1use crate::error::{QuantRS2Error, QuantRS2Result};
8use crate::gate_translation::GateType;
9use crate::parallel_ops_stubs::*;
10use crate::platform::PlatformCapabilities;
11use scirs2_core::ndarray::{Array1, Array2};
12use scirs2_core::Complex64;
13use serde::{Deserialize, Serialize};
14use std::collections::{BTreeMap, HashMap, HashSet};
15use std::sync::Arc;
16use std::time::Duration;
17
18pub struct AutoOptimizer {
20 platform_caps: Arc<PlatformCapabilities>,
22 config: AutoOptimizerConfig,
24 analysis_cache: HashMap<String, ProblemAnalysis>,
26 backend_profiles: HashMap<BackendType, PerformanceProfile>,
28 resource_monitor: ResourceMonitor,
30}
31
32#[derive(Debug, Clone, Serialize, Deserialize)]
34pub struct AutoOptimizerConfig {
35 pub enable_auto_switching: bool,
37 pub performance_bias: f64,
39 pub max_memory_gb: f64,
41 pub target_time: Option<Duration>,
43 pub enable_gpu: bool,
45 pub enable_distributed: bool,
47 pub gpu_threshold_qubits: usize,
49 pub distributed_threshold_qubits: usize,
51 pub enable_caching: bool,
53 pub monitoring_interval: Duration,
55}
56
57impl Default for AutoOptimizerConfig {
58 fn default() -> Self {
59 Self {
60 enable_auto_switching: true,
61 performance_bias: 0.5,
62 max_memory_gb: 8.0,
63 target_time: Some(Duration::from_secs(300)), enable_gpu: true,
65 enable_distributed: false,
66 gpu_threshold_qubits: 12,
67 distributed_threshold_qubits: 20,
68 enable_caching: true,
69 monitoring_interval: Duration::from_millis(100),
70 }
71 }
72}
73
74#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
76pub enum BackendType {
77 CPUSingle,
79 CPUParallel,
81 GPU,
83 Distributed,
85 Hybrid,
87 Hardware,
89 NoisySimulator,
91 HighPrecision,
93}
94
95#[derive(Debug, Clone, Serialize, Deserialize)]
97pub struct ProblemAnalysis {
98 pub num_qubits: usize,
100 pub circuit_depth: usize,
102 pub gate_composition: GateComposition,
104 pub entanglement_analysis: EntanglementAnalysis,
106 pub memory_estimate_gb: f64,
108 pub complexity_estimate: ComplexityEstimate,
110 pub problem_type: ProblemType,
112 pub parallelization_potential: ParallelizationPotential,
114 pub resource_requirements: ResourceRequirements,
116}
117
118#[derive(Debug, Clone, Serialize, Deserialize)]
120pub struct GateComposition {
121 pub total_gates: usize,
123 pub single_qubit_gates: usize,
125 pub two_qubit_gates: usize,
127 pub multi_qubit_gates: usize,
129 pub gate_types: HashMap<String, usize>,
131 pub parameterized_gates: usize,
133 pub simd_friendly_percentage: f64,
135}
136
137#[derive(Debug, Clone, Serialize, Deserialize)]
139pub struct EntanglementAnalysis {
140 pub max_entanglement_depth: usize,
142 pub connectivity_ratio: f64,
144 pub separable_subsystems: usize,
146 pub entanglement_entropy: f64,
148}
149
150#[derive(Debug, Clone, Serialize, Deserialize)]
152pub struct ComplexityEstimate {
153 pub time_complexity: ComplexityClass,
155 pub space_complexity: ComplexityClass,
157 pub operation_count: u64,
159 pub memory_pattern: MemoryPattern,
161 pub parallelization_factor: f64,
163}
164
165#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
167pub enum ComplexityClass {
168 Constant,
169 Logarithmic,
170 Linear,
171 Quadratic,
172 Exponential,
173 DoubleExponential,
174}
175
176#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
178pub enum MemoryPattern {
179 Sequential,
180 Random,
181 Strided,
182 Blocked,
183 Hierarchical,
184}
185
186#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
188pub enum ProblemType {
189 Simulation,
191 VQE,
193 QAOA,
195 QML,
197 QEC,
199 QFT,
201 AmplitudeEstimation,
203 QuantumWalk,
205 Custom,
207}
208
209#[derive(Debug, Clone, Serialize, Deserialize)]
211pub struct ParallelizationPotential {
212 pub gate_parallelism: f64,
214 pub state_parallelism: f64,
216 pub batch_potential: f64,
218 pub simd_potential: f64,
220 pub gpu_potential: f64,
222 pub distributed_potential: f64,
224}
225
226#[derive(Debug, Clone, Serialize, Deserialize)]
228pub struct ResourceRequirements {
229 pub memory_gb: f64,
231 pub cpu_cores: usize,
233 pub gpu_memory_gb: f64,
235 pub network_bandwidth_mbps: f64,
237 pub storage_gb: f64,
239 pub estimated_time: Duration,
241}
242
243#[derive(Debug, Clone, Serialize, Deserialize)]
245pub struct PerformanceProfile {
246 pub backend_type: BackendType,
248 pub metrics: PerformanceMetrics,
250 pub resource_utilization: ResourceUtilization,
252 pub problem_size_limits: ProblemSizeLimits,
254 pub optimizations: Vec<OptimizationRecommendation>,
256}
257
258#[derive(Debug, Clone, Serialize, Deserialize)]
