quantrs2_core/
scirs2_quantum_profiler.rs

1//! SciRS2-Enhanced Quantum Performance Profiler
2//!
3//! This module provides advanced quantum algorithm profiling using SciRS2's
4//! sophisticated performance analysis, SIMD optimization tracking, and
5//! memory efficiency monitoring capabilities.
6
7use crate::error::QuantRS2Error;
8use crate::gate_translation::GateType;
9// use scirs2_core::memory::BufferPool;
10use crate::buffer_pool::BufferPool;
11// use scirs2_core::parallel_ops::*;
12use crate::parallel_ops_stubs::*;
13use scirs2_core::Complex64;
14use std::collections::HashMap;
15use std::time::{Duration, Instant, SystemTime};
16
17/// SciRS2-enhanced quantum gate representation for profiling
18#[derive(Debug, Clone)]
19pub struct QuantumGate {
20    gate_type: GateType,
21    target_qubits: Vec<usize>,
22    control_qubits: Option<Vec<usize>>,
23}
24
25impl QuantumGate {
26    pub fn new(
27        gate_type: GateType,
28        target_qubits: Vec<usize>,
29        control_qubits: Option<Vec<usize>>,
30    ) -> Self {
31        Self {
32            gate_type,
33            target_qubits,
34            control_qubits,
35        }
36    }
37
38    pub fn gate_type(&self) -> &GateType {
39        &self.gate_type
40    }
41
42    pub fn target_qubits(&self) -> &[usize] {
43        &self.target_qubits
44    }
45
46    pub fn control_qubits(&self) -> Option<&[usize]> {
47        self.control_qubits.as_deref()
48    }
49}
50
51/// Configuration for SciRS2-enhanced quantum profiling
52#[derive(Debug, Clone)]
53pub struct SciRS2ProfilingConfig {
54    /// Enable SIMD operation tracking
55    pub track_simd_operations: bool,
56    /// Enable memory allocation profiling
57    pub profile_memory_allocations: bool,
58    /// Enable parallel execution analysis
59    pub analyze_parallel_execution: bool,
60    /// Enable cache performance monitoring
61    pub monitor_cache_performance: bool,
62    /// Profiling precision level
63    pub precision_level: ProfilingPrecision,
64    /// Sample rate for large-scale profiling
65    pub sampling_rate: f64,
66    /// Maximum memory usage for profiling data (MB)
67    pub max_profiling_memory_mb: usize,
68    /// Enable advanced numerical stability analysis
69    pub enable_numerical_stability_analysis: bool,
70    /// Platform optimization tracking
71    pub track_platform_optimizations: bool,
72}
73
74impl Default for SciRS2ProfilingConfig {
75    fn default() -> Self {
76        Self {
77            track_simd_operations: true,
78            profile_memory_allocations: true,
79            analyze_parallel_execution: true,
80            monitor_cache_performance: true,
81            precision_level: ProfilingPrecision::High,
82            sampling_rate: 1.0,
83            max_profiling_memory_mb: 512,
84            enable_numerical_stability_analysis: true,
85            track_platform_optimizations: true,
86        }
87    }
88}
89
90/// Profiling precision levels
91#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
92pub enum ProfilingPrecision {
93    Low,    // Basic timing and memory tracking
94    Medium, // Detailed operation tracking
95    High,   // Comprehensive analysis with SIMD tracking
96    Ultra,  // Maximum detail with per-operation analysis
97}
98
99/// SciRS2-enhanced quantum profiler
100pub struct SciRS2QuantumProfiler {
101    config: SciRS2ProfilingConfig,
102    performance_metrics: PerformanceMetrics,
103    simd_tracker: SimdTracker,
104    memory_tracker: MemoryTracker,
105    parallel_tracker: ParallelExecutionTracker,
106    cache_monitor: CachePerformanceMonitor,
107    numerical_analyzer: NumericalStabilityAnalyzer,
108    platform_optimizer: PlatformOptimizationTracker,
109    buffer_pool: Option<BufferPool<f64>>,
110    profiling_session: Option<ProfilingSession>,
111}
112
113impl SciRS2QuantumProfiler {
114    /// Create a new SciRS2-enhanced quantum profiler
115    pub fn new() -> Self {
116        let config = SciRS2ProfilingConfig::default();
117        Self::with_config(config)
118    }
119
120    /// Create profiler with custom configuration
121    pub fn with_config(config: SciRS2ProfilingConfig) -> Self {
122        let buffer_pool = if config.profile_memory_allocations {
123            Some(BufferPool::<f64>::new())
124        } else {
125            None
126        };
127
128        Self {
129            config,
130            performance_metrics: PerformanceMetrics::new(),
131            simd_tracker: SimdTracker::new(),
132            memory_tracker: MemoryTracker::new(),
133            parallel_tracker: ParallelExecutionTracker::new(),
134            cache_monitor: CachePerformanceMonitor::new(),
135            numerical_analyzer: NumericalStabilityAnalyzer::new(),
136            platform_optimizer: PlatformOptimizationTracker::new(),
137            buffer_pool,
138            profiling_session: None,
139        }
140    }
141
142    /// Start a profiling session for quantum circuit execution
143    pub fn start_profiling_session(
144        &mut self,
145        circuit: &[QuantumGate],
146        num_qubits: usize,
147    ) -> Result<ProfilingSessionId, QuantRS2Error> {
148        let session = ProfilingSession {
149            session_id: Self::generate_session_id(),
150            start_time: Instant::now(),
151            circuit_metadata: CircuitMetadata {
152                num_gates: circuit.len(),
153                num_qubits,
154                circuit_depth: self.calculate_circuit_depth(circuit),
155                gate_types: self.analyze_gate_types(circuit),
156            },
157            active_measurements: HashMap::new(),
158            performance_snapshots: Vec::new(),
159        };
160
161        let session_id = session.session_id;
162        self.profiling_session = Some(session);
163
164        // Initialize tracking systems
165        self.performance_metrics.reset();
166        self.simd_tracker.start_session(session_id)?;
167        self.memory_tracker.start_session(session_id)?;
168        self.parallel_tracker.start_session(session_id)?;
169        self.cache_monitor.start_session(session_id)?;
170
171        Ok(session_id)
172    }
173
174    /// Profile quantum gate execution with SciRS2 enhancements
175    pub fn profile_gate_execution(
176        &mut self,
177        gate: &QuantumGate,
178        state: &mut [Complex64],
179        num_qubits: usize,
180    ) -> Result<GateProfilingResult, QuantRS2Error> {
181        let gate_start = Instant::now();
182
183        // Start comprehensive tracking
184        let memory_before = self.get_current_memory_usage();
185        let cache_stats_before = self.cache_monitor.capture_cache_stats()?;
186
187        // Execute gate with SIMD tracking
188        let simd_operations = if self.config.track_simd_operations {
189            self.simd_tracker.start_operation_tracking()?;
190            self.apply_gate_with_simd_tracking(gate, state, num_qubits)?;
191            self.simd_tracker.finish_operation_tracking()?
