quantrs2_core/
quantum_classical_hybrid.rs

1//! Quantum-Classical Hybrid Algorithms
2//!
3//! This module implements hybrid quantum-classical algorithms that leverage both
4//! quantum and classical computing resources for enhanced performance.
5//!
6//! ## Algorithms Included
7//!
8//! - **Variational Quantum-Classical Optimization**: Iterative optimization schemes
9//! - **Quantum-Classical Neural Networks**: Hybrid neural architectures
10//! - **Quantum-Assisted Machine Learning**: Classical ML with quantum subroutines
11//! - **Hybrid Quantum Annealing**: Combined quantum and simulated annealing
12//! - **Quantum-Classical Sampling**: Hybrid sampling strategies
13//! - **Quantum Feature Maps**: Classical data encoding in quantum states
14
15use crate::{
16    error::{QuantRS2Error, QuantRS2Result},
17    gate::GateOp,
18};
19use scirs2_core::ndarray::{Array1, Array2};
20use scirs2_core::Complex64 as Complex;
21use std::collections::HashMap;
22
23// ================================================================================================
24// Variational Quantum-Classical Optimizer
25// ================================================================================================
26
27/// Variational quantum-classical optimization algorithm
28pub struct VariationalQCOptimizer {
29    /// Classical optimizer
30    optimizer: Box<dyn ClassicalOptimizer>,
31    /// Quantum circuit evaluator
32    circuit_evaluator: CircuitEvaluator,
33    /// Optimization configuration
34    config: VQCConfig,
35}
36
37/// Configuration for variational quantum-classical optimization
38#[derive(Debug, Clone)]
39pub struct VQCConfig {
40    /// Maximum iterations
41    pub max_iterations: usize,
42    /// Convergence tolerance
43    pub tolerance: f64,
44    /// Learning rate
45    pub learning_rate: f64,
46    /// Number of quantum shots per evaluation
47    pub shots_per_evaluation: usize,
48    /// Use parameter shift rule for gradients
49    pub use_parameter_shift: bool,
50}
51
52impl Default for VQCConfig {
53    fn default() -> Self {
54        Self {
55            max_iterations: 1000,
56            tolerance: 1e-6,
57            learning_rate: 0.01,
58            shots_per_evaluation: 1000,
59            use_parameter_shift: true,
60        }
61    }
62}
63
64/// Classical optimizer trait for hybrid algorithms
65pub trait ClassicalOptimizer {
66    /// Perform one optimization step
67    fn step(&mut self, params: &[f64], gradient: &[f64]) -> Vec<f64>;
68
69    /// Get current parameters
70    fn get_params(&self) -> &[f64];
71}
72
73/// Gradient descent optimizer
74pub struct GradientDescentOptimizer {
75    params: Vec<f64>,
76    learning_rate: f64,
77}
78
79impl GradientDescentOptimizer {
80    /// Create a new gradient descent optimizer
81    pub fn new(initial_params: Vec<f64>, learning_rate: f64) -> Self {
82        Self {
83            params: initial_params,
84            learning_rate,
85        }
86    }
87}
88
89impl ClassicalOptimizer for GradientDescentOptimizer {
90    fn step(&mut self, _params: &[f64], gradient: &[f64]) -> Vec<f64> {
91        for (param, &grad) in self.params.iter_mut().zip(gradient.iter()) {
92            *param -= self.learning_rate * grad;
93        }
94        self.params.clone()
95    }
96
97    fn get_params(&self) -> &[f64] {
98        &self.params
99    }
100}
101
102/// Adam optimizer
103pub struct AdamOptimizer {
104    params: Vec<f64>,
105    learning_rate: f64,
106    beta1: f64,
107    beta2: f64,
108    epsilon: f64,
109    m: Vec<f64>, // First moment
110    v: Vec<f64>, // Second moment
111    t: usize,    // Time step
112}
113
114impl AdamOptimizer {
115    /// Create a new Adam optimizer
116    pub fn new(initial_params: Vec<f64>, learning_rate: f64) -> Self {
117        let n = initial_params.len();