260pub struct PerformanceMetrics {
261 pub throughput: f64,
263 pub latency: f64,
265 pub memory_efficiency: f64,
267 pub cpu_utilization: f64,
269 pub gpu_utilization: f64,
271 pub energy_efficiency: f64,
273}
274
275#[derive(Debug, Clone, Serialize, Deserialize)]
277pub struct ResourceUtilization {
278 pub cpu_usage: f64,
280 pub memory_usage_gb: f64,
282 pub gpu_usage: f64,
284 pub gpu_memory_usage_gb: f64,
286 pub network_usage_mbps: f64,
288}
289
290#[derive(Debug, Clone, Serialize, Deserialize)]
292pub struct ProblemSizeLimits {
293 pub max_qubits: usize,
295 pub max_depth: usize,
297 pub max_gates: usize,
299 pub max_memory_gb: f64,
301}
302
303#[derive(Debug, Clone, Serialize, Deserialize)]
305pub struct OptimizationRecommendation {
306 pub recommendation_type: RecommendationType,
308 pub description: String,
310 pub expected_improvement: f64,
312 pub difficulty: u8,
314 pub resource_cost: ResourceCost,
316}
317
318#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
320pub enum RecommendationType {
321 BackendSwitch,
323 ParallelizationTuning,
325 MemoryOptimization,
327 AlgorithmOptimization,
329 HardwareOptimization,
331 PrecisionAdjustment,
333}
334
335#[derive(Debug, Clone, Serialize, Deserialize)]
337pub struct ResourceCost {
338 pub memory_gb: f64,
340 pub cpu_cores: usize,
342 pub gpu_memory_gb: f64,
344 pub setup_time: Duration,
346}
347
348#[derive(Debug, Clone)]
350pub struct ResourceMonitor {
351 pub cpu_history: Vec<f64>,
353 pub memory_history: Vec<f64>,
355 pub gpu_history: Vec<f64>,
357 pub network_history: Vec<f64>,
359 pub interval: Duration,
361}
362
363#[derive(Debug, Clone, Serialize, Deserialize)]
365pub struct BackendSelection {
366 pub backend_type: BackendType,
368 pub confidence: f64,
370 pub reasoning: Vec<String>,
372 pub expected_performance: PerformanceMetrics,
374 pub configuration: BackendConfiguration,
376 pub alternatives: Vec<(BackendType, f64)>,
378}
379
380#[derive(Debug, Clone, Serialize, Deserialize)]
382pub struct BackendConfiguration {
383 pub num_threads: usize,
385 pub batch_size: usize,
387 pub memory_strategy: MemoryStrategy,
389 pub precision_settings: PrecisionSettings,
391 pub gpu_config: Option<GPUConfiguration>,
393 pub distributed_config: Option<DistributedConfiguration>,
395}
396
397#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
399pub enum MemoryStrategy {
400 Heap,
402 Pool,
404 MemoryMapped,
406 Shared,
408}
409
410#[derive(Debug, Clone, Serialize, Deserialize)]
412pub struct PrecisionSettings {
413 pub float_precision: FloatPrecision,
415 pub tolerance: f64,
417 pub adaptive_precision: bool,
419}
420
421#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
423pub enum FloatPrecision {
424 Single,
426 Double,
428 Extended,
430 Quadruple,
432}
433
434#[derive(Debug, Clone, Serialize, Deserialize)]
436pub struct GPUConfiguration {
437 pub device_id: usize,
439 pub block_size: usize,
441 pub grid_size: usize,
443 pub memory_strategy: GPUMemoryStrategy,
445 pub use_unified_memory: bool,
447}
448
449#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
451pub enum GPUMemoryStrategy {
452 Standard,
454 Unified,
456 Pool,
458 Pinned,
460}
461
462#[derive(Debug, Clone, Serialize, Deserialize)]
464pub struct DistributedConfiguration {
465 pub num_nodes: usize,
467 pub comm_backend: CommunicationBackend,
469 pub load_balancing: LoadBalancingStrategy,
471 pub fault_tolerance: bool,
473}
474
475#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
477pub enum CommunicationBackend {
478 MPI,
480 TCP,
482 InfiniBand,
484 SharedMemory,
486}
487
488#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
490pub enum LoadBalancingStrategy {
491 Static,
493 Dynamic,
495 WorkStealing,
497 Hierarchical,
499}
500
501impl AutoOptimizer {
502 pub fn new(config: AutoOptimizerConfig) -> QuantRS2Result<Self> {
504 let platform_caps = Arc::new(PlatformCapabilities::detect());
505 let analysis_cache = HashMap::new();
506 let backend_profiles = Self::initialize_backend_profiles(&platform_caps)?;
507 let resource_monitor = ResourceMonitor {
508 cpu_history: Vec::new(),
509 memory_history: Vec::new(),
510 gpu_history: Vec::new(),
511 network_history: Vec::new(),
512 interval: config.monitoring_interval,
513 };
514
515 Ok(Self {
516 platform_caps,
517 config,
518 analysis_cache,
519 backend_profiles,
520 resource_monitor,
521 })
522 }
523
524 fn initialize_backend_profiles(
526 platform_caps: &PlatformCapabilities,
527 ) -> QuantRS2Result<HashMap<BackendType, PerformanceProfile>> {
528 let mut profiles = HashMap::new();
529
530 profiles.insert(
