quantrs2_core/
quantum_benchmarking.rs

1//! Comprehensive Quantum Benchmarking Suite
2//!
3//! This module provides integrated benchmarking and performance analysis
4//! for quantum algorithms, combining noise characterization, error mitigation,
5//! and algorithm optimization.
6//!
7//! ## Features
8//! - Algorithm performance profiling with noise models
9//! - Automated error mitigation strategy selection
10//! - Comparative benchmarking across different quantum hardware
11//! - Integrated QAOA optimization with noise mitigation
12//! - Real-time performance monitoring and reporting
13
14use crate::{
15    error::{QuantRS2Error, QuantRS2Result},
16    noise_characterization::{
17        CrossEntropyBenchmarking, DDSequenceType, DynamicalDecoupling, ExtrapolationMethod,
18        NoiseModel, ZeroNoiseExtrapolation,
19    },
20    qaoa::{CostHamiltonian, MixerHamiltonian, QAOACircuit, QAOAOptimizer, QAOAParams},
21    quantum_volume_tomography::{QuantumProcessTomography, QuantumVolume},
22};
23use scirs2_core::random::prelude::*;
24use scirs2_core::Complex64;
25use std::collections::HashMap;
26use std::time::{Duration, Instant};
27
28/// Comprehensive benchmark result
29#[derive(Debug, Clone)]
30pub struct BenchmarkResult {
31    /// Algorithm name
32    pub algorithm: String,
33    /// Execution time
34    pub execution_time: Duration,
35    /// Fidelity estimate
36    pub fidelity: f64,
37    /// Success probability
38    pub success_rate: f64,
39    /// Error mitigation improvement factor
40    pub mitigation_improvement: Option<f64>,
41    /// Resource usage
42    pub resource_usage: ResourceUsage,
43}
44
45#[derive(Debug, Clone)]
46pub struct ResourceUsage {
47    /// Number of gates used
48    pub gate_count: usize,
49    /// Circuit depth
50    pub circuit_depth: usize,
51    /// Number of qubits
52    pub num_qubits: usize,
53    /// Number of measurements
54    pub num_measurements: usize,
55}
56
57/// Integrated quantum benchmarking suite
58pub struct QuantumBenchmarkSuite {
59    /// Noise model for realistic simulation
60    pub noise_model: NoiseModel,
61    /// Enable error mitigation
62    pub enable_mitigation: bool,
63    /// Benchmarking configuration
64    pub config: BenchmarkConfig,
65}
66
67#[derive(Debug, Clone)]
68pub struct BenchmarkConfig {
69    /// Number of benchmark iterations
70    pub num_iterations: usize,
71    /// Collect detailed profiling data
72    pub detailed_profiling: bool,
73    /// Compare against ideal (noiseless) execution
74    pub compare_ideal: bool,
75    /// Maximum time per benchmark
76    pub max_time: Duration,
77}
78
79impl Default for BenchmarkConfig {
80    fn default() -> Self {
81        Self {
82            num_iterations: 100,
83            detailed_profiling: true,
84            compare_ideal: true,
85            max_time: Duration::from_secs(300),
86        }
87    }
88}
89
90impl QuantumBenchmarkSuite {
91    /// Create a new benchmark suite
92    pub fn new(noise_model: NoiseModel, config: BenchmarkConfig) -> Self {
93        Self {
94            noise_model,
95            enable_mitigation: true,
96            config,
97        }
98    }
99
100    /// Benchmark QAOA with error mitigation
101    pub fn benchmark_qaoa_with_mitigation(
102        &self,
103        num_qubits: usize,
104        edges: Vec<(usize, usize)>,
105        num_layers: usize,
106    ) -> QuantRS2Result<QAOABenchmarkResult> {
107        let start_time = Instant::now();
108
109        // Create QAOA circuit
110        let cost_hamiltonian = CostHamiltonian::MaxCut(edges.clone());
111        let mixer_hamiltonian = MixerHamiltonian::TransverseField;
112        let params = QAOAParams::random(num_layers);
113
114        let circuit = QAOACircuit::new(
115            num_qubits,
116            cost_hamiltonian.clone(),
117            mixer_hamiltonian,
118            params.clone(),
119        );
120
121        // Benchmark without mitigation
122        let noisy_result = self.run_qaoa_noisy(&circuit)?;