118        Self {
119            params: initial_params,
120            learning_rate,
121            beta1: 0.9,
122            beta2: 0.999,
123            epsilon: 1e-8,
124            m: vec![0.0; n],
125            v: vec![0.0; n],
126            t: 0,
127        }
128    }
129}
130
131impl ClassicalOptimizer for AdamOptimizer {
132    fn step(&mut self, _params: &[f64], gradient: &[f64]) -> Vec<f64> {
133        self.t += 1;
134
135        for i in 0..self.params.len() {
136            // Update biased first moment estimate
137            self.m[i] = self.beta1 * self.m[i] + (1.0 - self.beta1) * gradient[i];
138
139            // Update biased second raw moment estimate
140            self.v[i] = self.beta2 * self.v[i] + (1.0 - self.beta2) * gradient[i].powi(2);
141
142            // Compute bias-corrected first moment estimate
143            let m_hat = self.m[i] / (1.0 - self.beta1.powi(self.t as i32));
144
145            // Compute bias-corrected second raw moment estimate
146            let v_hat = self.v[i] / (1.0 - self.beta2.powi(self.t as i32));
147
148            // Update parameters
149            self.params[i] -= self.learning_rate * m_hat / (v_hat.sqrt() + self.epsilon);
150        }
151
152        self.params.clone()
153    }
154
155    fn get_params(&self) -> &[f64] {
156        &self.params
157    }
158}
159
160/// Quantum circuit evaluator
161pub struct CircuitEvaluator {
162    /// Number of qubits
163    num_qubits: usize,
164    /// Circuit structure
165    circuit_structure: Vec<LayerSpec>,
166}
167
168/// Layer specification for parameterized circuits
169#[derive(Debug, Clone)]
170pub struct LayerSpec {
171    /// Gate type
172    pub gate_type: String,
173    /// Qubits the gate acts on
174    pub qubits: Vec<usize>,
175    /// Whether gate is parameterized
176    pub is_parameterized: bool,
177}
178
179impl CircuitEvaluator {
180    /// Create a new circuit evaluator
181    pub fn new(num_qubits: usize, circuit_structure: Vec<LayerSpec>) -> Self {
182        Self {
183            num_qubits,
184            circuit_structure,
185        }
186    }
187
188    /// Evaluate circuit with given parameters
189    pub fn evaluate(&self, params: &[f64]) -> QuantRS2Result<f64> {
190        // Simplified: would construct and execute quantum circuit
191        // Return expectation value of cost Hamiltonian
192        Ok(params.iter().map(|x| x.cos()).sum::<f64>() / params.len() as f64)
193    }
194
195    /// Compute gradient using parameter shift rule
196    pub fn compute_gradient(&self, params: &[f64]) -> QuantRS2Result<Vec<f64>> {
197        let shift = std::f64::consts::PI / 2.0;
198        let mut gradient = Vec::new();
199
200        for i in 0..params.len() {
201            let mut params_plus = params.to_vec();
202            let mut params_minus = params.to_vec();
203
204            params_plus[i] += shift;
205            params_minus[i] -= shift;
206
207            let value_plus = self.evaluate(&params_plus)?;
208            let value_minus = self.evaluate(&params_minus)?;
209
210            gradient.push((value_plus - value_minus) / 2.0);
211        }
212
213        Ok(gradient)
214    }
215
216    /// Compute gradient using finite differences
217    pub fn compute_gradient_finite_diff(
218        &self,
219        params: &[f64],
220        eps: f64,
221    ) -> QuantRS2Result<Vec<f64>> {
222        let mut gradient = Vec::new();
223
224        for i in 0..params.len() {
225            let mut params_plus = params.to_vec();
226            let mut params_minus = params.to_vec();
227
228            params_plus[i] += eps;
229            params_minus[i] -= eps;
230
231            let value_plus = self.evaluate(&params_plus)?;
232            let value_minus = self.evaluate(&params_minus)?;
233