532 BackendType::CPUSingle,
533 PerformanceProfile {
534 backend_type: BackendType::CPUSingle,
535 metrics: PerformanceMetrics {
536 throughput: 1000.0,
537 latency: 0.001,
538 memory_efficiency: 0.8,
539 cpu_utilization: 0.25,
540 gpu_utilization: 0.0,
541 energy_efficiency: 100.0,
542 },
543 resource_utilization: ResourceUtilization {
544 cpu_usage: 25.0,
545 memory_usage_gb: 1.0,
546 gpu_usage: 0.0,
547 gpu_memory_usage_gb: 0.0,
548 network_usage_mbps: 0.0,
549 },
550 problem_size_limits: ProblemSizeLimits {
551 max_qubits: 20,
552 max_depth: 1000,
553 max_gates: 10000,
554 max_memory_gb: 4.0,
555 },
556 optimizations: vec![OptimizationRecommendation {
557 recommendation_type: RecommendationType::BackendSwitch,
558 description: "Consider CPU parallel for larger problems".to_string(),
559 expected_improvement: 3.0,
560 difficulty: 2,
561 resource_cost: ResourceCost {
562 memory_gb: 0.5,
563 cpu_cores: 3,
564 gpu_memory_gb: 0.0,
565 setup_time: Duration::from_millis(10),
566 },
567 }],
568 },
569 );
570
571 profiles.insert(
573 BackendType::CPUParallel,
574 PerformanceProfile {
575 backend_type: BackendType::CPUParallel,
576 metrics: PerformanceMetrics {
577 throughput: platform_caps.cpu.logical_cores as f64 * 800.0,
578 latency: 0.002,
579 memory_efficiency: 0.7,
580 cpu_utilization: 0.8,
581 gpu_utilization: 0.0,
582 energy_efficiency: 80.0,
583 },
584 resource_utilization: ResourceUtilization {
585 cpu_usage: 80.0,
586 memory_usage_gb: 2.0,
587 gpu_usage: 0.0,
588 gpu_memory_usage_gb: 0.0,
589 network_usage_mbps: 0.0,
590 },
591 problem_size_limits: ProblemSizeLimits {
592 max_qubits: 25,
593 max_depth: 2000,
594 max_gates: 50000,
595 max_memory_gb: 16.0,
596 },
597 optimizations: vec![OptimizationRecommendation {
598 recommendation_type: RecommendationType::ParallelizationTuning,
599 description: "Optimize thread count for problem size".to_string(),
600 expected_improvement: 1.5,
601 difficulty: 3,
602 resource_cost: ResourceCost {
603 memory_gb: 1.0,
604 cpu_cores: 0,
605 gpu_memory_gb: 0.0,
606 setup_time: Duration::from_millis(50),
607 },
608 }],
609 },
610 );
611
612 if platform_caps.has_gpu() {
614 profiles.insert(
615 BackendType::GPU,
616 PerformanceProfile {
617 backend_type: BackendType::GPU,
618 metrics: PerformanceMetrics {
619 throughput: 50000.0,
620 latency: 0.005,
621 memory_efficiency: 0.9,
622 cpu_utilization: 0.2,
623 gpu_utilization: 0.8,
624 energy_efficiency: 200.0,
625 },
626 resource_utilization: ResourceUtilization {
627 cpu_usage: 20.0,
628 memory_usage_gb: 2.0,
629 gpu_usage: 80.0,
630 gpu_memory_usage_gb: 4.0,
631 network_usage_mbps: 0.0,
632 },
633 problem_size_limits: ProblemSizeLimits {
634 max_qubits: 30,
635 max_depth: 5000,
636 max_gates: 100_000,
637 max_memory_gb: 8.0,
638 },
639 optimizations: vec![OptimizationRecommendation {
640 recommendation_type: RecommendationType::HardwareOptimization,
641 description: "Optimize GPU kernel parameters".to_string(),
642 expected_improvement: 2.0,
643 difficulty: 7,
644 resource_cost: ResourceCost {
645 memory_gb: 1.0,
646 cpu_cores: 0,
647 gpu_memory_gb: 2.0,
648 setup_time: Duration::from_millis(100),
649 },
650 }],
651 },
652 );
653 }
654
655 Ok(profiles)
656 }
657
658 pub fn analyze_problem(
660 &mut self,
661 circuit_gates: &[GateType],
662 num_qubits: usize,
663 problem_type: ProblemType,
664 ) -> QuantRS2Result<ProblemAnalysis> {
665 let cache_key = format!("{:?}-{}-{}", problem_type, num_qubits, circuit_gates.len());
667
668 if self.config.enable_caching {
669 if let Some(cached) = self.analysis_cache.get(&cache_key) {
670 return Ok(cached.clone());
671 }
672 }
673
674 let circuit_depth = Self::calculate_circuit_depth(circuit_gates);
675 let gate_composition = Self::analyze_gate_composition(circuit_gates);
676 let entanglement_analysis = Self::analyze_entanglement(circuit_gates, num_qubits);
677 let memory_estimate_gb = Self::estimate_memory_requirements(num_qubits, circuit_depth);
678 let complexity_estimate = Self::estimate_complexity(circuit_gates, num_qubits);
679 let parallelization_potential =
680 Self::analyze_parallelization_potential(circuit_gates, num_qubits, &gate_composition);
681 let resource_requirements = Self::estimate_resource_requirements(
682 num_qubits,
683 circuit_depth,
684 &complexity_estimate,
685 ¶llelization_potential,
686 );
687
688 let analysis = ProblemAnalysis {
689 num_qubits,
690 circuit_depth,
691 gate_composition,
692 entanglement_analysis,
693 memory_estimate_gb,
694 complexity_estimate,
695 problem_type,
696 parallelization_potential,
697 resource_requirements,
