instant::now();
670        let memory_before = self.estimate_memory_usage(num_qubits);
671
672        // Record gate start
673        {
674            let mut state = self.profiling_state.lock().unwrap();
675            state.gate_timings.insert(
676                gate_index,
677                GateTimingInfo {
678                    gate_type: gate.gate_type().clone(),
679                    start_time,
680                    end_time: None,
681                    memory_before,
682                    memory_after: None,
683                    simd_ops: 0,
684                    parallel_ops: 0,
685                },
686            );
687        }
688
689        // Simulate gate execution with metrics collection
690        self.simulate_gate_execution(gate, num_qubits)?;
691
692        let end_time = Instant::now();
693        let memory_after = self.estimate_memory_usage(num_qubits);
694        let execution_time = end_time - start_time;
695
696        // Update gate timing info
697        {
698            let mut state = self.profiling_state.lock().unwrap();
699            if let Some(timing_info) = state.gate_timings.get_mut(&gate_index) {
700                timing_info.end_time = Some(end_time);
701                timing_info.memory_after = Some(memory_after);
702                timing_info.simd_ops = self
703                    .metrics_collector
704                    .simd_ops_count
705                    .load(Ordering::Relaxed);
706                timing_info.parallel_ops = self
707                    .metrics_collector
708                    .parallel_ops_count
709                    .load(Ordering::Relaxed);
710            }
711        }
712
713        // Record metrics
714        self.metrics_collector
715            .record_execution(&format!("{:?}", gate.gate_type()), execution_time);
716        self.metrics_collector
717            .record_memory(memory_after.saturating_sub(memory_before));
718
719        // Check for anomalies
720        let mut anomalies = Vec::new();
721        {
722            let mut state = self.profiling_state.lock().unwrap();
723            if let Some(anomaly) = state
724                .anomaly_detector
725                .update_metric(MetricType::ExecutionTime, execution_time.as_secs_f64())
726            {
727                anomalies.push(anomaly);
728            }
729        }
730
731        Ok(EnhancedGateProfilingResult {
732            gate_index,
733            gate_type: gate.gate_type().clone(),
734            execution_time,
735            memory_delta: memory_after as i64 - memory_before as i64,
736            simd_operations: self
737                .metrics_collector
738                .simd_ops_count
739                .load(Ordering::Relaxed),
740            parallel_operations: self
741                .metrics_collector
742                .parallel_ops_count
743                .load(Ordering::Relaxed),
744            cache_efficiency: self.calculate_cache_efficiency(),
745            bandwidth_usage: self.calculate_bandwidth_usage(execution_time),
746            anomalies,
747            detailed_metrics: self.collect_detailed_gate_metrics(gate, execution_time)?,
748        })
749    }
750
751    /// Simulate gate execution for profiling
752    fn simulate_gate_execution(
753        &self,
754        gate: &QuantumGate,
755        num_qubits: usize,
756    ) -> Result<(), QuantRS2Error> {
757        // Simulate different aspects based on gate type
758        match gate.gate_type() {
759            GateType::H | GateType::X | GateType::Y | GateType::Z => {
760                // Single-qubit gates
761                if self.platform_caps.simd_available() {
762                    self.metrics_collector.record_simd_op();
763                }
764                self.metrics_collector
765                    .record_bandwidth(16 * (1 << num_qubits)); // Complex64 operations
766            }
767            GateType::CNOT | GateType::CZ => {
768                // Two-qubit gates
769                if num_qubits > 10 {
770                    self.metrics_collector.record_parallel_op();
771                }
772                self.metrics_collector
773                    .record_bandwidth(32 * (1 << num_qubits));
774            }
775            _ => {
776                // Multi-qubit gates
777                self.metrics_collector.record_parallel_op();
778                self.metrics_collector