234            gradient.push((value_plus - value_minus) / (2.0 * eps));
235        }
236
237        Ok(gradient)
238    }
239}
240
241impl VariationalQCOptimizer {
242    /// Create a new variational quantum-classical optimizer
243    pub fn new(
244        optimizer: Box<dyn ClassicalOptimizer>,
245        circuit_evaluator: CircuitEvaluator,
246        config: VQCConfig,
247    ) -> Self {
248        Self {
249            optimizer,
250            circuit_evaluator,
251            config,
252        }
253    }
254
255    /// Run optimization
256    pub fn optimize(&mut self) -> QuantRS2Result<OptimizationResult> {
257        let mut history = Vec::new();
258        let mut best_value = f64::INFINITY;
259        let mut best_params = self.optimizer.get_params().to_vec();
260
261        for iteration in 0..self.config.max_iterations {
262            let params = self.optimizer.get_params().to_vec();
263
264            // Evaluate cost function
265            let cost = self.circuit_evaluator.evaluate(&params)?;
266
267            // Compute gradient
268            let gradient = if self.config.use_parameter_shift {
269                self.circuit_evaluator.compute_gradient(&params)?
270            } else {
271                self.circuit_evaluator
272                    .compute_gradient_finite_diff(&params, 1e-5)?
273            };
274
275            // Update parameters
276            let new_params = self.optimizer.step(&params, &gradient);
277
278            history.push(cost);
279
280            if cost < best_value {
281                best_value = cost;
282                best_params = new_params.clone();
283            }
284
285            // Check convergence
286            if iteration > 0
287                && (history[iteration] - history[iteration - 1]).abs() < self.config.tolerance
288            {
289                break;
290            }
291        }
292
293        let iterations = history.len();
294        Ok(OptimizationResult {
295            best_params,
296            best_value,
297            history,
298            iterations,
299        })
300    }
301}
302
303/// Optimization result
304#[derive(Debug, Clone)]
305pub struct OptimizationResult {
306    /// Best parameters found
307    pub best_params: Vec<f64>,
308    /// Best objective value
309    pub best_value: f64,
310    /// Optimization history
311    pub history: Vec<f64>,
312    /// Number of iterations
313    pub iterations: usize,
314}
315
316// ================================================================================================
317// Quantum-Classical Neural Network
318// ================================================================================================
319
320/// Quantum-classical hybrid neural network
321pub struct QuantumClassicalNN {
322    /// Classical layers (before quantum)
323    classical_pre: Vec<ClassicalLayer>,
324    /// Quantum layer
325    quantum_layer: QuantumLayer,
326    /// Classical layers (after quantum)
327    classical_post: Vec<ClassicalLayer>,
328}
329
330/// Classical neural network layer
331pub struct ClassicalLayer {
332    /// Weights
333    weights: Array2<f64>,
334    /// Biases
335    biases: Array1<f64>,
336    /// Activation function
337    activation: ActivationFunction,
338}
339
340#[derive(Debug, Clone, Copy)]
341pub enum ActivationFunction {
342    ReLU,
343    Sigmoid,
344    Tanh,
345    Linear,
346}
347
348impl ClassicalLayer {
349    /// Create a new classical layer
350    pub fn new(input_dim: usize, output_dim: usize, activation: ActivationFunction) -> Self {
351        Self {
352            weights: Array2::zeros((output_dim, input_dim)),
353            biases: Array1::zeros(output_dim),
354            activation,
355        }
356    }
357
358    /// Forward pass
359    pub fn forward(&self, input: &Array1<f64>) -> Array1<f64> {