698 };
699
700 if self.config.enable_caching {
701 self.analysis_cache.insert(cache_key, analysis.clone());
702 }
703
704 Ok(analysis)
705 }
706
707 pub fn select_backend(&self, analysis: &ProblemAnalysis) -> QuantRS2Result<BackendSelection> {
709 let mut scores = HashMap::new();
710 let mut reasoning = Vec::new();
711
712 for (backend_type, profile) in &self.backend_profiles {
714 let score = self.score_backend(analysis, profile)?;
715 scores.insert(*backend_type, score);
716
717 if score > 0.7 {
719 reasoning.push(format!(
720 "{:?} backend scores {:.2} due to good fit for problem characteristics",
721 backend_type, score
722 ));
723 }
724 }
725
726 let (best_backend, best_score) = scores
728 .iter()
729 .max_by(|a, b| a.1.partial_cmp(b.1).unwrap())
730 .ok_or_else(|| QuantRS2Error::InvalidInput("No backends available".to_string()))?;
731
732 let mut alternatives: Vec<(BackendType, f64)> = scores
734 .iter()
735 .filter(|(backend, _)| *backend != best_backend)
736 .map(|(backend, score)| (*backend, *score))
737 .collect();
738 alternatives.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
739 alternatives.truncate(3); let configuration = self.generate_backend_configuration(analysis, *best_backend)?;
743
744 let expected_performance = self.backend_profiles[best_backend].metrics.clone();
746
747 reasoning.push(format!(
749 "Selected {:?} backend with confidence {:.2}",
750 best_backend, best_score
751 ));
752
753 if analysis.num_qubits >= self.config.gpu_threshold_qubits && self.platform_caps.has_gpu() {
754 reasoning.push(
755 "Problem size exceeds GPU threshold, GPU acceleration recommended".to_string(),
756 );
757 }
758
759 if analysis.parallelization_potential.gate_parallelism > 0.5 {
760 reasoning.push("High gate parallelism potential detected".to_string());
761 }
762
763 Ok(BackendSelection {
764 backend_type: *best_backend,
765 confidence: *best_score,
766 reasoning,
767 expected_performance,
768 configuration,
769 alternatives,
770 })
771 }
772
773 fn score_backend(
775 &self,
776 analysis: &ProblemAnalysis,
777 profile: &PerformanceProfile,
778 ) -> QuantRS2Result<f64> {
779 let mut score = 0.0;
780 let mut weight_sum = 0.0;
781
782 let size_weight = 0.3;
784 let size_score = if analysis.num_qubits <= profile.problem_size_limits.max_qubits {
785 1.0 - (analysis.num_qubits as f64 / profile.problem_size_limits.max_qubits as f64) * 0.5
786 } else {
787 0.0 };
789 score += size_score * size_weight;
790 weight_sum += size_weight;
791
792 let perf_weight = 0.25;
794 let perf_score = match self.config.performance_bias {
795 bias if bias > 0.7 => profile.metrics.throughput / 10000.0, bias if bias < 0.3 => 1.0 / (profile.metrics.latency * 1000.0), _ => {
798 (profile.metrics.throughput / 10000.0 + 1.0 / (profile.metrics.latency * 1000.0))
799 / 2.0
800 }
801 };
802 score += perf_score.min(1.0) * perf_weight;
803 weight_sum += perf_weight;
804
805 let resource_weight = 0.2;
807 let resource_score = if analysis.memory_estimate_gb <= self.config.max_memory_gb {
808 1.0 - (analysis.memory_estimate_gb / self.config.max_memory_gb) * 0.3
809 } else {
810 0.0 };
812 score += resource_score * resource_weight;
813 weight_sum += resource_weight;
814
815 let bonus_weight = 0.15;
817 let bonus_score = match profile.backend_type {
818 BackendType::GPU
819 if self.config.enable_gpu
820 && analysis.num_qubits >= self.config.gpu_threshold_qubits =>
821 {
822 1.0
823 }
824 BackendType::CPUParallel
825 if analysis.parallelization_potential.gate_parallelism > 0.5 =>
826 {
827 0.8
828 }
829 BackendType::Distributed
830 if self.config.enable_distributed
831 && analysis.num_qubits >= self.config.distributed_threshold_qubits =>
832 {
833 0.9
834 }
835 _ => 0.5,
836 };
837 score += bonus_score * bonus_weight;
838 weight_sum += bonus_weight;
839
840 let parallel_weight = 0.1;
842 let parallel_score = match profile.backend_type {
843 BackendType::GPU => analysis.parallelization_potential.gpu_potential,
844 BackendType::CPUParallel => analysis.parallelization_potential.gate_parallelism,
845 BackendType::Distributed => analysis.parallelization_potential.distributed_potential,
846 _ => 0.5,
847 };
848 score += parallel_score * parallel_weight;
849 weight_sum += parallel_weight;
850
851 if weight_sum > 0.0 {
853 score /= weight_sum;
854 }
855
856 Ok(score.max(0.0).min(1.0))
857 }
858
859 fn generate_backend_configuration(
861 &self,
862 analysis: &ProblemAnalysis,
863 backend_type: BackendType,
864 ) -> QuantRS2Result<BackendConfiguration> {
865 let num_threads = match backend_type {