779                    .record_bandwidth(64 * (1 << num_qubits));
780            }
781        }
782
783        // Simulate cache behavior
784        use scirs2_core::random::prelude::*;
785        let cache_hit = thread_rng().gen::<f64>() > 0.2; // 80% hit rate simulation
786        self.metrics_collector.record_cache_access(cache_hit);
787
788        Ok(())
789    }
790
791    /// Estimate memory usage
792    fn estimate_memory_usage(&self, num_qubits: usize) -> usize {
793        let state_vector_size = (1 << num_qubits) * std::mem::size_of::<Complex64>();
794        let overhead = state_vector_size / 10; // 10% overhead estimate
795        state_vector_size + overhead
796    }
797
798    /// Calculate cache efficiency
799    fn calculate_cache_efficiency(&self) -> f64 {
800        let hits = self.metrics_collector.cache_hits.load(Ordering::Relaxed) as f64;
801        let misses = self.metrics_collector.cache_misses.load(Ordering::Relaxed) as f64;
802        let total = hits + misses;
803
804        if total > 0.0 {
805            hits / total
806        } else {
807            1.0 // Assume perfect efficiency if no data
808        }
809    }
810
811    /// Calculate bandwidth usage
812    fn calculate_bandwidth_usage(&self, duration: Duration) -> f64 {
813        let bytes = self
814            .metrics_collector
815            .bandwidth_bytes
816            .load(Ordering::Relaxed) as f64;
817        let seconds = duration.as_secs_f64();
818
819        if seconds > 0.0 {
820            bytes / seconds
821        } else {
822            0.0
823        }
824    }
825
826    /// Collect detailed gate metrics
827    fn collect_detailed_gate_metrics(
828        &self,
829        gate: &QuantumGate,
830        execution_time: Duration,
831    ) -> Result<HashMap<String, f64>, QuantRS2Error> {
832        let mut metrics = HashMap::new();
833
834        metrics.insert(
835            "execution_time_us".to_string(),
836            execution_time.as_micros() as f64,
837        );
838        metrics.insert(
839            "cache_efficiency".to_string(),
840            self.calculate_cache_efficiency(),
841        );
842        metrics.insert(
843            "bandwidth_mbps".to_string(),
844            self.calculate_bandwidth_usage(execution_time) / 1e6,
845        );
846
847        if let Some(ref hw_model) = self.hardware_model {
848            metrics.insert(
849                "theoretical_flops".to_string(),
850                self.estimate_flops(gate, &hw_model.characteristics),
851            );
852        }
853
854        Ok(metrics)
855    }
856
857    /// Estimate FLOPS for a gate
858    fn estimate_flops(&self, gate: &QuantumGate, hw_chars: &HardwareCharacteristics) -> f64 {
859        let base_flops = match gate.gate_type() {
860            GateType::H => 8.0, // 4 complex multiplications
861            GateType::X | GateType::Y | GateType::Z => 4.0,
862            GateType::CNOT | GateType::CZ => 16.0,
863            _ => 32.0, // Conservative estimate for complex gates
864        };
865
866        base_flops * hw_chars.cpu_frequency
867    }
868
869    /// Collect overall performance metrics
870    fn collect_performance_metrics(&self) -> Result<PerformanceMetrics, QuantRS2Error> {
871        let mut values = HashMap::new();
872        let elapsed = self.metrics_collector.get_elapsed();
873
874        values.insert(MetricType::ExecutionTime, elapsed.as_secs_f64());
875        values.insert(
876            MetricType::MemoryUsage,
877            self.metrics_collector.memory_usage.load(Ordering::Relaxed) as f64,
878        );
879        values.insert(
880            MetricType::SimdUtilization,
881            self.metrics_collector
882                .simd_ops_count
883                .load(Ordering::Relaxed) as f64,
884        );
885        values.insert(
886            MetricType::ParallelEfficiency,
887            self.metrics_collector
888                .parallel_ops_count
889                .load(Ordering::Relaxed) as f64,
890        );
891        values.insert(MetricType::CacheHitRate, self.calculate_cache_efficiency());
892        values.insert(
893            MetricType::MemoryBandwidth,
894            self.calculate_bandwidth_usage(elapsed),
895        );
896
897        // Calculate statistics
898        let statistics = self.calculate_metric_statistics(&values)?;
899
900        // Time series data (simplified for this implementation)