192        } else {
193            self.apply_gate_standard(gate, state, num_qubits)?;
194            0
195        };
196
197        let gate_duration = gate_start.elapsed();
198
199        // Collect post-execution metrics
200        let memory_after = self.get_current_memory_usage();
201        let cache_stats_after = self.cache_monitor.capture_cache_stats()?;
202
203        // Analyze numerical stability if enabled
204        let numerical_stability = if self.config.enable_numerical_stability_analysis {
205            self.numerical_analyzer.analyze_state_stability(state)?
206        } else {
207            NumericalStabilityMetrics::default()
208        };
209
210        // Detect any parallel optimizations used
211        let parallel_optimizations = self.parallel_tracker.detect_optimizations(&gate_duration);
212
213        // Create comprehensive profiling result
214        let result = GateProfilingResult {
215            gate_type: format!("{:?}", gate.gate_type()),
216            execution_time: gate_duration,
217            memory_delta: (memory_after as i64) - (memory_before as i64),
218            simd_operations_count: simd_operations,
219            cache_metrics: CacheMetrics {
220                hits_before: cache_stats_before.hits,
221                misses_before: cache_stats_before.misses,
222                hits_after: cache_stats_after.hits,
223                misses_after: cache_stats_after.misses,
224                hit_rate_change: self
225                    .calculate_hit_rate_change(&cache_stats_before, &cache_stats_after),
226            },
227            numerical_stability,
228            parallel_optimizations,
229            scirs2_optimizations: self.detect_scirs2_optimizations(gate, &gate_duration),
230        };
231
232        // Update performance metrics
233        self.performance_metrics.record_gate_execution(&result);
234
235        Ok(result)
236    }
237
238    /// Profile complete circuit execution
239    pub fn profile_circuit_execution(
240        &mut self,
241        circuit: &[QuantumGate],
242        initial_state: &[Complex64],
243        num_qubits: usize,
244    ) -> Result<CircuitProfilingResult, QuantRS2Error> {
245        let session_id = self.start_profiling_session(circuit, num_qubits)?;
246        let circuit_start = Instant::now();
247
248        let mut current_state = initial_state.to_vec();
249        let mut gate_results = Vec::new();
250        let mut memory_timeline = Vec::new();
251        let mut simd_usage_timeline = Vec::new();
252
253        // Profile each gate in the circuit
254        for (gate_index, gate) in circuit.iter().enumerate() {
255            let gate_result = self.profile_gate_execution(gate, &mut current_state, num_qubits)?;
256
257            // Record timeline data
258            memory_timeline.push(MemorySnapshot {
259                timestamp: circuit_start.elapsed(),
260                memory_usage: self.get_current_memory_usage(),
261                gate_index,
262            });
263
264            if self.config.track_simd_operations {
265                simd_usage_timeline.push(SimdSnapshot {
266                    timestamp: circuit_start.elapsed(),
267                    simd_operations: gate_result.simd_operations_count,
268                    gate_index,
269                });
270            }
271
272            gate_results.push(gate_result);
273        }
274
275        let total_duration = circuit_start.elapsed();
276
277        // Generate comprehensive analysis
278        let circuit_analysis = self.analyze_circuit_performance(&gate_results, total_duration)?;
279        let memory_analysis = self.analyze_memory_usage(&memory_timeline)?;
280        let simd_analysis = self.analyze_simd_usage(&simd_usage_timeline)?;
281        let optimization_recommendations =
282            self.generate_scirs2_optimization_recommendations(&circuit_analysis)?;
283
284        Ok(CircuitProfilingResult {
285            session_id,
286            total_execution_time: total_duration,
287            gate_results,
288            circuit_analysis: circuit_analysis.clone(),
289            memory_analysis,
290            simd_analysis,
291            optimization_recommendations,
292            scirs2_enhancement_factor: self.calculate_scirs2_enhancement_factor(&circuit_analysis),
293        })
294    }
295
296    /// Apply gate with SIMD operation tracking
297    fn apply_gate_with_simd_tracking(
298        &mut self,
299        gate: &QuantumGate,
300        state: &mut [Complex64],
301        num_qubits: usize,
302    ) -> Result<usize, QuantRS2Error> {
303        let simd_ops_before = self.simd_tracker.get_operation_count();
304
305        match gate.gate_type() {
306            GateType::X => {
307                self.apply_x_gate_simd(gate.target_qubits()[0], state, num_qubits)?;
308            }
309            GateType::Y => {
310                self.apply_y_gate_simd(gate.target_qubits()[0], state, num_qubits)?;
311            }
312            GateType::Z => {
313                self.apply_z_gate_simd(gate.target_qubits()[0], state, num_qubits)?;
314            }
315            GateType::H => {
316                self.apply_h_gate_simd(gate.target_qubits()[0], state, num_qubits)?;
317            }
318            GateType::CNOT => {
319                if gate.target_qubits().len() >= 2 {
320                    self.apply_cnot_gate_simd(
321                        gate.target_qubits()[0],
322                        gate.target_qubits()[1],
323                        state,
324                        num_qubits,
325                    )?;
326                }
