quantrs2_core/
quantum_hardware_abstraction.rs

1//! Quantum Hardware Abstraction Layer
2//!
3//! Universal hardware-agnostic interface for quantum devices with
4//! adaptive middleware and cross-platform quantum operation optimization.
5
6use crate::error::QuantRS2Error;
7use crate::gate::GateOp;
8use crate::qubit::QubitId;
9use scirs2_core::ndarray::Array2;
10use scirs2_core::Complex64;
11use std::collections::HashMap;
12use std::sync::{Arc, Mutex, RwLock};
13use std::time::{Duration, Instant, SystemTime};
14// use uuid::Uuid;
15
16/// Simple UUID replacement for ultrathink mode
17pub type Uuid = u64;
18
19fn generate_uuid() -> Uuid {
20    use std::collections::hash_map::DefaultHasher;
21    use std::hash::{Hash, Hasher};
22    use std::time::SystemTime;
23
24    let mut hasher = DefaultHasher::new();
25    SystemTime::now().hash(&mut hasher);
26    hasher.finish()
27}
28
29/// Universal quantum hardware abstraction interface
30#[derive(Debug)]
31pub struct QuantumHardwareAbstraction {
32    pub abstraction_id: Uuid,
33    pub hardware_backends: Vec<Arc<dyn QuantumHardwareBackend>>,
34    pub middleware: AdaptiveMiddleware,
35    pub resource_manager: HardwareResourceManager,
36    pub calibration_engine: CalibrationEngine,
37    pub error_mitigation: ErrorMitigationLayer,
38}
39
40/// Trait for quantum hardware backends
41pub trait QuantumHardwareBackend: Send + Sync + std::fmt::Debug {
42    fn backend_name(&self) -> &str;
43    fn hardware_type(&self) -> HardwareType;
44    fn capabilities(&self) -> HardwareCapabilities;
45    fn status(&self) -> HardwareStatus;
46
47    // Core operations
48    fn initialize(&self) -> Result<(), QuantRS2Error>;
49    fn calibrate(&self) -> Result<CalibrationResult, QuantRS2Error>;
50    fn execute_gate(
51        &self,
52        gate: &dyn GateOp,
53        context: &ExecutionContext,
54    ) -> Result<ExecutionResult, QuantRS2Error>;
55    fn execute_circuit(
56        &self,
57        circuit: &[Box<dyn GateOp>],
58        context: &ExecutionContext,
59    ) -> Result<CircuitResult, QuantRS2Error>;
60    fn measure_qubits(
61        &self,
62        qubits: &[QubitId],
63        basis: MeasurementBasis,
64    ) -> Result<MeasurementResult, QuantRS2Error>;
65
66    // Advanced features
67    fn get_noise_model(&self) -> NoiseModel;
68    fn estimate_fidelity(&self, operation: &dyn GateOp) -> f64;
69    fn estimate_execution_time(&self, operation: &dyn GateOp) -> Duration;
70    fn get_connectivity_graph(&self) -> ConnectivityGraph;
71}
72
73#[derive(Debug, Clone)]
74pub enum HardwareType {
75    Superconducting,
76    TrappedIon,
77    Photonic,
78    NeutralAtom,
79    Silicon,
80    QuantumAnnealer,
81    Simulator,
82    Hybrid,
83}
84
85#[derive(Debug, Clone)]
86pub struct HardwareCapabilities {
87    pub qubit_count: usize,
88    pub max_circuit_depth: usize,
89    pub native_gates: Vec<String>,
90    pub coherence_time: Duration,
91    pub gate_fidelity: f64,
92    pub measurement_fidelity: f64,
93    pub supports_midcircuit_measurement: bool,
94    pub supports_conditional_operations: bool,
95    pub supports_reset: bool,
96    pub max_shots: u64,
97}
98
99#[derive(Debug, Clone)]
100pub enum HardwareStatus {
101    Online,
102    Offline,
103    Calibrating,
104    Busy,
105    Error(String),
106    Maintenance,
107}
108
109impl QuantumHardwareAbstraction {
110    /// Create new quantum hardware abstraction
111    pub fn new() -> Self {
112        Self {
113            abstraction_id: generate_uuid(),
114            hardware_backends: Vec::new(),
115            middleware: AdaptiveMiddleware::new(),
116            resource_manager: HardwareResourceManager::new(),
117            calibration_engine: CalibrationEngine::new(),
118            error_mitigation: ErrorMitigationLayer::new(),
119        }
120    }
121
122    /// Register a hardware backend
123    pub fn register_backend(&mut self, backend: Arc<dyn QuantumHardwareBackend>) {
124        self.hardware_backends.push(backend);
125        self.resource_manager
126            .register_hardware(self.hardware_backends.last().unwrap().clone());
127    }
128
129    /// Execute operation with optimal backend selection
130    pub async fn execute_operation(
131        &self,
132        operation: &dyn GateOp,
133        requirements: &ExecutionRequirements,
134    ) -> Result<QuantumOperationResult, QuantRS2Error> {
135        // Select optimal backend