360        let mut output = self.weights.dot(input) + &self.biases;
361
362        // Apply activation
363        match self.activation {
364            ActivationFunction::ReLU => {
365                output.mapv_inplace(|x| x.max(0.0));
366            }
367            ActivationFunction::Sigmoid => {
368                output.mapv_inplace(|x| 1.0 / (1.0 + (-x).exp()));
369            }
370            ActivationFunction::Tanh => {
371                output.mapv_inplace(|x| x.tanh());
372            }
373            ActivationFunction::Linear => {}
374        }
375
376        output
377    }
378}
379
380/// Quantum layer in hybrid network
381pub struct QuantumLayer {
382    /// Number of qubits
383    num_qubits: usize,
384    /// Parameterized circuit
385    circuit: Vec<LayerSpec>,
386    /// Current parameters
387    params: Vec<f64>,
388}
389
390impl QuantumLayer {
391    /// Create a new quantum layer
392    pub fn new(num_qubits: usize, circuit: Vec<LayerSpec>) -> Self {
393        let num_params = circuit.iter().filter(|l| l.is_parameterized).count();
394        Self {
395            num_qubits,
396            circuit,
397            params: vec![0.0; num_params],
398        }
399    }
400
401    /// Forward pass through quantum layer
402    pub fn forward(&self, input: &Array1<f64>) -> QuantRS2Result<Array1<f64>> {
403        // Encode classical input into quantum state
404        let quantum_state = self.encode_input(input)?;
405
406        // Apply parameterized circuit
407        let output_state = self.apply_circuit(&quantum_state)?;
408
409        // Measure and decode to classical output
410        let classical_output = self.decode_output(&output_state)?;
411
412        Ok(classical_output)
413    }
414
415    /// Encode classical input into quantum state
416    fn encode_input(&self, input: &Array1<f64>) -> QuantRS2Result<Array1<Complex>> {
417        let dim = 2_usize.pow(self.num_qubits as u32);
418        let mut state = Array1::zeros(dim);
419
420        // Amplitude encoding (simplified)
421        let norm = input.iter().map(|x| x.powi(2)).sum::<f64>().sqrt();
422        for i in 0..input.len().min(dim) {
423            state[i] = Complex::new(input[i] / norm, 0.0);
424        }
425
426        Ok(state)
427    }
428
429    /// Apply parameterized quantum circuit
430    fn apply_circuit(&self, state: &Array1<Complex>) -> QuantRS2Result<Array1<Complex>> {
431        // Simplified: would apply actual quantum gates
432        Ok(state.clone())
433    }
434
435    /// Decode quantum state to classical output
436    fn decode_output(&self, state: &Array1<Complex>) -> QuantRS2Result<Array1<f64>> {
437        // Simplified: measure expectation values
438        let output_dim = self.num_qubits;
439        let mut output = Array1::zeros(output_dim);
440
441        for i in 0..output_dim {
442            output[i] = state
443                .iter()
444                .take(2_usize.pow(i as u32))
445                .map(|x| x.norm_sqr())
446                .sum();
447        }
448
449        Ok(output)
450    }
451}
452
453impl QuantumClassicalNN {
454    /// Create a new quantum-classical neural network
455    pub fn new(
456        classical_pre: Vec<ClassicalLayer>,
457        quantum_layer: QuantumLayer,
458        classical_post: Vec<ClassicalLayer>,
459    ) -> Self {
460        Self {
461            classical_pre,
462            quantum_layer,
463            classical_post,
464        }
465    }
466
467    /// Forward pass through entire network
468    pub fn forward(&self, input: &Array1<f64>) -> QuantRS2Result<Array1<f64>> {
469        let mut current = input.clone();
470
471        // Classical preprocessing
472        for layer in &self.classical_pre {
473            current = layer.forward(&current);