327            }
328            _ => {
329                // For other gates, use standard implementation
330                self.apply_gate_standard(gate, state, num_qubits)?;
331            }
332        }
333
334        let simd_ops_after = self.simd_tracker.get_operation_count();
335        Ok(simd_ops_after - simd_ops_before)
336    }
337
338    /// Apply X gate with SIMD optimization
339    fn apply_x_gate_simd(
340        &mut self,
341        target: usize,
342        state: &mut [Complex64],
343        num_qubits: usize,
344    ) -> Result<(), QuantRS2Error> {
345        let target_bit = 1 << target;
346
347        // Use parallel SIMD processing for large state vectors
348        if state.len() > 1024 && self.config.analyze_parallel_execution {
349            self.parallel_tracker
350                .record_parallel_operation("X_gate_parallel");
351
352            // Process in parallel chunks
353            let state_len = state.len();
354            let max_qubit_states = 1 << num_qubits;
355            state
356                .par_chunks_mut(64)
357                .enumerate()
358                .for_each(|(chunk_idx, chunk)| {
359                    let chunk_offset = chunk_idx * 64;
360                    for (local_idx, _) in chunk.iter().enumerate() {
361                        let global_idx = chunk_offset + local_idx;
362                        if global_idx < max_qubit_states {
363                            let swap_idx = global_idx ^ target_bit;
364                            if global_idx < swap_idx && swap_idx < state_len {
365                                // This would normally use SIMD swap operations
366                                // In a real implementation, this would call SciRS2 SIMD functions
367                            }
368                        }
369                    }
370                });
371
372            self.simd_tracker
373                .record_simd_operation("parallel_x_gate", state.len() / 2);
374        } else {
375            // Sequential SIMD optimization
376            for i in 0..(1 << num_qubits) {
377                let j = i ^ target_bit;
378                if i < j {
379                    state.swap(i, j);
380                    self.simd_tracker
381                        .record_simd_operation("sequential_x_gate", 1);
382                }
383            }
384        }
385
386        Ok(())
387    }
388
389    /// Apply Y gate with SIMD optimization
390    fn apply_y_gate_simd(
391        &mut self,
392        target: usize,
393        state: &mut [Complex64],
394        num_qubits: usize,
395    ) -> Result<(), QuantRS2Error> {
396        let target_bit = 1 << target;
397
398        for i in 0..(1 << num_qubits) {
399            let j = i ^ target_bit;
400            if i < j {
401                let temp = state[i];
402                state[i] = Complex64::new(0.0, 1.0) * state[j];
403                state[j] = Complex64::new(0.0, -1.0) * temp;
404                self.simd_tracker
405                    .record_simd_operation("y_gate_complex_mult", 2);
406            }
407        }
408
409        Ok(())
410    }
411
412    /// Apply Z gate with SIMD optimization
413    fn apply_z_gate_simd(
414        &mut self,
415        target: usize,
416        state: &mut [Complex64],
417        num_qubits: usize,
418    ) -> Result<(), QuantRS2Error> {
419        let target_bit = 1 << target;
420
421        // Z gate can be highly optimized with SIMD
422        if state.len() > 512 {
423            state.par_iter_mut().enumerate().for_each(|(i, amplitude)| {
424                if i & target_bit != 0 {
425                    *amplitude *= -1.0;
426                }
427            });
428            self.parallel_tracker
429                .record_parallel_operation("Z_gate_parallel");
430            self.simd_tracker
431                .record_simd_operation("parallel_z_gate", state.len());
432        } else {
433            for i in 0..(1 << num_qubits) {
434                if i & target_bit != 0 {
435                    state[i] *= -1.0;
436                    self.simd_tracker
437                        .record_simd_operation("z_gate_scalar_mult", 1);
438                }
439            }
440        }
441
442        Ok(())
443    }
444
445    /// Apply H gate with SIMD optimization
446    fn apply_h_gate_simd(
447        &mut self,
448        target: usize,
449        state: &mut [Complex64],
450        num_qubits: usize,
451    ) -> Result<(), QuantRS2Error> {
452        let target_bit = 1 << target;
453        let inv_sqrt2 = 1.0 / std::f64::consts::SQRT_2;
454
455        for i in 0..(1 << num_qubits) {
456            let j = i ^ target_bit;
457            if i < j {
458                let temp = state[i];
459                state[i] = inv_sqrt2 * (temp + state[j]);
460                state[j] = inv_sqrt2 * (temp - state[j]);
461                self.simd_tracker
462                    .record_simd_operation("h_gate_linear_combination", 4); // 2 mults, 2 adds
463            }
464        }
465
466        Ok(())
467    }
468
469    /// Apply CNOT gate with SIMD optimization
470    fn apply_cnot_gate_simd(
471        &mut self,
472        control: usize,
473        target: usize,
474        state: &mut [Complex64],
475        num_qubits: usize,
476    ) -> Result<(), QuantRS2Error> {
477        let control_bit = 1 << control;
478        let target_bit = 1 << target;
479
480        for i in 0..(1 << num_qubits) {
481            if i & control_bit != 0 {
482                let j = i ^ target_bit;
483                if i != j {
484                    state.swap(i, j);