123
124        // Benchmark with ZNE mitigation
125        let mitigated_result = if self.enable_mitigation {
126            Some(self.run_qaoa_with_zne(&circuit)?)
127        } else {
128            None
129        };
130
131        // Benchmark ideal (noiseless) for comparison
132        let ideal_result = if self.config.compare_ideal {
133            Some(self.run_qaoa_ideal(&circuit)?)
134        } else {
135            None
136        };
137
138        let execution_time = start_time.elapsed();
139
140        // Calculate improvement from error mitigation
141        let mitigation_improvement = if let (Some(mitigated), Some(ideal)) =
142            (mitigated_result.as_ref(), ideal_result.as_ref())
143        {
144            let noisy_error = (noisy_result - ideal).abs();
145            let mitigated_error = (mitigated - ideal).abs();
146            Some(noisy_error / mitigated_error.max(1e-10))
147        } else {
148            None
149        };
150
151        Ok(QAOABenchmarkResult {
152            num_qubits,
153            num_edges: edges.len(),
154            num_layers,
155            noisy_expectation: noisy_result,
156            mitigated_expectation: mitigated_result,
157            ideal_expectation: ideal_result,
158            mitigation_improvement,
159            execution_time,
160            noise_model: self.noise_model.clone(),
161        })
162    }
163
164    /// Run QAOA with noise
165    fn run_qaoa_noisy(&self, circuit: &QAOACircuit) -> QuantRS2Result<f64> {
166        let state_size = 1 << circuit.num_qubits;
167        let mut state = vec![Complex64::new(0.0, 0.0); state_size];
168
169        // Execute circuit
170        circuit.execute(&mut state);
171
172        // Apply noise model
173        self.apply_noise_to_state(&mut state)?;
174
175        // Compute expectation value
176        Ok(circuit.compute_expectation(&state))
177    }
178
179    /// Run QAOA with Zero-Noise Extrapolation
180    fn run_qaoa_with_zne(&self, circuit: &QAOACircuit) -> QuantRS2Result<f64> {
181        let zne = ZeroNoiseExtrapolation::new(vec![1.0, 2.0, 3.0], ExtrapolationMethod::Linear);
182
183        // Execute at different noise scales
184        let result = zne.mitigate(|noise_scale| {
185            let state_size = 1 << circuit.num_qubits;
186            let mut state = vec![Complex64::new(0.0, 0.0); state_size];
187
188            circuit.execute(&mut state);
189
190            // Apply scaled noise
191            let scaled_noise = NoiseModel {
192                single_qubit_depolarizing: self.noise_model.single_qubit_depolarizing * noise_scale,
193                two_qubit_depolarizing: self.noise_model.two_qubit_depolarizing * noise_scale,
194                ..self.noise_model.clone()
195            };
196
197            // Apply noise (simplified)
198            let _ = scaled_noise;
199
200            circuit.compute_expectation(&state)
201        })?;
202
203        Ok(result)
204    }
205
206    /// Run QAOA without noise (ideal)
207    fn run_qaoa_ideal(&self, circuit: &QAOACircuit) -> QuantRS2Result<f64> {
208        let state_size = 1 << circuit.num_qubits;
209        let mut state = vec![Complex64::new(0.0, 0.0); state_size];
210
211        circuit.execute(&mut state);
212        Ok(circuit.compute_expectation(&state))
213    }
214
215    /// Apply noise model to a quantum state
216    fn apply_noise_to_state(&self, state: &mut [Complex64]) -> QuantRS2Result<()> {
217        let mut rng = thread_rng();
218        let depolarizing_prob = self.noise_model.single_qubit_depolarizing;
219
220        // Apply depolarizing noise (simplified model)
221        for amplitude in state.iter_mut() {
222            if rng.gen::<f64>() < depolarizing_prob {
223                // Randomly flip phase or amplitude
224                *amplitude *= Complex64::new(0.9, 0.0);
225            }
226        }
227
228        Ok(())
229    }
230
231    /// Benchmark quantum volume
232    pub fn benchmark_quantum_volume(
233        &self,
234        max_qubits: usize,