866 BackendType::CPUParallel | BackendType::Hybrid => {
867 (self.platform_caps.cpu.logical_cores as f64 * 0.8).round() as usize
868 }
869 _ => 1,
870 };
871
872 let batch_size = match backend_type {
873 BackendType::GPU => 1024,
874 BackendType::CPUParallel => 64,
875 _ => 1,
876 };
877
878 let memory_strategy = match backend_type {
879 BackendType::GPU => MemoryStrategy::Pool,
880 BackendType::Distributed => MemoryStrategy::Shared,
881 _ => MemoryStrategy::Heap,
882 };
883
884 let precision_settings = PrecisionSettings {
885 float_precision: if analysis.problem_type == ProblemType::QEC {
886 FloatPrecision::Quadruple
887 } else {
888 FloatPrecision::Double
889 },
890 tolerance: 1e-12,
891 adaptive_precision: true,
892 };
893
894 let gpu_config = if backend_type == BackendType::GPU || backend_type == BackendType::Hybrid
895 {
896 Some(GPUConfiguration {
897 device_id: 0,
898 block_size: 256,
899 grid_size: (analysis.num_qubits * analysis.num_qubits + 255) / 256,
900 memory_strategy: GPUMemoryStrategy::Pool,
901 use_unified_memory: false, })
903 } else {
904 None
905 };
906
907 let distributed_config = if backend_type == BackendType::Distributed {
908 Some(DistributedConfiguration {
909 num_nodes: 4,
910 comm_backend: CommunicationBackend::TCP,
911 load_balancing: LoadBalancingStrategy::Dynamic,
912 fault_tolerance: true,
913 })
914 } else {
915 None
916 };
917
918 Ok(BackendConfiguration {
919 num_threads,
920 batch_size,
921 memory_strategy,
922 precision_settings,
923 gpu_config,
924 distributed_config,
925 })
926 }
927
928 fn calculate_circuit_depth(gates: &[GateType]) -> usize {
930 (gates.len() as f64 * 0.7).round() as usize
932 }
933
934 fn analyze_gate_composition(gates: &[GateType]) -> GateComposition {
936 let mut gate_types = HashMap::new();
937 let mut single_qubit_gates = 0;
938 let mut two_qubit_gates = 0;
939 let mut multi_qubit_gates = 0;
940 let mut parameterized_gates = 0;
941
942 for gate in gates {
943 let gate_name = format!("{:?}", gate);
944 *gate_types.entry(gate_name).or_insert(0) += 1;
945
946 match gate {
947 GateType::H
948 | GateType::X
949 | GateType::Y
950 | GateType::Z
951 | GateType::S
952 | GateType::T
953 | GateType::Rx(_)
954 | GateType::Ry(_)
955 | GateType::Rz(_) => {
956 single_qubit_gates += 1;
957 if matches!(gate, GateType::Rx(_) | GateType::Ry(_) | GateType::Rz(_)) {
958 parameterized_gates += 1;
959 }
960 }
961 GateType::CNOT | GateType::CZ | GateType::SWAP => {
962 two_qubit_gates += 1;
963 }
964 _ => {
965 multi_qubit_gates += 1;
966 }
967 }
968 }
969
970 let total_gates = gates.len();
971 let simd_friendly_gates = single_qubit_gates + two_qubit_gates;
972 let simd_friendly_percentage = if total_gates > 0 {
973 simd_friendly_gates as f64 / total_gates as f64
974 } else {
975 0.0
976 };
977
978 GateComposition {
979 total_gates,
980 single_qubit_gates,
981 two_qubit_gates,
982 multi_qubit_gates,
983 gate_types,
984 parameterized_gates,
985 simd_friendly_percentage,
986 }
987 }
988
989 fn analyze_entanglement(gates: &[GateType], num_qubits: usize) -> EntanglementAnalysis {
991 let mut entangling_gates = 0;
992 let mut connectivity_set = HashSet::new();
993
994 for gate in gates {
995 match gate {
996 GateType::CNOT | GateType::CZ | GateType::SWAP => {
997 entangling_gates += 1;
998 connectivity_set.insert((0, 1)); }
1001 _ => {}
1002 }
1003 }
1004
1005 let max_entanglement_depth = (entangling_gates as f64).log2().ceil() as usize;
1006 let connectivity_ratio =
1007 connectivity_set.len() as f64 / (num_qubits * (num_qubits - 1) / 2) as f64;
1008 let separable_subsystems = if entangling_gates == 0 { num_qubits } else { 1 };
1009 let entanglement_entropy = if entangling_gates > 0 {
1010 (num_qubits as f64).log2()
1011 } else {
1012 0.0
1013 };
1014
1015 EntanglementAnalysis {
1016 max_entanglement_depth,
1017 connectivity_ratio,
1018 separable_subsystems,
1019 entanglement_entropy,
1020 }
1021 }
1022
1023 fn estimate_memory_requirements(num_qubits: usize, circuit_depth: usize) -> f64 {
1025 let state_vector_size = 2_usize.pow(num_qubits as u32);
1026 let complex_size = 16; let base_memory = (state_vector_size * complex_size) as f64 / (1024.0 * 1024.0 * 1024.0);
1028 let overhead_factor = 1.5; let depth_factor = 1.0 + (circuit_depth as f64 * 0.01);
1030
1031 base_memory * overhead_factor * depth_factor
1032 }
1033
1034 fn estimate_complexity(gates: &[GateType], num_qubits: usize) -> ComplexityEstimate {
1036 let operation_count = gates.len() as u64 * 2_u64.pow(num_qubits as u32);
1037
1038 let time_complexity = if num_qubits <= 10 {
1039 ComplexityClass::Linear