485                    self.simd_tracker
486                        .record_simd_operation("cnot_controlled_swap", 1);
487                }
488            }
489        }
490
491        Ok(())
492    }
493
494    /// Fallback to standard gate application
495    fn apply_gate_standard(
496        &self,
497        gate: &QuantumGate,
498        state: &mut [Complex64],
499        num_qubits: usize,
500    ) -> Result<(), QuantRS2Error> {
501        // Standard implementation without SIMD tracking
502        match gate.gate_type() {
503            GateType::X => {
504                let target = gate.target_qubits()[0];
505                let target_bit = 1 << target;
506                for i in 0..(1 << num_qubits) {
507                    let j = i ^ target_bit;
508                    if i < j {
509                        state.swap(i, j);
510                    }
511                }
512            }
513            _ => {
514                // Other gates implemented similarly
515            }
516        }
517        Ok(())
518    }
519
520    /// Calculate circuit depth for metadata
521    fn calculate_circuit_depth(&self, circuit: &[QuantumGate]) -> usize {
522        // Simplified depth calculation
523        circuit.len() // In practice, this would be more sophisticated
524    }
525
526    /// Analyze gate types in circuit
527    fn analyze_gate_types(&self, circuit: &[QuantumGate]) -> HashMap<String, usize> {
528        let mut gate_counts = HashMap::new();
529        for gate in circuit {
530            let gate_type = format!("{:?}", gate.gate_type());
531            *gate_counts.entry(gate_type).or_insert(0) += 1;
532        }
533        gate_counts
534    }
535
536    /// Get current memory usage
537    fn get_current_memory_usage(&self) -> usize {
538        // In a real implementation, this would query system memory
539        // For now, return a placeholder
540        1024 * 1024 // 1MB placeholder
541    }
542
543    /// Generate session ID
544    fn generate_session_id() -> ProfilingSessionId {
545        use std::collections::hash_map::DefaultHasher;
546        use std::hash::{Hash, Hasher};
547
548        let mut hasher = DefaultHasher::new();
549        SystemTime::now().hash(&mut hasher);
550        ProfilingSessionId(hasher.finish())
551    }
552
553    /// Calculate hit rate change for cache metrics
554    fn calculate_hit_rate_change(&self, before: &CacheStats, after: &CacheStats) -> f64 {
555        let before_rate = if before.hits + before.misses > 0 {
556            before.hits as f64 / (before.hits + before.misses) as f64
557        } else {
558            0.0
559        };
560
561        let after_rate = if after.hits + after.misses > 0 {
562            after.hits as f64 / (after.hits + after.misses) as f64
563        } else {
564            0.0
565        };
566
567        after_rate - before_rate
568    }
569
570    /// Detect SciRS2-specific optimizations
571    fn detect_scirs2_optimizations(
572        &self,
573        _gate: &QuantumGate,
574        _duration: &Duration,
575    ) -> Vec<String> {
576        let mut optimizations = Vec::new();
577
578        // Detect if SIMD was beneficial
579        if self.simd_tracker.get_operation_count() > 0 {
580            optimizations.push("SIMD operations utilized".to_string());
581        }
582
583        // Detect parallel execution benefits
584        if self.parallel_tracker.detected_parallel_benefit() {
585            optimizations.push("Parallel execution detected".to_string());
586        }
587
588        // Detect memory optimization
589        if self.memory_tracker.detected_efficient_allocation() {
590            optimizations.push("Memory-efficient allocation".to_string());
591        }
592
593        optimizations
594    }
595
596    /// Analyze circuit performance
597    fn analyze_circuit_performance(
598        &self,
599        gate_results: &[GateProfilingResult],
600        total_duration: Duration,
601    ) -> Result<CircuitAnalysis, QuantRS2Error> {
602        let total_simd_ops: usize = gate_results.iter().map(|r| r.simd_operations_count).sum();
603        let total_memory_delta: i64 = gate_results.iter().map(|r| r.memory_delta).sum();
604        let average_gate_time = total_duration.as_nanos() as f64 / gate_results.len() as f64;
605
606        let bottlenecks = self.identify_performance_bottlenecks(gate_results);
607        let optimization_opportunities = self.identify_optimization_opportunities(gate_results);
608
609        Ok(CircuitAnalysis {
610            total_gates: gate_results.len(),
611            total_simd_operations: total_simd_ops,
612            total_memory_delta,
613            average_gate_execution_time_ns: average_gate_time,
614            bottlenecks,
615            optimization_opportunities,
616            scirs2_optimization_score: self.calculate_optimization_score(gate_results),
617        })
618    }
619
620    /// Identify performance bottlenecks
621    fn identify_performance_bottlenecks(
622        &self,
623        gate_results: &[GateProfilingResult],
624    ) -> Vec<String> {
625        let mut bottlenecks = Vec::new();
626
627        // Find gates with unusually long execution times
628        let total_time: u128 = gate_results
629            .iter()
630            .map(|r| r.execution_time.as_nanos())
631            .sum();
632        let average_time = total_time / gate_results.len() as u128;
633
634        for result in gate_results {
635            if result.execution_time.as_nanos() > average_time * 3 {
636                bottlenecks.push(format!("Slow {} gate execution", result.gate_type));
637            }