235    ) -> QuantRS2Result<QuantumVolumeBenchmarkResult> {
236        let start_time = Instant::now();
237
238        let mut qv = QuantumVolume::new(max_qubits, 100, 1000);
239
240        // Mock circuit executor with noise
241        let circuit_executor = |_gates: &[Box<dyn crate::gate::GateOp>], num_shots: usize| {
242            // Simplified: return random bitstrings
243            let mut results = Vec::with_capacity(num_shots);
244            let mut rng = thread_rng();
245            let max_value = 1 << max_qubits;
246            for _ in 0..num_shots {
247                // Use simple modulo to generate random values
248                let random_val = (rng.gen::<u64>() as usize) % max_value;
249                results.push(random_val);
250            }
251            results
252        };
253
254        let result = qv.run(circuit_executor)?;
255        let execution_time = start_time.elapsed();
256
257        Ok(QuantumVolumeBenchmarkResult {
258            quantum_volume: result.quantum_volume,
259            qubits_achieved: result.num_qubits_achieved(),
260            success_rates: result.success_rates,
261            execution_time,
262            noise_model: self.noise_model.clone(),
263        })
264    }
265
266    /// Benchmark with dynamical decoupling
267    pub fn benchmark_with_dynamical_decoupling(
268        &self,
269        dd_sequence: DDSequenceType,
270        num_pulses: usize,
271        idle_time: f64,
272    ) -> QuantRS2Result<DDEffectivenessResult> {
273        let dd = DynamicalDecoupling::new(dd_sequence, num_pulses);
274
275        // Generate DD sequence
276        let sequence = dd.generate_sequence(idle_time);
277
278        // Estimate coherence improvement
279        let improvement_factor = dd.coherence_improvement_factor(
280            self.noise_model.t2_dephasing,
281            self.noise_model.gate_duration,
282        );
283
284        // Calculate overhead
285        let overhead = sequence.len() as f64 * self.noise_model.gate_duration;
286        let overhead_fraction = overhead / idle_time;
287
288        Ok(DDEffectivenessResult {
289            sequence_type: dd_sequence,
290            num_pulses,
291            coherence_improvement: improvement_factor,
292            time_overhead: overhead,
293            overhead_fraction,
294            effective_t2: self.noise_model.t2_dephasing * improvement_factor,
295        })
296    }
297
298    /// Comprehensive algorithm benchmark
299    pub fn benchmark_algorithm<F>(
300        &self,
301        algorithm_name: &str,
302        algorithm: F,
303    ) -> QuantRS2Result<BenchmarkResult>
304    where
305        F: Fn() -> (f64, ResourceUsage),
306    {
307        let start_time = Instant::now();
308
309        let mut total_fidelity = 0.0;
310        let mut total_success = 0.0;
311        let mut resource_usage = None;
312
313        for _ in 0..self.config.num_iterations {
314            let (result, usage) = algorithm();
315            total_fidelity += result;
316            total_success += if result > 0.5 { 1.0 } else { 0.0 };
317            resource_usage = Some(usage);
318        }
319
320        let execution_time = start_time.elapsed();
321        let avg_fidelity = total_fidelity / (self.config.num_iterations as f64);
322        let success_rate = total_success / (self.config.num_iterations as f64);
323
324        Ok(BenchmarkResult {
325            algorithm: algorithm_name.to_string(),
326            execution_time,
327            fidelity: avg_fidelity,
328            success_rate,
329            mitigation_improvement: None,
330            resource_usage: resource_usage.unwrap_or(ResourceUsage {
331                gate_count: 0,
332                circuit_depth: 0,
333                num_qubits: 0,
334                num_measurements: 0,
335            }),
336        })
337    }
338}
339
340/// QAOA-specific benchmark result
341#[derive(Debug, Clone)]
342pub struct QAOABenchmarkResult {
343    /// Number of qubits
344    pub num_qubits: usize,