136        let backend = self.select_optimal_backend(operation, requirements).await?;
137
138        // Apply middleware transformations
139        let optimized_operation = self
140            .middleware
141            .optimize_operation(operation, &backend)
142            .await?;
143
144        // Create execution context
145        let context = self
146            .create_execution_context(requirements, &backend)
147            .await?;
148
149        // Apply error mitigation preprocessing
150        let mitigated_operation = self
151            .error_mitigation
152            .preprocess_operation(optimized_operation.as_ref(), &backend)?;
153
154        // Execute on hardware
155        let raw_result = backend.execute_gate(mitigated_operation.as_ref(), &context)?;
156
157        // Apply error mitigation postprocessing
158        let final_result = self
159            .error_mitigation
160            .postprocess_result(&raw_result, &backend)?;
161
162        Ok(QuantumOperationResult {
163            result: final_result.clone(),
164            backend_used: backend.backend_name().to_string(),
165            execution_time: context.execution_time,
166            fidelity_estimate: final_result.fidelity,
167            error_mitigation_applied: true,
168        })
169    }
170
171    /// Execute quantum circuit with adaptive optimization
172    pub async fn execute_circuit(
173        &self,
174        circuit: &[Box<dyn GateOp>],
175        requirements: &ExecutionRequirements,
176    ) -> Result<QuantumCircuitResult, QuantRS2Error> {
177        // Analyze circuit for optimal backend selection
178        let circuit_analysis = self.analyze_circuit(circuit).await?;
179        let backend = self
180            .select_optimal_backend_for_circuit(&circuit_analysis, requirements)
181            .await?;
182
183        // Apply circuit-level optimizations
184        let optimized_circuit = self.middleware.optimize_circuit(circuit, &backend).await?;
185
186        // Partition circuit if necessary for distributed execution
187        let partitions = self
188            .partition_circuit_if_needed(&optimized_circuit, &backend)
189            .await?;
190        let partition_count = partitions.len();
191
192        let mut results = Vec::new();
193        let start_time = Instant::now();
194
195        for partition in partitions {
196            let context = self
197                .create_execution_context(requirements, &backend)
198                .await?;
199            let partition_result = backend.execute_circuit(&partition, &context)?;
200            results.push(partition_result);
201        }
202
203        // Merge distributed results
204        let final_result = self.merge_circuit_results(results)?;
205
206        Ok(QuantumCircuitResult {
207            circuit_result: final_result,
208            backend_used: backend.backend_name().to_string(),
209            total_execution_time: start_time.elapsed(),
210            optimizations_applied: self.middleware.get_applied_optimizations(),
211            partitions_used: partition_count,
212        })
213    }
214
215    /// Select optimal backend for operation
216    async fn select_optimal_backend(
217        &self,
218        operation: &dyn GateOp,
219        requirements: &ExecutionRequirements,
220    ) -> Result<Arc<dyn QuantumHardwareBackend>, QuantRS2Error> {
221        let mut best_backend = None;
222        let mut best_score = f64::NEG_INFINITY;
223
224        for backend in &self.hardware_backends {
225            if matches!(backend.status(), HardwareStatus::Online) {
226                let score = self
227                    .calculate_backend_score(backend, operation, requirements)
228                    .await;
229                if score > best_score {
230                    best_score = score;
231                    best_backend = Some(backend.clone());
232                }
233            }
234        }
235
236        best_backend.ok_or_else(|| {
237            QuantRS2Error::NoHardwareAvailable("No suitable backends available".to_string())
238        })
239    }
240
241    /// Calculate backend suitability score
242    async fn calculate_backend_score(
243        &self,
244        backend: &Arc<dyn QuantumHardwareBackend>,
245        operation: &dyn GateOp,
246        requirements: &ExecutionRequirements,
247    ) -> f64 {