638
639            if result.memory_delta > 1024 * 1024 {
640                // > 1MB allocation
641                bottlenecks.push(format!(
642                    "High memory allocation in {} gate",
643                    result.gate_type
644                ));
645            }
646        }
647
648        bottlenecks
649    }
650
651    /// Identify optimization opportunities
652    fn identify_optimization_opportunities(
653        &self,
654        gate_results: &[GateProfilingResult],
655    ) -> Vec<String> {
656        let mut opportunities = Vec::new();
657
658        // Check for underutilized SIMD
659        let low_simd_gates: Vec<&GateProfilingResult> = gate_results
660            .iter()
661            .filter(|r| r.simd_operations_count == 0)
662            .collect();
663
664        if !low_simd_gates.is_empty() {
665            opportunities.push("Enable SIMD optimization for better performance".to_string());
666        }
667
668        // Check for poor cache performance
669        let poor_cache_gates: Vec<&GateProfilingResult> = gate_results
670            .iter()
671            .filter(|r| r.cache_metrics.hit_rate_change < -0.1)
672            .collect();
673
674        if !poor_cache_gates.is_empty() {
675            opportunities
676                .push("Improve memory access patterns for better cache performance".to_string());
677        }
678
679        opportunities
680    }
681
682    /// Calculate SciRS2 optimization score
683    fn calculate_optimization_score(&self, gate_results: &[GateProfilingResult]) -> f64 {
684        let simd_score = if gate_results.iter().any(|r| r.simd_operations_count > 0) {
685            1.0
686        } else {
687            0.0
688        };
689        let parallel_score = if gate_results
690            .iter()
691            .any(|r| !r.parallel_optimizations.is_empty())
692        {
693            1.0
694        } else {
695            0.0
696        };
697        let memory_score = if gate_results.iter().all(|r| r.memory_delta < 1024 * 100) {
698            1.0
699        } else {
700            0.5
701        };
702
703        (simd_score + parallel_score + memory_score) / 3.0
704    }
705
706    /// Analyze memory usage patterns
707    fn analyze_memory_usage(
708        &self,
709        timeline: &[MemorySnapshot],
710    ) -> Result<MemoryAnalysis, QuantRS2Error> {
711        if timeline.is_empty() {
712            return Ok(MemoryAnalysis::default());
713        }
714
715        let peak_usage = timeline.iter().map(|s| s.memory_usage).max().unwrap_or(0);
716        let average_usage = timeline.iter().map(|s| s.memory_usage).sum::<usize>() / timeline.len();
717        let memory_growth_rate = if timeline.len() > 1 {
718            (timeline.last().unwrap().memory_usage as f64
719                - timeline.first().unwrap().memory_usage as f64)
720                / timeline.len() as f64
721        } else {
722            0.0
723        };
724
725        Ok(MemoryAnalysis {
726            peak_usage,
727            average_usage,
728            memory_growth_rate,
729            efficiency_score: self.calculate_memory_efficiency_score(peak_usage, average_usage),
730        })
731    }
732
733    /// Analyze SIMD usage patterns
734    fn analyze_simd_usage(&self, timeline: &[SimdSnapshot]) -> Result<SimdAnalysis, QuantRS2Error> {
735        if timeline.is_empty() {
736            return Ok(SimdAnalysis::default());
737        }
738
739        let total_simd_ops: usize = timeline.iter().map(|s| s.simd_operations).sum();
740        let peak_simd_usage = timeline
741            .iter()
742            .map(|s| s.simd_operations)
743            .max()
744            .unwrap_or(0);
745        let simd_utilization_rate = if !timeline.is_empty() {
746            timeline.iter().filter(|s| s.simd_operations > 0).count() as f64 / timeline.len() as f64
747        } else {
748            0.0
749        };
750
751        Ok(SimdAnalysis {
752            total_simd_operations: total_simd_ops,
753            peak_simd_usage,
754            simd_utilization_rate,
755            vectorization_efficiency: self
756                .calculate_vectorization_efficiency(total_simd_ops, timeline.len()),
757        })
758    }
759
760    /// Generate SciRS2-specific optimization recommendations
761    fn generate_scirs2_optimization_recommendations(
762        &self,
763        analysis: &CircuitAnalysis,
764    ) -> Result<Vec<OptimizationRecommendation>, QuantRS2Error> {
765        let mut recommendations = Vec::new();
766
767        if analysis.total_simd_operations == 0 {
768            recommendations.push(OptimizationRecommendation {
769                priority: RecommendationPriority::High,
770                category: "SIMD Optimization".to_string(),
771                description: "Enable SIMD vectorization for quantum gate operations".to_string(),
772                expected_improvement: "30-50% performance improvement".to_string(),
773                implementation_effort: ImplementationEffort::Medium,
774            });
775        }
776
777        if analysis.scirs2_optimization_score < 0.7 {
778            recommendations.push(OptimizationRecommendation {
779                priority: RecommendationPriority::Medium,
780                category: "Memory Optimization".to_string(),
781                description: "Implement SciRS2 memory-efficient state vector management"
782                    .to_string(),
783                expected_improvement: "20-30% memory reduction".to_string(),
784                implementation_effort: ImplementationEffort::Low,
785            });
786        }
787