474        }
475
476        // Quantum processing
477        current = self.quantum_layer.forward(&current)?;
478
479        // Classical postprocessing
480        for layer in &self.classical_post {
481            current = layer.forward(&current);
482        }
483
484        Ok(current)
485    }
486
487    /// Train the network
488    pub fn train(
489        &mut self,
490        training_data: &[(Array1<f64>, Array1<f64>)],
491        epochs: usize,
492        learning_rate: f64,
493    ) -> QuantRS2Result<Vec<f64>> {
494        let mut loss_history = Vec::new();
495
496        for epoch in 0..epochs {
497            let mut total_loss = 0.0;
498
499            for (input, target) in training_data {
500                // Forward pass
501                let output = self.forward(input)?;
502
503                // Compute loss (MSE)
504                let loss: f64 = output
505                    .iter()
506                    .zip(target.iter())
507                    .map(|(o, t)| (o - t).powi(2))
508                    .sum();
509                total_loss += loss;
510
511                // Backward pass (simplified - would need actual backprop)
512            }
513
514            let avg_loss = total_loss / training_data.len() as f64;
515            loss_history.push(avg_loss);
516        }
517
518        Ok(loss_history)
519    }
520}
521
522// ================================================================================================
523// Quantum Feature Maps
524// ================================================================================================
525
526/// Quantum feature map for encoding classical data
527pub struct QuantumFeatureMap {
528    /// Number of qubits
529    num_qubits: usize,
530    /// Feature map type
531    feature_map_type: FeatureMapType,
532}
533
534#[derive(Debug, Clone, Copy)]
535pub enum FeatureMapType {
536    /// Amplitude encoding
537    Amplitude,
538    /// Angle encoding
539    Angle,
540    /// Basis encoding
541    Basis,
542    /// IQP encoding
543    IQP,
544    /// Pauli feature map
545    Pauli,
546}
547
548impl QuantumFeatureMap {
549    /// Create a new quantum feature map
550    pub fn new(num_qubits: usize, feature_map_type: FeatureMapType) -> Self {
551        Self {
552            num_qubits,
553            feature_map_type,
554        }
555    }
556
557    /// Encode classical data into quantum state
558    pub fn encode(&self, data: &Array1<f64>) -> QuantRS2Result<Array1<Complex>> {
559        match self.feature_map_type {
560            FeatureMapType::Amplitude => self.amplitude_encoding(data),
561            FeatureMapType::Angle => self.angle_encoding(data),
562            FeatureMapType::Basis => self.basis_encoding(data),
563            FeatureMapType::IQP => self.iqp_encoding(data),
564            FeatureMapType::Pauli => self.pauli_encoding(data),
565        }
566    }
567
568    /// Amplitude encoding: |ψ⟩ = Σᵢ xᵢ|i⟩
569    fn amplitude_encoding(&self, data: &Array1<f64>) -> QuantRS2Result<Array1<Complex>> {
570        let dim = 2_usize.pow(self.num_qubits as u32);
571        let mut state = Array1::zeros(dim);
572
573        let norm = data.iter().map(|x| x.powi(2)).sum::<f64>().sqrt();
574        for i in 0..data.len().min(dim) {
575            state[i] = Complex::new(data[i] / norm, 0.0);
576        }
577
578        Ok(state)
579    }
580
581    /// Angle encoding: RY(xᵢ) on each qubit
582    fn angle_encoding(&self, data: &Array1<f64>) -> QuantRS2Result<Array1<Complex>> {
583        let dim = 2_usize.pow(self.num_qubits as u32);
584        let mut state = Array1::zeros(dim);
585        state[0] = Complex::new(1.0, 0.0);
586
587        // Would apply RY rotations for each data point
588        // Simplified implementation
589        Ok(state)
590    }
591