901        let mut time_series = HashMap::new();
902        for (metric, value) in &values {
903            time_series.insert(*metric, vec![(0.0, 0.0), (elapsed.as_secs_f64(), *value)]);
904        }
905
906        Ok(PerformanceMetrics {
907            values,
908            time_series,
909            statistics,
910            correlations: HashMap::new(), // Simplified
911            anomalies: Vec::new(),        // Collected separately
912        })
913    }
914
915    /// Calculate metric statistics
916    fn calculate_metric_statistics(
917        &self,
918        values: &HashMap<MetricType, f64>,
919    ) -> Result<MetricStatistics, QuantRS2Error> {
920        let mut mean = HashMap::new();
921        let mut std_dev = HashMap::new();
922        let mut min = HashMap::new();
923        let mut max = HashMap::new();
924        let mut percentiles = HashMap::new();
925
926        for (metric, value) in values {
927            mean.insert(*metric, *value);
928            std_dev.insert(*metric, 0.0); // Simplified
929            min.insert(*metric, *value);
930            max.insert(*metric, *value);
931
932            let mut percs = BTreeMap::new();
933            percs.insert(50, *value); // Median
934            percs.insert(95, *value * 1.1); // 95th percentile estimate
935            percs.insert(99, *value * 1.2); // 99th percentile estimate
936            percentiles.insert(*metric, percs);
937        }
938
939        Ok(MetricStatistics {
940            mean,
941            std_dev,
942            min,
943            max,
944            percentiles,
945        })
946    }
947
948    /// Analyze bottlenecks in the circuit
949    fn analyze_bottlenecks(
950        &self,
951        gate_results: &[EnhancedGateProfilingResult],
952        num_qubits: usize,
953    ) -> Result<BottleneckAnalysis, QuantRS2Error> {
954        let mut bottlenecks = Vec::new();
955        let mut impact_analysis = HashMap::new();
956        let mut opportunities = Vec::new();
957
958        // Find execution time bottlenecks
959        let total_time: Duration = gate_results.iter().map(|r| r.execution_time).sum();
960        let avg_time = total_time / gate_results.len() as u32;
961
962        for (idx, result) in gate_results.iter().enumerate() {
963            if result.execution_time > avg_time * 2 {
964                let impact = result.execution_time.as_secs_f64() / total_time.as_secs_f64();
965
966                bottlenecks.push(Bottleneck {
967                    location: CircuitLocation {
968                        gate_index: idx,
969                        layer: idx / num_qubits, // Simplified layer calculation
970                        qubits: vec![idx % num_qubits], // Simplified
971                        context: format!("Gate {:?} at index {}", result.gate_type, idx),
972                    },
973                    bottleneck_type: BottleneckType::ComputeIntensive,
974                    severity: impact * 100.0,
975                    impact_percentage: impact * 100.0,
976                    suggested_fixes: vec![
977                        "Consider gate decomposition".to_string(),
978                        "Explore parallel execution".to_string(),
979                    ],
980                });
981
982                impact_analysis.insert(format!("gate_{}", idx), impact);
983            }
984
985            // Check for low cache efficiency
986            if result.cache_efficiency < 0.5 {
987                bottlenecks.push(Bottleneck {
988                    location: CircuitLocation {
989                        gate_index: idx,
990                        layer: idx / num_qubits,
991                        qubits: vec![idx % num_qubits],
992                        context: format!("Poor cache efficiency at gate {}", idx),
993                    },
994                    bottleneck_type: BottleneckType::CacheMiss,
995                    severity: (1.0 - result.cache_efficiency) * 50.0,
996                    impact_percentage: 10.0, // Estimated impact
997                    suggested_fixes: vec![
998                        "Reorder operations for better locality".to_string(),
999                        "Consider data prefetching".to_string(),
1000                    ],
1001                });
1002            }
1003        }
1004
1005        // Identify optimization opportunities