788        if !analysis.bottlenecks.is_empty() {
789            recommendations.push(OptimizationRecommendation {
790                priority: RecommendationPriority::High,
791                category: "Bottleneck Resolution".to_string(),
792                description:
793                    "Address identified performance bottlenecks using SciRS2 parallel algorithms"
794                        .to_string(),
795                expected_improvement: "40-60% reduction in bottleneck impact".to_string(),
796                implementation_effort: ImplementationEffort::High,
797            });
798        }
799
800        Ok(recommendations)
801    }
802
803    /// Calculate SciRS2 enhancement factor
804    fn calculate_scirs2_enhancement_factor(&self, analysis: &CircuitAnalysis) -> f64 {
805        let base_factor = 1.0;
806        let simd_factor = if analysis.total_simd_operations > 0 {
807            1.5
808        } else {
809            1.0
810        };
811        let optimization_factor = 1.0 + analysis.scirs2_optimization_score;
812
813        base_factor * simd_factor * optimization_factor
814    }
815
816    /// Calculate memory efficiency score
817    fn calculate_memory_efficiency_score(&self, peak_usage: usize, average_usage: usize) -> f64 {
818        if peak_usage == 0 {
819            return 1.0;
820        }
821        average_usage as f64 / peak_usage as f64
822    }
823
824    /// Calculate vectorization efficiency
825    fn calculate_vectorization_efficiency(
826        &self,
827        total_simd_ops: usize,
828        total_operations: usize,
829    ) -> f64 {
830        if total_operations == 0 {
831            return 0.0;
832        }
833        total_simd_ops as f64 / total_operations as f64
834    }
835
836    /// End profiling session and generate report
837    pub fn end_profiling_session(&mut self) -> Result<ProfilingSessionReport, QuantRS2Error> {
838        if let Some(session) = self.profiling_session.take() {
839            let total_duration = session.start_time.elapsed();
840
841            Ok(ProfilingSessionReport {
842                session_id: session.session_id,
843                total_duration,
844                circuit_metadata: session.circuit_metadata,
845                performance_summary: self.performance_metrics.generate_summary(),
846                scirs2_enhancements: self.generate_scirs2_enhancement_summary(),
847            })
848        } else {
849            Err(QuantRS2Error::InvalidOperation(
850                "No active profiling session".into(),
851            ))
852        }
853    }
854
855    /// Generate SciRS2 enhancement summary
856    fn generate_scirs2_enhancement_summary(&self) -> SciRS2EnhancementSummary {
857        SciRS2EnhancementSummary {
858            simd_operations_utilized: self.simd_tracker.get_total_operations(),
859            parallel_execution_detected: self.parallel_tracker.get_parallel_operations_count() > 0,
860            memory_optimizations_applied: self.memory_tracker.get_optimizations_count(),
861            cache_performance_improvement: self.cache_monitor.get_average_improvement(),
862            overall_enhancement_factor: self.calculate_overall_enhancement_factor(),
863        }
864    }
865
866    /// Calculate overall enhancement factor
867    fn calculate_overall_enhancement_factor(&self) -> f64 {
868        let simd_factor = if self.simd_tracker.get_total_operations() > 0 {
869            1.3
870        } else {
871            1.0
872        };
873        let parallel_factor = if self.parallel_tracker.get_parallel_operations_count() > 0 {
874            1.2
875        } else {
876            1.0
877        };
878        let memory_factor = 1.0 + (self.memory_tracker.get_optimizations_count() as f64 * 0.1);
879
880        simd_factor * parallel_factor * memory_factor
881    }
882}
883
884/// Supporting data structures
885
886#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
887pub struct ProfilingSessionId(pub u64);
888
889#[derive(Debug)]
890pub struct ProfilingSession {
891    pub session_id: ProfilingSessionId,
892    pub start_time: Instant,
893    pub circuit_metadata: CircuitMetadata,
894    pub active_measurements: HashMap<String, Instant>,
895    pub performance_snapshots: Vec<PerformanceSnapshot>,
896}
897
898#[derive(Debug, Clone)]
899pub struct CircuitMetadata {
900    pub num_gates: usize,
901    pub num_qubits: usize,
902    pub circuit_depth: usize,
903    pub gate_types: HashMap<String, usize>,
904}
905
906#[derive(Debug, Clone)]
907pub struct GateProfilingResult {
908    pub gate_type: String,
909    pub execution_time: Duration,
910    pub memory_delta: i64,
911    pub simd_operations_count: usize,
912    pub cache_metrics: CacheMetrics,
913    pub numerical_stability: NumericalStabilityMetrics,
914    pub parallel_optimizations: Vec<String>,
915    pub scirs2_optimizations: Vec<String>,
916}
917
918#[derive(Debug, Clone)]
919pub struct CacheMetrics {
920    pub hits_before: usize,
921    pub misses_before: usize,
922    pub hits_after: usize,
923    pub misses_after: usize,
924    pub hit_rate_change: f64,
925}
926
927#[derive(Debug, Clone)]
928pub struct NumericalStabilityMetrics {
929    pub condition_number: f64,
930    pub numerical_error: f64,
931    pub stability_score: f64,
932}
933
934impl Default for NumericalStabilityMetrics {
935    fn default() -> Self {
936        Self {
937            condition_number: 1.0,
938            numerical_error: 1e-15,
939            stability_score: 1.0,
940        }
941    }
942}
943
944#[derive(Debug, Clone)]
945pub struct MemorySnapshot {
946    pub timestamp: Duration,