592    /// Basis encoding: binary representation
593    fn basis_encoding(&self, data: &Array1<f64>) -> QuantRS2Result<Array1<Complex>> {
594        let dim = 2_usize.pow(self.num_qubits as u32);
595        let mut state = Array1::zeros(dim);
596
597        // Convert data to binary representation
598        let mut index = 0usize;
599        for (i, &val) in data.iter().enumerate().take(self.num_qubits) {
600            if val > 0.5 {
601                index |= 1 << i;
602            }
603        }
604
605        state[index] = Complex::new(1.0, 0.0);
606        Ok(state)
607    }
608
609    /// IQP encoding: Instantaneous Quantum Polynomial
610    fn iqp_encoding(&self, data: &Array1<f64>) -> QuantRS2Result<Array1<Complex>> {
611        // Start with Hadamard on all qubits
612        let dim = 2_usize.pow(self.num_qubits as u32);
613        let hadamard_coeff = 1.0 / (dim as f64).sqrt();
614        let mut state = Array1::from_elem(dim, Complex::new(hadamard_coeff, 0.0));
615
616        // Apply diagonal gates based on data
617        // Simplified implementation
618        Ok(state)
619    }
620
621    /// Pauli feature map: exp(i Σ φᵢ Pᵢ)
622    fn pauli_encoding(&self, data: &Array1<f64>) -> QuantRS2Result<Array1<Complex>> {
623        let dim = 2_usize.pow(self.num_qubits as u32);
624        let mut state = Array1::zeros(dim);
625        state[0] = Complex::new(1.0, 0.0);
626
627        // Would apply Pauli rotations based on data
628        // Simplified implementation
629        Ok(state)
630    }
631
632    /// Compute kernel between two data points
633    pub fn kernel(&self, data1: &Array1<f64>, data2: &Array1<f64>) -> QuantRS2Result<f64> {
634        let state1 = self.encode(data1)?;
635        let state2 = self.encode(data2)?;
636
637        // Compute overlap |⟨ψ₁|ψ₂⟩|²
638        let overlap: Complex = state1
639            .iter()
640            .zip(state2.iter())
641            .map(|(a, b)| a.conj() * b)
642            .sum();
643
644        Ok(overlap.norm_sqr())
645    }
646}
647
648#[cfg(test)]
649mod tests {
650    use super::*;
651
652    #[test]
653    fn test_gradient_descent_optimizer() {
654        let initial_params = vec![1.0, 2.0, 3.0];
655        let mut optimizer = GradientDescentOptimizer::new(initial_params.clone(), 0.1);
656
657        let gradient = vec![1.0, 1.0, 1.0];
658        let new_params = optimizer.step(&initial_params, &gradient);
659
660        assert_eq!(new_params[0], 0.9);
661        assert_eq!(new_params[1], 1.9);
662        assert_eq!(new_params[2], 2.9);
663    }
664
665    #[test]
666    fn test_adam_optimizer() {
667        let initial_params = vec![1.0, 2.0, 3.0];
668        let mut optimizer = AdamOptimizer::new(initial_params, 0.01);
669
670        let gradient = vec![1.0, 1.0, 1.0];
671        let new_params = optimizer.step(&[], &gradient);
672
673        // Parameters should be updated
674        assert!(new_params[0] < 1.0);
675    }
676
677    #[test]
678    fn test_quantum_feature_map_amplitude() {
679        let feature_map = QuantumFeatureMap::new(2, FeatureMapType::Amplitude);
680        let data = Array1::from_vec(vec![1.0, 0.0, 0.0, 0.0]);
681
682        let state = feature_map.encode(&data).unwrap();
683
684        // First amplitude should be 1
685        assert!((state[0].norm() - 1.0).abs() < 1e-10);
686    }
687
688    #[test]
689    fn test_quantum_kernel() {
690        let feature_map = QuantumFeatureMap::new(2, FeatureMapType::Amplitude);
691        let data1 = Array1::from_vec(vec![1.0, 0.0, 0.0, 0.0]);
692        let data2 = Array1::from_vec(vec![1.0, 0.0, 0.0, 0.0]);
693
694        let kernel_value = feature_map.kernel(&data1, &data2).unwrap();
695
696        // Kernel of identical points should be 1
697        assert!((kernel_value - 1.0).abs() < 1e-10);
698    }
699}