1040 } else if num_qubits <= 20 {
1041 ComplexityClass::Quadratic
1042 } else {
1043 ComplexityClass::Exponential
1044 };
1045
1046 let space_complexity = if num_qubits <= 25 {
1047 ComplexityClass::Exponential
1048 } else {
1049 ComplexityClass::DoubleExponential
1050 };
1051
1052 let memory_pattern = if gates.len() > 1000 {
1053 MemoryPattern::Blocked
1054 } else {
1055 MemoryPattern::Sequential
1056 };
1057
1058 let parallelization_factor = if num_qubits >= 12 {
1059 (num_qubits as f64 / 4.0).min(8.0)
1060 } else {
1061 1.0
1062 };
1063
1064 ComplexityEstimate {
1065 time_complexity,
1066 space_complexity,
1067 operation_count,
1068 memory_pattern,
1069 parallelization_factor,
1070 }
1071 }
1072
1073 fn analyze_parallelization_potential(
1075 gates: &[GateType],
1076 num_qubits: usize,
1077 gate_composition: &GateComposition,
1078 ) -> ParallelizationPotential {
1079 let gate_parallelism = if gate_composition.single_qubit_gates > 0 {
1080 gate_composition.single_qubit_gates as f64 / gate_composition.total_gates as f64
1081 } else {
1082 0.0
1083 };
1084
1085 let state_parallelism = if num_qubits >= 8 {
1086 (num_qubits as f64 - 7.0) / 10.0
1087 } else {
1088 0.1
1089 };
1090
1091 let batch_potential = if gate_composition.total_gates > 100 {
1092 0.8
1093 } else {
1094 0.3
1095 };
1096
1097 let simd_potential = gate_composition.simd_friendly_percentage;
1098
1099 let gpu_potential = if num_qubits >= 12 && gate_composition.total_gates > 500 {
1100 0.9
1101 } else {
1102 0.2
1103 };
1104
1105 let distributed_potential = if num_qubits >= 20 { 0.8 } else { 0.1 };
1106
1107 ParallelizationPotential {
1108 gate_parallelism,
1109 state_parallelism,
1110 batch_potential,
1111 simd_potential,
1112 gpu_potential,
1113 distributed_potential,
1114 }
1115 }
1116
1117 fn estimate_resource_requirements(
1119 num_qubits: usize,
1120 circuit_depth: usize,
1121 complexity: &ComplexityEstimate,
1122 parallelization: &ParallelizationPotential,
1123 ) -> ResourceRequirements {
1124 let memory_gb = Self::estimate_memory_requirements(num_qubits, circuit_depth);
1125
1126 let cpu_cores = if parallelization.gate_parallelism > 0.5 {
1127 (num_qubits / 2).max(2).min(16)
1128 } else {
1129 1
1130 };
1131
1132 let gpu_memory_gb = if parallelization.gpu_potential > 0.5 {
1133 memory_gb * 1.2
1134 } else {
1135 0.0
1136 };
1137
1138 let network_bandwidth_mbps = if parallelization.distributed_potential > 0.5 {
1139 100.0 * num_qubits as f64
1140 } else {
1141 0.0
1142 };
1143
1144 let storage_gb = memory_gb * 0.1; let base_time_ms = match complexity.time_complexity {
1147 ComplexityClass::Linear => circuit_depth as f64 * 0.1,
1148 ComplexityClass::Quadratic => circuit_depth as f64 * circuit_depth as f64 * 0.001,
1149 ComplexityClass::Exponential => 2.0_f64.powf(num_qubits as f64 * 0.5),
1150 _ => 1000.0,
1151 };
1152
1153 let estimated_time =
1154 Duration::from_millis((base_time_ms / complexity.parallelization_factor) as u64);
1155
1156 ResourceRequirements {
1157 memory_gb,
1158 cpu_cores,
1159 gpu_memory_gb,
1160 network_bandwidth_mbps,
1161 storage_gb,
1162 estimated_time,
1163 }
1164 }
1165
1166 pub fn get_recommendations(
1168 &self,
1169 analysis: &ProblemAnalysis,
1170 selection: &BackendSelection,
1171 ) -> Vec<OptimizationRecommendation> {
1172 let mut recommendations = Vec::new();
1173
1174 if analysis.memory_estimate_gb > self.config.max_memory_gb * 0.8 {
1176 recommendations.push(OptimizationRecommendation {
1177 recommendation_type: RecommendationType::MemoryOptimization,
1178 description:
1179 "Consider using memory-efficient state representation or chunked computation"
1180 .to_string(),
1181 expected_improvement: 0.6,
1182 difficulty: 6,
1183 resource_cost: ResourceCost {
1184 memory_gb: -analysis.memory_estimate_gb * 0.3,
1185 cpu_cores: 1,
1186 gpu_memory_gb: 0.0,
1187 setup_time: Duration::from_millis(200),
1188 },
1189 });
1190 }
1191
1192 if selection.confidence < 0.8 {
1194 for (alt_backend, score) in &selection.alternatives {
1195 if *score > selection.confidence {
1196 recommendations.push(OptimizationRecommendation {
1197 recommendation_type: RecommendationType::BackendSwitch,
1198 description: format!(
1199 "Consider switching to {:?} backend for better performance",
1200 alt_backend
1201 ),
1202 expected_improvement: score - selection.confidence,
1203 difficulty: 3,
1204 resource_cost: ResourceCost {
1205 memory_gb: 0.5,
1206 cpu_cores: 0,
1207 gpu_memory_gb: if *alt_backend == BackendType::GPU {
1208 2.0
1209 } else {
1210 0.0
1211 },
1212 setup_time: Duration::from_millis(100),