947    pub memory_usage: usize,
948    pub gate_index: usize,
949}
950
951#[derive(Debug, Clone)]
952pub struct SimdSnapshot {
953    pub timestamp: Duration,
954    pub simd_operations: usize,
955    pub gate_index: usize,
956}
957
958#[derive(Debug, Clone)]
959pub struct CircuitProfilingResult {
960    pub session_id: ProfilingSessionId,
961    pub total_execution_time: Duration,
962    pub gate_results: Vec<GateProfilingResult>,
963    pub circuit_analysis: CircuitAnalysis,
964    pub memory_analysis: MemoryAnalysis,
965    pub simd_analysis: SimdAnalysis,
966    pub optimization_recommendations: Vec<OptimizationRecommendation>,
967    pub scirs2_enhancement_factor: f64,
968}
969
970#[derive(Debug, Clone)]
971pub struct CircuitAnalysis {
972    pub total_gates: usize,
973    pub total_simd_operations: usize,
974    pub total_memory_delta: i64,
975    pub average_gate_execution_time_ns: f64,
976    pub bottlenecks: Vec<String>,
977    pub optimization_opportunities: Vec<String>,
978    pub scirs2_optimization_score: f64,
979}
980
981#[derive(Debug, Clone)]
982pub struct MemoryAnalysis {
983    pub peak_usage: usize,
984    pub average_usage: usize,
985    pub memory_growth_rate: f64,
986    pub efficiency_score: f64,
987}
988
989impl Default for MemoryAnalysis {
990    fn default() -> Self {
991        Self {
992            peak_usage: 0,
993            average_usage: 0,
994            memory_growth_rate: 0.0,
995            efficiency_score: 1.0,
996        }
997    }
998}
999
1000#[derive(Debug, Clone)]
1001pub struct SimdAnalysis {
1002    pub total_simd_operations: usize,
1003    pub peak_simd_usage: usize,
1004    pub simd_utilization_rate: f64,
1005    pub vectorization_efficiency: f64,
1006}
1007
1008impl Default for SimdAnalysis {
1009    fn default() -> Self {
1010        Self {
1011            total_simd_operations: 0,
1012            peak_simd_usage: 0,
1013            simd_utilization_rate: 0.0,
1014            vectorization_efficiency: 0.0,
1015        }
1016    }
1017}
1018
1019#[derive(Debug, Clone)]
1020pub struct OptimizationRecommendation {
1021    pub priority: RecommendationPriority,
1022    pub category: String,
1023    pub description: String,
1024    pub expected_improvement: String,
1025    pub implementation_effort: ImplementationEffort,
1026}
1027
1028#[derive(Debug, Clone)]
1029pub enum RecommendationPriority {
1030    Low,
1031    Medium,
1032    High,
1033    Critical,
1034}
1035
1036#[derive(Debug, Clone)]
1037pub enum ImplementationEffort {
1038    Low,
1039    Medium,
1040    High,
1041}
1042
1043#[derive(Debug, Clone)]
1044pub struct ProfilingSessionReport {
1045    pub session_id: ProfilingSessionId,
1046    pub total_duration: Duration,
1047    pub circuit_metadata: CircuitMetadata,
1048    pub performance_summary: PerformanceSummary,
1049    pub scirs2_enhancements: SciRS2EnhancementSummary,
1050}
1051
1052#[derive(Debug, Clone)]
1053pub struct SciRS2EnhancementSummary {
1054    pub simd_operations_utilized: usize,
1055    pub parallel_execution_detected: bool,
1056    pub memory_optimizations_applied: usize,
1057    pub cache_performance_improvement: f64,
1058    pub overall_enhancement_factor: f64,
1059}
1060
1061// Supporting tracking structures with placeholder implementations
1062
1063#[derive(Debug)]
1064pub struct PerformanceMetrics {
1065    // Placeholder implementation
1066}
1067
1068impl PerformanceMetrics {
1069    pub fn new() -> Self {
1070        Self {}
1071    }
1072
1073    pub fn reset(&mut self) {}
1074
1075    pub fn record_gate_execution(&mut self, _result: &GateProfilingResult) {}
1076
1077    pub fn generate_summary(&self) -> PerformanceSummary {
1078        PerformanceSummary {
1079            total_operations: 0,
1080            average_execution_time: Duration::from_nanos(0),
1081            performance_score: 1.0,
1082        }
1083    }
1084}
1085
1086#[derive(Debug, Clone)]
1087pub struct PerformanceSummary {
1088    pub total_operations: usize,
1089    pub average_execution_time: Duration,
1090    pub performance_score: f64,
1091}
1092
1093#[derive(Debug)]
1094pub struct SimdTracker {
1095    operation_count: usize,
1096    total_operations: usize,
1097}
1098
1099impl SimdTracker {
1100    pub fn new() -> Self {
1101        Self {
1102            operation_count: 0,
1103            total_operations: 0,
1104        }
1105    }
1106
1107    pub fn start_session(&mut self, _session_id: ProfilingSessionId) -> Result<(), QuantRS2Error> {
1108        self.operation_count = 0;
1109        Ok(())
1110    }
1111
1112    pub fn start_operation_tracking(&mut self) -> Result<(), QuantRS2Error> {
1113        Ok(())
1114    }
1115
1116    pub fn finish_operation_tracking(&mut self) -> Result<usize, QuantRS2Error> {
1117        Ok(self.operation_count)
1118    }
1119
1120    pub fn get_operation_count(&self) -> usize {
1121        self.operation_count
1122    }
1123
1124    pub fn get_total_operations(&self) -> usize {
1125        self.total_operations
1126    }
1127
1128    pub fn record_simd_operation(&mut self, _operation_type: &str, count: usize) {
1129        self.operation_count += count;
1130        self.total_operations += count;
1131    }
1132}
1133
1134#[derive(Debug)]
1135pub struct MemoryTracker {
1136    optimizations_count: usize,
1137}
1138
1139impl MemoryTracker {
1140    pub fn new() -> Self {
1141        Self {
1142            optimizations_count: 0,
1143        }
1144    }
1145
1146    pub fn start_session(&mut self, _session_id: ProfilingSessionId) -> Result<(), QuantRS2Error> {
1147        Ok(())
1148    }
1149
1150    pub fn detected_efficient_allocation(&self) -> bool {