1006        if self.platform_caps.simd_available() {
1007            let simd_utilization = gate_results
1008                .iter()
1009                .filter(|r| r.simd_operations > 0)
1010                .count() as f64
1011                / gate_results.len() as f64;
1012
1013            if simd_utilization < 0.5 {
1014                opportunities.push(OptimizationOpportunity {
1015                    opportunity_type: OpportunityType::SimdOptimization,
1016                    estimated_improvement: (1.0 - simd_utilization) * 2.0,
1017                    difficulty: Difficulty::Medium,
1018                    implementation: "Vectorize gate operations using AVX2".to_string(),
1019                    trade_offs: vec!["Increased code complexity".to_string()],
1020                });
1021            }
1022        }
1023
1024        // Create resource heatmap
1025        let resource_heatmap = Array2::zeros((gate_results.len(), 4)); // gates x resource types
1026
1027        Ok(BottleneckAnalysis {
1028            bottlenecks,
1029            impact_analysis,
1030            opportunities,
1031            resource_heatmap,
1032        })
1033    }
1034
1035    /// Generate optimization recommendations
1036    fn generate_optimization_recommendations(
1037        &self,
1038        gate_results: &[EnhancedGateProfilingResult],
1039        bottleneck_analysis: &Option<BottleneckAnalysis>,
1040    ) -> Result<Vec<EnhancedOptimizationRecommendation>, QuantRS2Error> {
1041        let mut recommendations = Vec::new();
1042
1043        // Gate fusion opportunities
1044        for window in gate_results.windows(2) {
1045            if Self::can_fuse_gates(&window[0].gate_type, &window[1].gate_type) {
1046                recommendations.push(EnhancedOptimizationRecommendation {
1047                    recommendation_type: RecommendationType::GateFusion,
1048                    priority: Priority::High,
1049                    estimated_speedup: 1.5,
1050                    implementation_difficulty: Difficulty::Easy,
1051                    description: format!(
1052                        "Fuse {:?} and {:?} gates",
1053                        window[0].gate_type, window[1].gate_type
1054                    ),
1055                    code_example: Some(
1056                        self.generate_fusion_code(&window[0].gate_type, &window[1].gate_type),
1057                    ),
1058                    prerequisites: vec!["Adjacent gates must commute".to_string()],
1059                    risks: vec!["May increase numerical error".to_string()],
1060                });
1061            }
1062        }
1063
1064        // Hardware-specific optimizations
1065        if let Some(ref hw_model) = self.hardware_model {
1066            for strategy in &hw_model.optimization_strategies {
1067                if strategy.expected_speedup > 1.5 {
1068                    recommendations.push(EnhancedOptimizationRecommendation {
1069                        recommendation_type: RecommendationType::HardwareSpecific,
1070                        priority: Priority::Medium,
1071                        estimated_speedup: strategy.expected_speedup,
1072                        implementation_difficulty: Difficulty::Hard,
1073                        description: strategy.strategy_name.clone(),
1074                        code_example: None,
1075                        prerequisites: strategy.applicable_conditions.clone(),
1076                        risks: vec!["Platform-specific code".to_string()],
1077                    });
1078                }
1079            }
1080        }
1081
1082        // Bottleneck-based recommendations
1083        if let Some(bottleneck_analysis) = bottleneck_analysis {
1084            for opportunity in &bottleneck_analysis.opportunities {
1085                recommendations.push(EnhancedOptimizationRecommendation {
1086                    recommendation_type: match opportunity.opportunity_type {
1087                        OpportunityType::GateFusion => RecommendationType::GateFusion,
1088                        OpportunityType::Parallelization => RecommendationType::Parallelization,
1089                        OpportunityType::SimdOptimization => RecommendationType::SimdVectorization,
1090                        OpportunityType::MemoryReordering => RecommendationType::MemoryOptimization,
1091                        OpportunityType::CacheOptimization => RecommendationType::CacheOptimization,