248        let mut score = 0.0;
249        let capabilities = backend.capabilities();
250
251        // Fidelity score
252        let estimated_fidelity = backend.estimate_fidelity(operation);
253        score += estimated_fidelity * requirements.fidelity_weight;
254
255        // Speed score
256        let estimated_time = backend.estimate_execution_time(operation);
257        let speed_score = 1.0 / (1.0 + estimated_time.as_secs_f64());
258        score += speed_score * requirements.speed_weight;
259
260        // Native gate support
261        let native_support = if capabilities
262            .native_gates
263            .contains(&operation.name().to_string())
264        {
265            1.0
266        } else {
267            0.5
268        };
269        score += native_support * requirements.native_gate_weight;
270
271        // Resource availability
272        let resource_score = self.resource_manager.get_availability_score(backend).await;
273        score += resource_score * requirements.resource_weight;
274
275        score
276    }
277
278    /// Analyze circuit characteristics
279    async fn analyze_circuit(
280        &self,
281        circuit: &[Box<dyn GateOp>],
282    ) -> Result<CircuitAnalysis, QuantRS2Error> {
283        let mut analysis = CircuitAnalysis {
284            total_gates: circuit.len(),
285            gate_types: HashMap::new(),
286            circuit_depth: 0,
287            parallelism_factor: 0.0,
288            entanglement_structure: Vec::new(),
289            critical_path_length: Duration::ZERO,
290            resource_requirements: ResourceRequirements::default(),
291        };
292
293        // Analyze gate distribution
294        for gate in circuit {
295            *analysis
296                .gate_types
297                .entry(gate.name().to_string())
298                .or_insert(0) += 1;
299        }
300
301        // Calculate circuit depth
302        analysis.circuit_depth = self.calculate_circuit_depth(circuit);
303
304        // Analyze parallelism
305        analysis.parallelism_factor = self.calculate_parallelism_factor(circuit);
306
307        // Analyze entanglement structure
308        analysis.entanglement_structure = self.analyze_entanglement_structure(circuit);
309
310        Ok(analysis)
311    }
312
313    /// Calculate circuit depth
314    fn calculate_circuit_depth(&self, circuit: &[Box<dyn GateOp>]) -> usize {
315        let mut qubit_depths: HashMap<QubitId, usize> = HashMap::new();
316        let mut max_depth = 0;
317
318        for gate in circuit {
319            let mut current_depth = 0;
320            for qubit in gate.qubits() {
321                current_depth = current_depth.max(*qubit_depths.get(&qubit).unwrap_or(&0));
322            }
323            current_depth += 1;
324
325            for qubit in gate.qubits() {
326                qubit_depths.insert(qubit, current_depth);
327            }
328
329            max_depth = max_depth.max(current_depth);
330        }
331
332        max_depth
333    }
334
335    /// Calculate parallelism factor
336    fn calculate_parallelism_factor(&self, circuit: &[Box<dyn GateOp>]) -> f64 {
337        if circuit.is_empty() {
338            return 0.0;
339        }
340
341        let total_gates = circuit.len();
342        let circuit_depth = self.calculate_circuit_depth(circuit);
343
344        if circuit_depth == 0 {
345            return 0.0;
346        }
347
348        total_gates as f64 / circuit_depth as f64
349    }
350
351    /// Analyze entanglement structure
352    fn analyze_entanglement_structure(
353        &self,
354        circuit: &[Box<dyn GateOp>],
355    ) -> Vec<EntanglementConnection> {
356        let mut connections = Vec::new();
357
358        for (i, gate) in circuit.iter().enumerate() {
359            if gate.qubits().len() >= 2 {
360                for j in 0..gate.qubits().len() {
361                    for k in j + 1..gate.qubits().len() {
362                        connections.push(EntanglementConnection {
363                            qubit1: gate.qubits()[j],
364                            qubit2: gate.qubits()[k],
365                            gate_index: i,
366                            strength: 1.0, // Simplified
367                        });
368                    }
369                }
370            }
371        }
372
373        connections
374    }
375
376    /// Create execution context