1213 },
1214 });
1215 }
1216 }
1217 }
1218
1219 if analysis.parallelization_potential.gate_parallelism > 0.7
1221 && selection.backend_type == BackendType::CPUSingle
1222 {
1223 recommendations.push(OptimizationRecommendation {
1224 recommendation_type: RecommendationType::ParallelizationTuning,
1225 description:
1226 "High parallelization potential detected - consider parallel CPU backend"
1227 .to_string(),
1228 expected_improvement: analysis.parallelization_potential.gate_parallelism,
1229 difficulty: 4,
1230 resource_cost: ResourceCost {
1231 memory_gb: 1.0,
1232 cpu_cores: self.platform_caps.cpu.logical_cores - 1,
1233 gpu_memory_gb: 0.0,
1234 setup_time: Duration::from_millis(50),
1235 },
1236 });
1237 }
1238
1239 if analysis.parallelization_potential.gpu_potential > 0.8
1241 && selection.backend_type != BackendType::GPU
1242 && self.platform_caps.has_gpu()
1243 {
1244 recommendations.push(OptimizationRecommendation {
1245 recommendation_type: RecommendationType::HardwareOptimization,
1246 description: "Problem shows high GPU acceleration potential".to_string(),
1247 expected_improvement: analysis.parallelization_potential.gpu_potential,
1248 difficulty: 7,
1249 resource_cost: ResourceCost {
1250 memory_gb: 1.0,
1251 cpu_cores: 0,
1252 gpu_memory_gb: analysis.memory_estimate_gb,
1253 setup_time: Duration::from_millis(300),
1254 },
1255 });
1256 }
1257
1258 match analysis.problem_type {
1260 ProblemType::VQE => {
1261 recommendations.push(OptimizationRecommendation {
1262 recommendation_type: RecommendationType::AlgorithmOptimization,
1263 description: "Consider using gradient-free optimization methods for VQE"
1264 .to_string(),
1265 expected_improvement: 0.3,
1266 difficulty: 5,
1267 resource_cost: ResourceCost {
1268 memory_gb: 0.5,
1269 cpu_cores: 0,
1270 gpu_memory_gb: 0.0,
1271 setup_time: Duration::from_millis(100),
1272 },
1273 });
1274 }
1275 ProblemType::QAOA => {
1276 recommendations.push(OptimizationRecommendation {
1277 recommendation_type: RecommendationType::AlgorithmOptimization,
1278 description: "Consider using warm-start initialization for QAOA parameters"
1279 .to_string(),
1280 expected_improvement: 0.4,
1281 difficulty: 4,
1282 resource_cost: ResourceCost {
1283 memory_gb: 0.2,
1284 cpu_cores: 0,
1285 gpu_memory_gb: 0.0,
1286 setup_time: Duration::from_millis(50),
1287 },
1288 });
1289 }
1290 _ => {}
1291 }
1292
1293 if analysis.problem_type == ProblemType::Simulation
1295 && selection.configuration.precision_settings.float_precision == FloatPrecision::Double
1296 {
1297 recommendations.push(OptimizationRecommendation {
1298 recommendation_type: RecommendationType::PrecisionAdjustment,
1299 description: "Consider single precision for simulation if acceptable accuracy"
1300 .to_string(),
1301 expected_improvement: 0.5,
1302 difficulty: 2,
1303 resource_cost: ResourceCost {
1304 memory_gb: -analysis.memory_estimate_gb * 0.5,
1305 cpu_cores: 0,
1306 gpu_memory_gb: 0.0,
1307 setup_time: Duration::from_millis(10),
1308 },
1309 });
1310 }
1311
1312 recommendations
1313 }
1314
1315 pub fn monitor_and_update(
1317 &mut self,
1318 current_selection: &BackendSelection,
1319 current_performance: &PerformanceMetrics,
1320 ) -> QuantRS2Result<Option<BackendSelection>> {
1321 if !self.config.enable_auto_switching {
1322 return Ok(None);
1323 }
1324
1325 self.update_resource_monitoring(current_performance)?;
1327
1328 let expected_performance = ¤t_selection.expected_performance;
1330 let performance_ratio = current_performance.throughput / expected_performance.throughput;
1331
1332 if performance_ratio < 0.7 {
1333 return Ok(None);
1338 }
1339
1340 if current_performance.memory_efficiency < 0.5 {
1342 return Ok(None);
1344 }
1345
1346 Ok(None)
1347 }
1348
1349 fn update_resource_monitoring(
1351 &mut self,
1352 current_performance: &PerformanceMetrics,
1353 ) -> QuantRS2Result<()> {
1354 self.resource_monitor
1355 .cpu_history
1356 .push(current_performance.cpu_utilization);
1357 self.resource_monitor
1358 .memory_history
1359 .push(current_performance.memory_efficiency);
1360 self.resource_monitor
1361 .gpu_history
1362 .push(current_performance.gpu_utilization);
1363
1364 let max_history = 100;
1366 if self.resource_monitor.cpu_history.len() > max_history {
1367 self.resource_monitor.cpu_history.remove(0);
1368 }
1369 if self.resource_monitor.memory_history.len() > max_history {
1370 self.resource_monitor.memory_history.remove(0);
1371 }
1372 if self.resource_monitor.gpu_history.len() > max_history {
1373 self.resource_monitor.gpu_history.remove(0);
1374 }
1375