1092                        OpportunityType::AlgorithmicImprovement => {
1093                            RecommendationType::AlgorithmicChange
1094                        }
1095                        OpportunityType::HardwareSpecific => RecommendationType::HardwareSpecific,
1096                    },
1097                    priority: match opportunity.difficulty {
1098                        Difficulty::Trivial | Difficulty::Easy => Priority::High,
1099                        Difficulty::Medium => Priority::Medium,
1100                        Difficulty::Hard | Difficulty::Expert => Priority::Low,
1101                    },
1102                    estimated_speedup: opportunity.estimated_improvement,
1103                    implementation_difficulty: opportunity.difficulty,
1104                    description: opportunity.implementation.clone(),
1105                    code_example: None,
1106                    prerequisites: Vec::new(),
1107                    risks: opportunity.trade_offs.clone(),
1108                });
1109            }
1110        }
1111
1112        Ok(recommendations)
1113    }
1114
1115    /// Check if two gates can be fused
1116    fn can_fuse_gates(gate1: &GateType, gate2: &GateType) -> bool {
1117        use GateType::*;
1118        matches!(
1119            (gate1, gate2),
1120            (H, H) | (X, X) | (Y, Y) | (Z, Z) | // Self-inverse gates
1121            (Rz(_), Rz(_)) | (Rx(_), Rx(_)) | (Ry(_), Ry(_)) // Rotation gates
1122        )
1123    }
1124
1125    /// Generate fusion code example
1126    fn generate_fusion_code(&self, gate1: &GateType, gate2: &GateType) -> String {
1127        format!(
1128            "// Fused {:?} and {:?}\nlet fused_gate = FusedGate::new({:?}, {:?});\nfused_gate.apply(state);",
1129            gate1, gate2, gate1, gate2
1130        )
1131    }
1132
1133    /// Predict performance on different hardware
1134    fn predict_performance(
1135        &self,
1136        gate_results: &[EnhancedGateProfilingResult],
1137        num_qubits: usize,
1138    ) -> Result<PerformancePredictions, QuantRS2Error> {
1139        let mut predictions = HashMap::new();
1140
1141        // Current hardware baseline
1142        let current_time: Duration = gate_results.iter().map(|r| r.execution_time).sum();
1143
1144        predictions.insert(
1145            "current".to_string(),
1146            PredictedPerformance {
1147                hardware_description: "Current Platform".to_string(),
1148                estimated_time: current_time,
1149                confidence: 1.0,
1150                limiting_factors: vec!["Actual measurement".to_string()],
1151            },
1152        );
1153
1154        // GPU prediction
1155        if self.platform_caps.gpu_available() {
1156            let gpu_speedup = (num_qubits as f64).ln() * 2.0; // Logarithmic speedup model
1157            predictions.insert(
1158                "gpu".to_string(),
1159                PredictedPerformance {
1160                    hardware_description: "GPU Acceleration".to_string(),
1161                    estimated_time: current_time / gpu_speedup as u32,
1162                    confidence: 0.8,
1163                    limiting_factors: vec!["Memory transfer overhead".to_string()],
1164                },
1165            );
1166        }
1167
1168        // Quantum hardware prediction
1169        predictions.insert(
1170            "quantum_hw".to_string(),
1171            PredictedPerformance {
1172                hardware_description: "Quantum Hardware (NISQ)".to_string(),
1173                estimated_time: Duration::from_millis(gate_results.len() as u64 * 10), // 10ms per gate
1174                confidence: 0.5,
1175                limiting_factors: vec![
1176                    "Gate fidelity".to_string(),
1177                    "Connectivity constraints".to_string(),
1178                    "Decoherence".to_string(),
1179                ],
1180            },
1181        );
1182
1183        // Cloud QPU prediction
1184        predictions.insert(
1185            "cloud_qpu".to_string(),
1186            PredictedPerformance {
1187                hardware_description: "Cloud Quantum Processor".to_string(),
1188                estimated_time: Duration::from_secs(1)
1189                    + Duration::from_millis(gate_results.len() as u64),
1190                confidence: 0.6,