377    async fn create_execution_context(
378        &self,
379        requirements: &ExecutionRequirements,
380        backend: &Arc<dyn QuantumHardwareBackend>,
381    ) -> Result<ExecutionContext, QuantRS2Error> {
382        Ok(ExecutionContext {
383            execution_id: generate_uuid(),
384            backend_name: backend.backend_name().to_string(),
385            shots: requirements.shots,
386            optimization_level: requirements.optimization_level.clone(),
387            error_mitigation_enabled: requirements.enable_error_mitigation,
388            execution_time: Instant::now(),
389            calibration_data: self
390                .calibration_engine
391                .get_latest_calibration(backend)
392                .await?,
393        })
394    }
395
396    /// Partition circuit for distributed execution
397    async fn partition_circuit_if_needed(
398        &self,
399        circuit: &[Box<dyn GateOp>],
400        backend: &Arc<dyn QuantumHardwareBackend>,
401    ) -> Result<Vec<Vec<Box<dyn GateOp>>>, QuantRS2Error> {
402        let capabilities = backend.capabilities();
403
404        if circuit.len() <= capabilities.max_circuit_depth {
405            // No partitioning needed
406            Ok(vec![circuit.to_vec()])
407        } else {
408            // Partition circuit
409            self.partition_circuit(circuit, capabilities.max_circuit_depth)
410        }
411    }
412
413    /// Partition circuit into smaller chunks
414    fn partition_circuit(
415        &self,
416        circuit: &[Box<dyn GateOp>],
417        max_depth: usize,
418    ) -> Result<Vec<Vec<Box<dyn GateOp>>>, QuantRS2Error> {
419        let mut partitions = Vec::new();
420        let mut current_partition = Vec::new();
421        let mut current_depth = 0;
422
423        for gate in circuit {
424            if current_depth >= max_depth {
425                partitions.push(current_partition);
426                current_partition = Vec::new();
427                current_depth = 0;
428            }
429
430            current_partition.push(gate.clone());
431            current_depth += 1;
432        }
433
434        if !current_partition.is_empty() {
435            partitions.push(current_partition);
436        }
437
438        Ok(partitions)
439    }
440
441    /// Merge results from distributed execution
442    fn merge_circuit_results(
443        &self,
444        results: Vec<CircuitResult>,
445    ) -> Result<CircuitResult, QuantRS2Error> {
446        if results.is_empty() {
447            return Err(QuantRS2Error::InvalidOperation(
448                "No results to merge".to_string(),
449            ));
450        }
451
452        if results.len() == 1 {
453            return Ok(results.into_iter().next().unwrap());
454        }
455
456        // Merge multiple results
457        let mut merged_measurements = HashMap::new();
458        let mut total_fidelity = 1.0;
459        let mut total_shots = 0;
460
461        for result in results {
462            for (outcome, count) in result.measurements {
463                *merged_measurements.entry(outcome).or_insert(0) += count;
464            }
465            total_fidelity *= result.fidelity;
466            total_shots += result.shots;
467        }
468
469        Ok(CircuitResult {
470            measurements: merged_measurements,
471            fidelity: total_fidelity,
472            shots: total_shots,
473            execution_metadata: ExecutionMetadata::default(),
474        })
475    }
476
477    /// Select optimal backend for circuit
478    async fn select_optimal_backend_for_circuit(
479        &self,
480        analysis: &CircuitAnalysis,
481        requirements: &ExecutionRequirements,
482    ) -> Result<Arc<dyn QuantumHardwareBackend>, QuantRS2Error> {
483        let mut best_backend = None;
484        let mut best_score = f64::NEG_INFINITY;
485
486        for backend in &self.hardware_backends {
487            if matches!(backend.status(), HardwareStatus::Online) {
488                let score = self
489                    .calculate_circuit_backend_score(backend, analysis, requirements)
490                    .await;
491                if score > best_score {
492                    best_score = score;
493                    best_backend = Some(backend.clone());
494                }
495            }
496        }
497
498        best_backend.ok_or_else(|| {