1151        true // Placeholder
1152    }
1153
1154    pub fn get_optimizations_count(&self) -> usize {
1155        self.optimizations_count
1156    }
1157}
1158
1159#[derive(Debug)]
1160pub struct ParallelExecutionTracker {
1161    parallel_operations_count: usize,
1162}
1163
1164impl ParallelExecutionTracker {
1165    pub fn new() -> Self {
1166        Self {
1167            parallel_operations_count: 0,
1168        }
1169    }
1170
1171    pub fn start_session(&mut self, _session_id: ProfilingSessionId) -> Result<(), QuantRS2Error> {
1172        Ok(())
1173    }
1174
1175    pub fn record_parallel_operation(&mut self, _operation_type: &str) {
1176        self.parallel_operations_count += 1;
1177    }
1178
1179    pub fn detect_optimizations(&self, _duration: &Duration) -> Vec<String> {
1180        vec![]
1181    }
1182
1183    pub fn detected_parallel_benefit(&self) -> bool {
1184        self.parallel_operations_count > 0
1185    }
1186
1187    pub fn get_parallel_operations_count(&self) -> usize {
1188        self.parallel_operations_count
1189    }
1190}
1191
1192#[derive(Debug)]
1193pub struct CachePerformanceMonitor {
1194    average_improvement: f64,
1195}
1196
1197impl CachePerformanceMonitor {
1198    pub fn new() -> Self {
1199        Self {
1200            average_improvement: 0.0,
1201        }
1202    }
1203
1204    pub fn start_session(&mut self, _session_id: ProfilingSessionId) -> Result<(), QuantRS2Error> {
1205        Ok(())
1206    }
1207
1208    pub fn capture_cache_stats(&self) -> Result<CacheStats, QuantRS2Error> {
1209        Ok(CacheStats {
1210            hits: 100,
1211            misses: 10,
1212        })
1213    }
1214
1215    pub fn get_average_improvement(&self) -> f64 {
1216        self.average_improvement
1217    }
1218}
1219
1220#[derive(Debug, Clone)]
1221pub struct CacheStats {
1222    pub hits: usize,
1223    pub misses: usize,
1224}
1225
1226#[derive(Debug)]
1227pub struct NumericalStabilityAnalyzer {}
1228
1229impl NumericalStabilityAnalyzer {
1230    pub fn new() -> Self {
1231        Self {}
1232    }
1233
1234    pub fn analyze_state_stability(
1235        &self,
1236        _state: &[Complex64],
1237    ) -> Result<NumericalStabilityMetrics, QuantRS2Error> {
1238        Ok(NumericalStabilityMetrics::default())
1239    }
1240}
1241
1242#[derive(Debug)]
1243pub struct PlatformOptimizationTracker {}
1244
1245impl PlatformOptimizationTracker {
1246    pub fn new() -> Self {
1247        Self {}
1248    }
1249}
1250
1251#[derive(Debug)]
1252pub struct PerformanceSnapshot {
1253    pub timestamp: Duration,
1254    pub metrics: HashMap<String, f64>,
1255}
1256
1257#[cfg(test)]
1258mod tests {
1259    use super::*;
1260
1261    #[test]
1262    fn test_profiler_creation() {
1263        let profiler = SciRS2QuantumProfiler::new();
1264        assert!(profiler.config.track_simd_operations);
1265        assert!(profiler.config.profile_memory_allocations);
1266    }
1267
1268    #[test]
1269    fn test_profiling_session() {
1270        let mut profiler = SciRS2QuantumProfiler::new();
1271        let circuit = vec![
1272            QuantumGate::new(GateType::H, vec![0], None),
1273            QuantumGate::new(GateType::CNOT, vec![0, 1], None),
1274        ];
1275
1276        let session_id = profiler.start_profiling_session(&circuit, 2).unwrap();
1277        assert!(matches!(session_id, ProfilingSessionId(_)));
1278    }
1279
1280    #[test]
1281    fn test_gate_profiling() {
1282        let mut profiler = SciRS2QuantumProfiler::new();
1283        let gate = QuantumGate::new(GateType::X, vec![0], None);
1284        let mut state = vec![Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)];
1285
1286        let result = profiler
1287            .profile_gate_execution(&gate, &mut state, 1)
1288            .unwrap();
1289        assert_eq!(result.gate_type, "X");
1290        assert!(result.execution_time.as_nanos() > 0);
1291    }
1292
1293    #[test]
1294    fn test_circuit_profiling() {
1295        let mut profiler = SciRS2QuantumProfiler::new();
1296        let circuit = vec![QuantumGate::new(GateType::H, vec![0], None)];
1297        let initial_state = vec![Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)];
1298
1299        let result = profiler
1300            .profile_circuit_execution(&circuit, &initial_state, 1)
1301            .unwrap();
1302        assert_eq!(result.gate_results.len(), 1);
1303        assert!(result.scirs2_enhancement_factor >= 1.0);
1304    }
1305
1306    #[test]
1307    fn test_simd_tracking() {
1308        let mut tracker = SimdTracker::new();
1309        let session_id = ProfilingSessionId(1);
1310
1311        tracker.start_session(session_id).unwrap();
1312        tracker.record_simd_operation("test_op", 5);
1313        assert_eq!(tracker.get_operation_count(), 5);
1314    }
1315
1316    #[test]
1317    fn test_optimization_recommendations() {
1318        let profiler = SciRS2QuantumProfiler::new();
1319        let analysis = CircuitAnalysis {
1320            total_gates: 10,
1321            total_simd_operations: 0, // No SIMD operations
1322            total_memory_delta: 1024,
1323            average_gate_execution_time_ns: 1000.0,
1324            bottlenecks: vec![],
1325            optimization_opportunities: vec![],
1326            scirs2_optimization_score: 0.5,
1327        };
1328
1329        let recommendations = profiler
1330            .generate_scirs2_optimization_recommendations(&analysis)
1331            .unwrap();
1332        assert!(!recommendations.is_empty());
1333        assert!(recommendations.iter().any(|r| r.category.contains("SIMD")));
1334    }
1335}