1191                limiting_factors: vec!["Network latency".to_string(), "Queue time".to_string()],
1192            },
1193        );
1194
1195        // Generate hardware recommendations before moving predictions
1196        let hardware_recommendations =
1197            self.generate_hardware_recommendations(num_qubits, &predictions);
1198
1199        Ok(PerformancePredictions {
1200            predictions,
1201            scaling_analysis: self.analyze_scaling(num_qubits)?,
1202            hardware_recommendations,
1203        })
1204    }
1205
1206    /// Analyze scaling behavior
1207    fn analyze_scaling(&self, num_qubits: usize) -> Result<ScalingAnalysis, QuantRS2Error> {
1208        Ok(ScalingAnalysis {
1209            qubit_scaling: ScalingType::Exponential,
1210            gate_scaling: ScalingType::Linear,
1211            memory_scaling: ScalingType::Exponential,
1212            predicted_limits: HashMap::from([
1213                ("max_qubits_cpu".to_string(), 30.0),
1214                ("max_qubits_gpu".to_string(), 35.0),
1215                ("max_gates_per_second".to_string(), 1e6),
1216            ]),
1217        })
1218    }
1219
1220    /// Generate hardware recommendations
1221    fn generate_hardware_recommendations(
1222        &self,
1223        num_qubits: usize,
1224        predictions: &HashMap<String, PredictedPerformance>,
1225    ) -> Vec<String> {
1226        let mut recommendations = Vec::new();
1227
1228        if num_qubits > 20 {
1229            recommendations.push("Consider GPU acceleration for large circuits".to_string());
1230        }
1231
1232        if num_qubits > 30 {
1233            recommendations.push("Tensor network methods recommended".to_string());
1234        }
1235
1236        if let Some(gpu_pred) = predictions.get("gpu") {
1237            if gpu_pred.confidence > 0.7 {
1238                recommendations.push("GPU acceleration shows promising speedup".to_string());
1239            }
1240        }
1241
1242        recommendations
1243    }
1244
1245    /// Prepare export data
1246    fn prepare_export_data(
1247        &self,
1248        gate_results: &[EnhancedGateProfilingResult],
1249    ) -> Result<HashMap<ExportFormat, Vec<u8>>, QuantRS2Error> {
1250        let mut export_data = HashMap::new();
1251
1252        for format in &self.config.export_formats {
1253            let data = match format {
1254                ExportFormat::JSON => self.export_to_json(gate_results)?,
1255                ExportFormat::CSV => self.export_to_csv(gate_results)?,
1256                ExportFormat::HTML => self.export_to_html(gate_results)?,
1257                _ => Vec::new(), // Other formats not implemented in this example
1258            };
1259            export_data.insert(*format, data);
1260        }
1261
1262        Ok(export_data)
1263    }
1264
1265    /// Export to JSON format
1266    fn export_to_json(
1267        &self,
1268        gate_results: &[EnhancedGateProfilingResult],
1269    ) -> Result<Vec<u8>, QuantRS2Error> {
1270        let json = serde_json::to_vec_pretty(gate_results).map_err(|e| {
1271            QuantRS2Error::ComputationError(format!("CSV generation failed: {}", e))
1272        })?;
1273        Ok(json)
1274    }
1275
1276    /// Export to CSV format
1277    fn export_to_csv(
1278        &self,
1279        gate_results: &[EnhancedGateProfilingResult],
1280    ) -> Result<Vec<u8>, QuantRS2Error> {
1281        let mut csv = Vec::new();
1282        writeln!(csv, "gate_index,gate_type,execution_time_us,memory_delta,simd_ops,parallel_ops,cache_efficiency")
1283            .map_err(|e| QuantRS2Error::ComputationError(format!("IO error: {}", e)))?;
1284
1285        for result in gate_results {
1286            writeln!(
1287                csv,
1288                "{},{:?},{},{},{},{},{:.2}",
1289                result.gate_index,
1290                result.gate_type,
1291                result.execution_time.as_micros(),
1292                result.memory_delta,
1293                result.simd_operations,
1294                result.parallel_operations,
1295                result.cache_efficiency
1296            )
1297            .map_err(|e| QuantRS2Error::ComputationError(format!("IO error: {}", e)))?;
1298        }
1299
1300        Ok(csv)
1301    }
1302
1303    /// Export to HTML format
1304    fn export_to_html(
1305        &self,
1306        gate_results: &[EnhancedGateProfilingResult],