499            QuantRS2Error::NoHardwareAvailable("No suitable backends available".to_string())
500        })
501    }
502
503    /// Calculate backend score for circuit
504    async fn calculate_circuit_backend_score(
505        &self,
506        backend: &Arc<dyn QuantumHardwareBackend>,
507        analysis: &CircuitAnalysis,
508        requirements: &ExecutionRequirements,
509    ) -> f64 {
510        let mut score = 0.0;
511        let capabilities = backend.capabilities();
512
513        // Check if backend can handle circuit size
514        if analysis.circuit_depth > capabilities.max_circuit_depth {
515            score -= 1000.0; // Heavy penalty for insufficient capacity
516        }
517
518        // Native gate support score
519        let mut native_gate_ratio = 0.0;
520        for (gate_type, count) in &analysis.gate_types {
521            if capabilities.native_gates.contains(gate_type) {
522                native_gate_ratio += *count as f64;
523            }
524        }
525        native_gate_ratio /= analysis.total_gates as f64;
526        score += native_gate_ratio * requirements.native_gate_weight;
527
528        // Fidelity score for circuit
529        let estimated_circuit_fidelity =
530            capabilities.gate_fidelity.powi(analysis.total_gates as i32);
531        score += estimated_circuit_fidelity * requirements.fidelity_weight;
532
533        // Parallelism utilization
534        score += analysis.parallelism_factor * requirements.parallelism_weight;
535
536        score
537    }
538}
539
540/// Adaptive middleware for hardware optimization
541#[derive(Debug)]
542pub struct AdaptiveMiddleware {
543    pub optimization_strategies: Vec<Box<dyn OptimizationStrategy>>,
544    pub transformation_cache: Arc<RwLock<HashMap<String, TransformationResult>>>,
545    pub learning_engine: AdaptiveLearningEngine,
546}
547
548pub trait OptimizationStrategy: Send + Sync + std::fmt::Debug {
549    fn strategy_name(&self) -> &str;
550    fn applicable_to(&self, backend_type: &HardwareType) -> bool;
551    fn optimize_operation(
552        &self,
553        operation: &dyn GateOp,
554        backend: &dyn QuantumHardwareBackend,
555    ) -> Result<Box<dyn GateOp>, QuantRS2Error>;
556    fn optimize_circuit(
557        &self,
558        circuit: &[Box<dyn GateOp>],
559        backend: &dyn QuantumHardwareBackend,
560    ) -> Result<Vec<Box<dyn GateOp>>, QuantRS2Error>;
561}
562
563impl AdaptiveMiddleware {
564    pub fn new() -> Self {
565        Self {
566            optimization_strategies: Vec::new(),
567            transformation_cache: Arc::new(RwLock::new(HashMap::new())),
568            learning_engine: AdaptiveLearningEngine::new(),
569        }
570    }
571
572    pub async fn optimize_operation(
573        &self,
574        operation: &dyn GateOp,
575        backend: &Arc<dyn QuantumHardwareBackend>,
576    ) -> Result<Box<dyn GateOp>, QuantRS2Error> {
577        // Check cache first
578        let cache_key = format!("{}_{}", operation.name(), backend.backend_name());
579        {
580            let cache = self.transformation_cache.read().unwrap();
581            if let Some(cached) = cache.get(&cache_key) {
582                return Ok(cached.optimized_operation.clone());
583            }
584        }
585
586        // Apply applicable optimization strategies
587        let mut optimized_operation = operation.clone_gate();
588        for strategy in &self.optimization_strategies {
589            if strategy.applicable_to(&backend.hardware_type()) {
590                optimized_operation =
591                    strategy.optimize_operation(&*optimized_operation, &**backend)?;
592            }
593        }
594
595        // Cache result
596        {
597            let mut cache = self.transformation_cache.write().unwrap();
598            cache.insert(
599                cache_key,
600                TransformationResult {
601                    optimized_operation: optimized_operation.clone(),
602                    transformation_time: Instant::now(),
603                    performance_gain: 1.0, // Simplified
604                },
605            );
606        }
607
608        Ok(optimized_operation)
609    }
610
611    pub async fn optimize_circuit(
612        &self,
613        circuit: &[Box<dyn GateOp>],
614        backend: &Arc<dyn QuantumHardwareBackend>,
615    ) -> Result<Vec<Box<dyn GateOp>>, QuantRS2Error> {