1376 Ok(())
1377 }
1378}
1379
1380#[cfg(test)]
1381mod tests {
1382 use super::*;
1383
1384 #[test]
1385 fn test_auto_optimizer_creation() {
1386 let config = AutoOptimizerConfig::default();
1387 let optimizer = AutoOptimizer::new(config);
1388 assert!(optimizer.is_ok());
1389 }
1390
1391 #[test]
1392 fn test_problem_analysis() {
1393 let config = AutoOptimizerConfig::default();
1394 let mut optimizer = AutoOptimizer::new(config).unwrap();
1395
1396 let gates = vec![
1397 GateType::H,
1398 GateType::CNOT,
1399 GateType::Rz("0.5".to_string()),
1400 GateType::X,
1401 ];
1402
1403 let analysis = optimizer.analyze_problem(&gates, 5, ProblemType::Simulation);
1404 assert!(analysis.is_ok());
1405
1406 let analysis = analysis.unwrap();
1407 assert_eq!(analysis.num_qubits, 5);
1408 assert_eq!(analysis.gate_composition.total_gates, 4);
1409 assert_eq!(analysis.problem_type, ProblemType::Simulation);
1410 }
1411
1412 #[test]
1413 fn test_backend_selection() {
1414 let config = AutoOptimizerConfig::default();
1415 let optimizer = AutoOptimizer::new(config).unwrap();
1416
1417 let analysis = ProblemAnalysis {
1418 num_qubits: 10,
1419 circuit_depth: 50,
1420 gate_composition: GateComposition {
1421 total_gates: 100,
1422 single_qubit_gates: 60,
1423 two_qubit_gates: 30,
1424 multi_qubit_gates: 10,
1425 gate_types: HashMap::new(),
1426 parameterized_gates: 20,
1427 simd_friendly_percentage: 0.9,
1428 },
1429 entanglement_analysis: EntanglementAnalysis {
1430 max_entanglement_depth: 5,
1431 connectivity_ratio: 0.3,
1432 separable_subsystems: 2,
1433 entanglement_entropy: 3.0,
1434 },
1435 memory_estimate_gb: 2.0,
1436 complexity_estimate: ComplexityEstimate {
1437 time_complexity: ComplexityClass::Quadratic,
1438 space_complexity: ComplexityClass::Exponential,
1439 operation_count: 1000000,
1440 memory_pattern: MemoryPattern::Sequential,
1441 parallelization_factor: 4.0,
1442 },
1443 problem_type: ProblemType::Simulation,
1444 parallelization_potential: ParallelizationPotential {
1445 gate_parallelism: 0.8,
1446 state_parallelism: 0.6,
1447 batch_potential: 0.7,
1448 simd_potential: 0.9,
1449 gpu_potential: 0.5,
1450 distributed_potential: 0.2,
1451 },
1452 resource_requirements: ResourceRequirements {
1453 memory_gb: 2.0,
1454 cpu_cores: 4,
1455 gpu_memory_gb: 0.0,
1456 network_bandwidth_mbps: 0.0,
1457 storage_gb: 0.2,
1458 estimated_time: Duration::from_secs(60),
1459 },
1460 };
1461
1462 let selection = optimizer.select_backend(&analysis);
1463 assert!(selection.is_ok());
1464
1465 let selection = selection.unwrap();
1466 assert!(selection.confidence > 0.0);
1467 assert!(!selection.reasoning.is_empty());
1468 }
1469
1470 #[test]
1471 fn test_recommendations() {
1472 let config = AutoOptimizerConfig::default();
1473 let optimizer = AutoOptimizer::new(config).unwrap();
1474
1475 let analysis = ProblemAnalysis {
1476 num_qubits: 15,
1477 circuit_depth: 100,
1478 gate_composition: GateComposition {
1479 total_gates: 200,
1480 single_qubit_gates: 120,
1481 two_qubit_gates: 60,
1482 multi_qubit_gates: 20,
1483 gate_types: HashMap::new(),
1484 parameterized_gates: 40,
1485 simd_friendly_percentage: 0.85,
1486 },
1487 entanglement_analysis: EntanglementAnalysis {
1488 max_entanglement_depth: 8,
1489 connectivity_ratio: 0.4,
1490 separable_subsystems: 1,
1491 entanglement_entropy: 4.0,
1492 },
1493 memory_estimate_gb: 8.0,
1494 complexity_estimate: ComplexityEstimate {
1495 time_complexity: ComplexityClass::Exponential,
1496 space_complexity: ComplexityClass::Exponential,
1497 operation_count: 10000000,
1498 memory_pattern: MemoryPattern::Blocked,
1499 parallelization_factor: 6.0,
1500 },
1501 problem_type: ProblemType::VQE,
1502 parallelization_potential: ParallelizationPotential {
1503 gate_parallelism: 0.85,
1504 state_parallelism: 0.7,
1505 batch_potential: 0.8,
1506 simd_potential: 0.85,
1507 gpu_potential: 0.9,
1508 distributed_potential: 0.3,
1509 },
1510 resource_requirements: ResourceRequirements {
1511 memory_gb: 8.0,
1512 cpu_cores: 6,
1513 gpu_memory_gb: 4.0,
1514 network_bandwidth_mbps: 0.0,
1515 storage_gb: 0.8,
1516 estimated_time: Duration::from_secs(300),
1517 },
1518 };
1519
1520 let selection = optimizer.select_backend(&analysis).unwrap();
1521 let recommendations = optimizer.get_recommendations(&analysis, &selection);
1522
1523 assert!(!recommendations.is_empty());
1524
1525 let has_memory_rec = recommendations
1527 .iter()
1528 .any(|r| r.recommendation_type == RecommendationType::MemoryOptimization);
1529
1530 assert!(has_memory_rec || recommendations.len() > 0);
1531 }
1532}