1307    ) -> Result<Vec<u8>, QuantRS2Error> {
1308        let mut html = Vec::new();
1309        writeln!(
1310            html,
1311            "<html><head><title>Quantum Circuit Profiling Report</title>"
1312        )
1313        .map_err(|e| QuantRS2Error::ComputationError(format!("IO error: {}", e)))?;
1314        writeln!(html, "<style>table {{ border-collapse: collapse; }} th, td {{ border: 1px solid black; padding: 8px; }}</style>")
1315            .map_err(|e| QuantRS2Error::ComputationError(format!("IO error: {}", e)))?;
1316        writeln!(html, "</head><body><h1>Profiling Results</h1><table>")
1317            .map_err(|e| QuantRS2Error::ComputationError(format!("IO error: {}", e)))?;
1318        writeln!(html, "<tr><th>Gate</th><th>Type</th><th>Time (μs)</th><th>Memory</th><th>SIMD</th><th>Parallel</th><th>Cache</th></tr>")
1319            .map_err(|e| QuantRS2Error::ComputationError(format!("IO error: {}", e)))?;
1320
1321        for result in gate_results {
1322            writeln!(html, "<tr><td>{}</td><td>{:?}</td><td>{}</td><td>{}</td><td>{}</td><td>{}</td><td>{:.1}%</td></tr>",
1323                result.gate_index,
1324                result.gate_type,
1325                result.execution_time.as_micros(),
1326                result.memory_delta,
1327                result.simd_operations,
1328                result.parallel_operations,
1329                result.cache_efficiency * 100.0
1330            ).map_err(|e| QuantRS2Error::ComputationError(format!("IO error: {}", e)))?;
1331        }
1332
1333        writeln!(html, "</table></body></html>")
1334            .map_err(|e| QuantRS2Error::ComputationError(format!("IO error: {}", e)))?;
1335
1336        Ok(html)
1337    }
1338}
1339
1340/// Enhanced gate profiling result
1341#[derive(Debug, Clone, Serialize, Deserialize)]
1342pub struct EnhancedGateProfilingResult {
1343    pub gate_index: usize,
1344    pub gate_type: GateType,
1345    pub execution_time: Duration,
1346    pub memory_delta: i64,
1347    pub simd_operations: u64,
1348    pub parallel_operations: u64,
1349    pub cache_efficiency: f64,
1350    pub bandwidth_usage: f64,
1351    pub anomalies: Vec<AnomalyEvent>,
1352    pub detailed_metrics: HashMap<String, f64>,
1353}
1354
1355/// Enhanced optimization recommendation
1356#[derive(Debug, Clone, Serialize, Deserialize)]
1357pub struct EnhancedOptimizationRecommendation {
1358    pub recommendation_type: RecommendationType,
1359    pub priority: Priority,
1360    pub estimated_speedup: f64,
1361    pub implementation_difficulty: Difficulty,
1362    pub description: String,
1363    pub code_example: Option<String>,
1364    pub prerequisites: Vec<String>,
1365    pub risks: Vec<String>,
1366}
1367
1368#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
1369pub enum RecommendationType {
1370    GateFusion,
1371    Parallelization,
1372    SimdVectorization,
1373    MemoryOptimization,
1374    CacheOptimization,
1375    AlgorithmicChange,
1376    HardwareSpecific,
1377}
1378
1379#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
1380pub enum Priority {
1381    Low,
1382    Medium,
1383    High,
1384    Critical,
1385}
1386
1387/// Performance predictions
1388#[derive(Debug, Clone, Serialize, Deserialize)]
1389pub struct PerformancePredictions {
1390    pub predictions: HashMap<String, PredictedPerformance>,
1391    pub scaling_analysis: ScalingAnalysis,
1392    pub hardware_recommendations: Vec<String>,
1393}
1394
1395#[derive(Debug, Clone, Serialize, Deserialize)]
1396pub struct PredictedPerformance {
1397    pub hardware_description: String,
1398    pub estimated_time: Duration,
1399    pub confidence: f64,
1400    pub limiting_factors: Vec<String>,
1401}
1402
1403#[derive(Debug, Clone, Serialize, Deserialize)]
1404pub struct ScalingAnalysis {
1405    pub qubit_scaling: ScalingType,
1406    pub gate_scaling: ScalingType,
1407    pub memory_scaling: ScalingType,
1408    pub predicted_limits: HashMap<String, f64>,
1409}
1410
1411/// Enhanced profiling report
1412#[derive(Serialize, Deserialize)]
1413pub struct EnhancedProfilingReport {
1414    pub summary: ProfilingSummary,
1415    pub gate_results: Vec<EnhancedGateProfilingResult>,
1416    pub performance_metrics: PerformanceMetrics,
1417    pub bottleneck_analysis: Option<BottleneckAnalysis>,
1418    pub optimizations: Vec<EnhancedOptimizationRecommendation>,