616        let mut optimized_circuit = circuit.to_vec();
617
618        for strategy in &self.optimization_strategies {
619            if strategy.applicable_to(&backend.hardware_type()) {
620                optimized_circuit = strategy.optimize_circuit(&optimized_circuit, &**backend)?;
621            }
622        }
623
624        Ok(optimized_circuit)
625    }
626
627    pub fn get_applied_optimizations(&self) -> Vec<String> {
628        self.optimization_strategies
629            .iter()
630            .map(|s| s.strategy_name().to_string())
631            .collect()
632    }
633}
634
635/// Hardware resource manager
636#[derive(Debug)]
637pub struct HardwareResourceManager {
638    pub registered_hardware: Vec<Arc<dyn QuantumHardwareBackend>>,
639    pub resource_usage: Arc<RwLock<HashMap<String, ResourceUsage>>>,
640    pub scheduling_queue: Arc<Mutex<Vec<ScheduledJob>>>,
641}
642
643impl HardwareResourceManager {
644    pub fn new() -> Self {
645        Self {
646            registered_hardware: Vec::new(),
647            resource_usage: Arc::new(RwLock::new(HashMap::new())),
648            scheduling_queue: Arc::new(Mutex::new(Vec::new())),
649        }
650    }
651
652    pub fn register_hardware(&mut self, backend: Arc<dyn QuantumHardwareBackend>) {
653        self.registered_hardware.push(backend);
654    }
655
656    pub async fn get_availability_score(&self, backend: &Arc<dyn QuantumHardwareBackend>) -> f64 {
657        let usage = self.resource_usage.read().unwrap();
658        if let Some(resource_usage) = usage.get(backend.backend_name()) {
659            1.0 - resource_usage.utilization_ratio
660        } else {
661            1.0 // No usage data means fully available
662        }
663    }
664}
665
666/// Calibration engine for hardware
667#[derive(Debug)]
668pub struct CalibrationEngine {
669    pub calibration_data: Arc<RwLock<HashMap<String, CalibrationData>>>,
670    pub calibration_schedule: Arc<Mutex<Vec<CalibrationTask>>>,
671}
672
673impl CalibrationEngine {
674    pub fn new() -> Self {
675        Self {
676            calibration_data: Arc::new(RwLock::new(HashMap::new())),
677            calibration_schedule: Arc::new(Mutex::new(Vec::new())),
678        }
679    }
680
681    pub async fn get_latest_calibration(
682        &self,
683        backend: &Arc<dyn QuantumHardwareBackend>,
684    ) -> Result<CalibrationData, QuantRS2Error> {
685        let calibration_data = self.calibration_data.read().unwrap();
686        calibration_data
687            .get(backend.backend_name())
688            .cloned()
689            .ok_or_else(|| {
690                QuantRS2Error::CalibrationNotFound(format!(
691                    "No calibration data for {}",
692                    backend.backend_name()
693                ))
694            })
695    }
696}
697
698/// Error mitigation layer
699#[derive(Debug)]
700pub struct ErrorMitigationLayer {
701    pub mitigation_protocols: Vec<Box<dyn ErrorMitigationProtocol>>,
702    pub noise_characterization: NoiseCharacterization,
703}
704
705pub trait ErrorMitigationProtocol: Send + Sync + std::fmt::Debug {
706    fn protocol_name(&self) -> &str;
707    fn applicable_to(&self, noise_model: &NoiseModel) -> bool;
708    fn preprocess_operation(
709        &self,
710        operation: &dyn GateOp,
711    ) -> Result<Box<dyn GateOp>, QuantRS2Error>;
712    fn postprocess_result(
713        &self,
714        result: &ExecutionResult,
715    ) -> Result<ExecutionResult, QuantRS2Error>;
716}
717
718impl ErrorMitigationLayer {
719    pub fn new() -> Self {
720        Self {
721            mitigation_protocols: Vec::new(),
722            noise_characterization: NoiseCharacterization::new(),
723        }
724    }
725
726    pub fn preprocess_operation(
727        &self,
728        operation: &dyn GateOp,
729        backend: &Arc<dyn QuantumHardwareBackend>,
730    ) -> Result<Box<dyn GateOp>, QuantRS2Error> {
731        let noise_model = backend.get_noise_model();
732        let mut processed_operation = operation.clone_gate();
733
734        for protocol in &self.mitigation_protocols {
735            if protocol.applicable_to(&noise_model) {
736                processed_operation = protocol.preprocess_operation(&*processed_operation)?;
737            }
738        }
739
740        Ok(processed_operation)
741    }
742
743    pub fn postprocess_result(
744        &self,
745        result: &ExecutionResult,
746        backend: &Arc<dyn QuantumHardwareBackend>,
747    ) -> Result<ExecutionResult, QuantRS2Error> {
748        let noise_model = backend.get_noise_model();
749        let mut processed_result = result.clone();
750
751        for protocol in &self.mitigation_protocols {
752            if protocol.applicable_to(&noise_model) {
753                processed_result = protocol.postprocess_result(&processed_result)?;
754            }
755        }
756
757        Ok(processed_result)
758    }
759}
760
761/// Data structures for hardware abstraction
762#[derive(Debug, Clone)]
763pub struct ExecutionRequirements {
764    pub shots: u64,
765    pub optimization_level: OptimizationLevel,
766    pub enable_error_mitigation: bool,
767    pub fidelity_weight: f64,
768    pub speed_weight: f64,
769    pub native_gate_weight: f64,
770    pub resource_weight: f64,
771    pub parallelism_weight: f64,
772}
773
774#[derive(Debug, Clone)]
775pub enum OptimizationLevel {
776    None,
777    Basic,
778    Aggressive,
779    Adaptive,
780}
781
782#[derive(Debug, Clone)]
783pub struct ExecutionContext {
784    pub execution_id: Uuid,
785    pub backend_name: String,
786    pub shots: u64,
787    pub optimization_level: OptimizationLevel,
788    pub error_mitigation_enabled: bool,
789    pub execution_time: Instant,
790    pub calibration_data: CalibrationData,
791}
792
793#[derive(Debug, Clone)]
794pub struct ExecutionResult {
795    pub measurement_outcomes: HashMap<String, u64>,
796    pub fidelity: f64,
797    pub execution_time: Duration,
798    pub metadata: ExecutionMetadata,
799}
800
801#[derive(Debug, Clone)]
802pub struct CircuitResult {
803    pub measurements: HashMap<String, u64>,
804    pub fidelity: f64,
805    pub shots: u64,
806    pub execution_metadata: ExecutionMetadata,
807}
808
809#[derive(Debug, Clone, Default)]
810pub struct ExecutionMetadata {
811    pub gate_count: usize,
812    pub circuit_depth: usize,
813    pub errors_detected: u64,
814    pub calibration_drift: f64,
815}
816
817#[derive(Debug, Clone)]
818pub struct CalibrationData {
819    pub timestamp: SystemTime,
820    pub gate_fidelities: HashMap<String, f64>,
821    pub coherence_times: HashMap<QubitId, Duration>,
822    pub cross_talk_matrix: Array2<f64>,
823    pub temperature: f64,
824}
825
826#[derive(Debug, Clone)]
827pub struct CalibrationResult {
828    pub success: bool,
829    pub data: CalibrationData,
830    pub drift_detected: bool,
831    pub recalibration_needed: bool,
832}
833
834#[derive(Debug, Clone)]
835pub struct NoiseModel {
836    pub gate_noise: HashMap<String, f64>,
837    pub measurement_noise: f64,
838    pub decoherence_rates: HashMap<QubitId, f64>,
839    pub crosstalk_strengths: Array2<f64>,
840}
841
842#[derive(Debug, Clone)]
843pub struct ConnectivityGraph {
844    pub adjacency_matrix: Array2<bool>,
845    pub edge_weights: HashMap<(QubitId, QubitId), f64>,
846}
847
848#[derive(Debug, Clone)]
849pub enum MeasurementBasis {
850    Computational,
851    Hadamard,
852    Custom(Array2<Complex64>),
853}
854
855#[derive(Debug, Clone)]
856pub struct MeasurementResult {
857    pub outcomes: HashMap<String, u64>,
858    pub total_shots: u64,
859    pub measurement_fidelity: f64,
860}
861
862// Additional supporting structures
863#[derive(Debug, Clone)]
864pub struct CircuitAnalysis {
865    pub total_gates: usize,
866    pub gate_types: HashMap<String, usize>,
867    pub circuit_depth: usize,
868    pub parallelism_factor: f64,
869    pub entanglement_structure: Vec<EntanglementConnection>,
870    pub critical_path_length: Duration,
871    pub resource_requirements: ResourceRequirements,
872}
873
874#[derive(Debug, Clone)]
875pub struct EntanglementConnection {
876    pub qubit1: QubitId,
877    pub qubit2: QubitId,
878    pub gate_index: usize,
879    pub strength: f64,
880}
881
882#[derive(Debug, Clone, Default)]
883pub struct ResourceRequirements {
884    pub qubits_needed: usize,
885    pub memory_mb: usize,
886    pub estimated_runtime: Duration,
887}
888
889#[derive(Debug, Clone)]
890pub struct TransformationResult {
891    pub optimized_operation: Box<dyn GateOp>,
892    pub transformation_time: Instant,
893    pub performance_gain: f64,
894}
895
896#[derive(Debug, Clone)]
897pub struct ResourceUsage {
898    pub utilization_ratio: f64,
899    pub queue_length: usize,
900    pub estimated_wait_time: Duration,