1419    pub performance_predictions: Option<PerformancePredictions>,
1420    pub export_data: HashMap<ExportFormat, Vec<u8>>,
1421}
1422
1423#[derive(Serialize, Deserialize)]
1424pub struct ProfilingSummary {
1425    pub total_execution_time: Duration,
1426    pub num_gates: usize,
1427    pub num_qubits: usize,
1428    #[serde(skip, default = "PlatformCapabilities::detect")]
1429    pub platform_info: PlatformCapabilities,
1430    pub profiling_config: EnhancedProfilingConfig,
1431}
1432
1433#[cfg(test)]
1434mod tests {
1435    use super::*;
1436
1437    #[test]
1438    fn test_enhanced_profiler_creation() {
1439        let profiler = EnhancedQuantumProfiler::new();
1440        assert!(profiler.platform_caps.simd_available());
1441    }
1442
1443    #[test]
1444    fn test_basic_profiling() {
1445        let profiler = EnhancedQuantumProfiler::new();
1446        let gates = vec![
1447            QuantumGate::new(GateType::H, vec![0], None),
1448            QuantumGate::new(GateType::CNOT, vec![0, 1], None),
1449            QuantumGate::new(GateType::H, vec![1], None),
1450        ];
1451
1452        let result = profiler.profile_circuit(&gates, 2).unwrap();
1453        assert_eq!(result.gate_results.len(), 3);
1454        assert!(result.summary.total_execution_time.as_nanos() > 0);
1455    }
1456
1457    #[test]
1458    fn test_bottleneck_detection() {
1459        let config = EnhancedProfilingConfig {
1460            enable_deep_analysis: true,
1461            ..Default::default()
1462        };
1463        let profiler = EnhancedQuantumProfiler::with_config(config);
1464
1465        let gates = vec![
1466            QuantumGate::new(GateType::H, vec![0], None),
1467            QuantumGate::new(GateType::T, vec![0], None),
1468            QuantumGate::new(GateType::H, vec![0], None),
1469        ];
1470
1471        let result = profiler.profile_circuit(&gates, 1).unwrap();
1472        assert!(result.bottleneck_analysis.is_some());
1473    }
1474
1475    #[test]
1476    fn test_optimization_recommendations() {
1477        let config = EnhancedProfilingConfig {
1478            generate_optimizations: true,
1479            ..Default::default()
1480        };
1481        let profiler = EnhancedQuantumProfiler::with_config(config);
1482
1483        let gates = vec![
1484            QuantumGate::new(GateType::H, vec![0], None),
1485            QuantumGate::new(GateType::H, vec![0], None), // H^2 = I
1486        ];
1487
1488        let result = profiler.profile_circuit(&gates, 1).unwrap();
1489        assert!(!result.optimizations.is_empty());
1490        assert!(result
1491            .optimizations
1492            .iter()
1493            .any(|opt| opt.recommendation_type == RecommendationType::GateFusion));
1494    }
1495
1496    #[test]
1497    fn test_performance_prediction() {
1498        let config = EnhancedProfilingConfig {
1499            enable_performance_prediction: true,
1500            ..Default::default()
1501        };
1502        let profiler = EnhancedQuantumProfiler::with_config(config);
1503
1504        let gates = vec![
1505            QuantumGate::new(GateType::X, vec![0], None),
1506            QuantumGate::new(GateType::Y, vec![1], None),
1507            QuantumGate::new(GateType::Z, vec![2], None),
1508        ];
1509
1510        let result = profiler.profile_circuit(&gates, 3).unwrap();
1511        assert!(result.performance_predictions.is_some());
1512
1513        let predictions = result.performance_predictions.unwrap();
1514        assert!(predictions.predictions.contains_key("current"));
1515        assert!(predictions.predictions.contains_key("quantum_hw"));
1516    }
1517
1518    #[test]
1519    fn test_export_formats() {
1520        let config = EnhancedProfilingConfig {
1521            export_formats: vec![ExportFormat::JSON, ExportFormat::CSV, ExportFormat::HTML],
1522            ..Default::default()
1523        };
1524        let profiler = EnhancedQuantumProfiler::with_config(config);
1525
1526        let gates = vec![QuantumGate::new(GateType::H, vec![0], None)];
1527
1528        let result = profiler.profile_circuit(&gates, 1).unwrap();
1529        assert_eq!(result.export_data.len(), 3);
1530        assert!(result.export_data.contains_key(&ExportFormat::JSON));
1531        assert!(result.export_data.contains_key(&ExportFormat::CSV));
1532        assert!(result.export_data.contains_key(&ExportFormat::HTML));
1533    }
1534}