901}
902
903#[derive(Debug, Clone)]
904pub struct ScheduledJob {
905    pub job_id: Uuid,
906    pub priority: JobPriority,
907    pub estimated_duration: Duration,
908    pub resource_requirements: ResourceRequirements,
909}
910
911#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord)]
912pub enum JobPriority {
913    Low = 0,
914    Medium = 1,
915    High = 2,
916    Critical = 3,
917}
918
919#[derive(Debug, Clone)]
920pub struct CalibrationTask {
921    pub task_id: Uuid,
922    pub backend_name: String,
923    pub scheduled_time: SystemTime,
924    pub task_type: CalibrationType,
925}
926
927#[derive(Debug, Clone)]
928pub enum CalibrationType {
929    Full,
930    Partial,
931    Drift,
932    Emergency,
933}
934
935#[derive(Debug)]
936pub struct AdaptiveLearningEngine {
937    pub performance_history: Arc<RwLock<Vec<PerformanceRecord>>>,
938    pub optimization_suggestions: Arc<RwLock<Vec<OptimizationSuggestion>>>,
939}
940
941impl AdaptiveLearningEngine {
942    pub fn new() -> Self {
943        Self {
944            performance_history: Arc::new(RwLock::new(Vec::new())),
945            optimization_suggestions: Arc::new(RwLock::new(Vec::new())),
946        }
947    }
948}
949
950#[derive(Debug, Clone)]
951pub struct PerformanceRecord {
952    pub timestamp: SystemTime,
953    pub backend_name: String,
954    pub operation_type: String,
955    pub fidelity: f64,
956    pub execution_time: Duration,
957    pub optimization_used: String,
958}
959
960#[derive(Debug, Clone)]
961pub struct OptimizationSuggestion {
962    pub suggestion_id: Uuid,
963    pub backend_name: String,
964    pub suggested_optimization: String,
965    pub expected_improvement: f64,
966    pub confidence: f64,
967}
968
969#[derive(Debug)]
970pub struct NoiseCharacterization {
971    pub characterized_devices: HashMap<String, NoiseModel>,
972    pub characterization_history: Vec<NoiseCharacterizationRecord>,
973}
974
975impl NoiseCharacterization {
976    pub fn new() -> Self {
977        Self {
978            characterized_devices: HashMap::new(),
979            characterization_history: Vec::new(),
980        }
981    }
982}
983
984#[derive(Debug, Clone)]
985pub struct NoiseCharacterizationRecord {
986    pub timestamp: SystemTime,
987    pub device_name: String,
988    pub noise_model: NoiseModel,
989    pub characterization_fidelity: f64,
990}
991
992// Result structures
993#[derive(Debug, Clone)]
994pub struct QuantumOperationResult {
995    pub result: ExecutionResult,
996    pub backend_used: String,
997    pub execution_time: Instant,
998    pub fidelity_estimate: f64,
999    pub error_mitigation_applied: bool,
1000}
1001
1002#[derive(Debug, Clone)]
1003pub struct QuantumCircuitResult {
1004    pub circuit_result: CircuitResult,
1005    pub backend_used: String,
1006    pub total_execution_time: Duration,
1007    pub optimizations_applied: Vec<String>,
1008    pub partitions_used: usize,
1009}
1010
1011#[cfg(test)]
1012mod tests {
1013    use super::*;
1014
1015    #[test]
1016    fn test_hardware_abstraction_creation() {
1017        let abstraction = QuantumHardwareAbstraction::new();
1018        assert_eq!(abstraction.hardware_backends.len(), 0);
1019    }
1020
1021    #[test]
1022    fn test_execution_requirements_default() {
1023        let requirements = ExecutionRequirements {
1024            shots: 1000,
1025            optimization_level: OptimizationLevel::Basic,
1026            enable_error_mitigation: true,
1027            fidelity_weight: 0.4,
1028            speed_weight: 0.3,
1029            native_gate_weight: 0.2,
1030            resource_weight: 0.1,
1031            parallelism_weight: 0.0,
1032        };
1033
1034        assert_eq!(requirements.shots, 1000);
1035        assert!(requirements.enable_error_mitigation);
1036    }
1037
1038    #[test]
1039    fn test_adaptive_middleware_creation() {
1040        let middleware = AdaptiveMiddleware::new();
1041        assert_eq!(middleware.optimization_strategies.len(), 0);
1042    }
1043
1044    #[test]
1045    fn test_calibration_engine_creation() {
1046        let engine = CalibrationEngine::new();
1047        assert_eq!(engine.calibration_data.read().unwrap().len(), 0);
1048    }
1049
1050    #[test]
1051    fn test_error_mitigation_layer_creation() {
1052        let layer = ErrorMitigationLayer::new();
1053        assert_eq!(layer.mitigation_protocols.len(), 0);
1054    }
1055}