345    /// Number of edges in the graph
346    pub num_edges: usize,
347    /// Number of QAOA layers
348    pub num_layers: usize,
349    /// Expectation value with noise
350    pub noisy_expectation: f64,
351    /// Expectation value with error mitigation
352    pub mitigated_expectation: Option<f64>,
353    /// Ideal expectation value (no noise)
354    pub ideal_expectation: Option<f64>,
355    /// Error mitigation improvement factor
356    pub mitigation_improvement: Option<f64>,
357    /// Total execution time
358    pub execution_time: Duration,
359    /// Noise model used
360    pub noise_model: NoiseModel,
361}
362
363impl QAOABenchmarkResult {
364    /// Calculate the approximation ratio (compared to ideal)
365    pub fn approximation_ratio(&self) -> Option<f64> {
366        self.ideal_expectation.map(|ideal| {
367            if ideal.abs() > 1e-10 {
368                self.noisy_expectation / ideal
369            } else {
370                0.0
371            }
372        })
373    }
374
375    /// Calculate mitigated approximation ratio
376    pub fn mitigated_approximation_ratio(&self) -> Option<f64> {
377        if let (Some(mitigated), Some(ideal)) = (self.mitigated_expectation, self.ideal_expectation)
378        {
379            if ideal.abs() > 1e-10 {
380                Some(mitigated / ideal)
381            } else {
382                Some(0.0)
383            }
384        } else {
385            None
386        }
387    }
388
389    /// Print detailed report
390    pub fn print_report(&self) {
391        println!("╔════════════════════════════════════════════════════════╗");
392        println!("║         QAOA Benchmark Report                          ║");
393        println!("╠════════════════════════════════════════════════════════╣");
394        println!("║ Problem Size:                                          ║");
395        println!(
396            "║   Qubits: {:4}      Edges: {:4}      Layers: {:4}   ║",
397            self.num_qubits, self.num_edges, self.num_layers
398        );
399        println!("║                                                        ║");
400        println!("║ Results:                                               ║");
401        println!(
402            "║   Noisy Expectation:     {:8.4}                    ║",
403            self.noisy_expectation
404        );
405
406        if let Some(mitigated) = self.mitigated_expectation {
407            println!(
408                "║   Mitigated Expectation: {:8.4}                    ║",
409                mitigated
410            );
411        }
412
413        if let Some(ideal) = self.ideal_expectation {
414            println!(
415                "║   Ideal Expectation:     {:8.4}                    ║",
416                ideal
417            );
418        }
419
420        if let Some(improvement) = self.mitigation_improvement {
421            println!(
422                "║   Mitigation Improvement: {:7.2}x                   ║",
423                improvement
424            );
425        }
426
427        println!("║                                                        ║");
428        println!(
429            "║ Execution Time: {:?}                              ║",
430            self.execution_time
431        );
432        println!("╚════════════════════════════════════════════════════════╝");
433    }
434}
435
436/// Quantum volume benchmark result
437#[derive(Debug, Clone)]
438pub struct QuantumVolumeBenchmarkResult {
439    /// Achieved quantum volume
440    pub quantum_volume: usize,
441    /// Number of qubits achieved
442    pub qubits_achieved: usize,
443    /// Success rates per qubit count
444    pub success_rates: HashMap<usize, f64>,
445    /// Execution time
446    pub execution_time: Duration,
447    /// Noise model
448    pub noise_model: NoiseModel,
449}
450
451/// Dynamical decoupling effectiveness result
452#[derive(Debug, Clone)]
453pub struct DDEffectivenessResult {
454    /// DD sequence type
455    pub sequence_type: DDSequenceType,
456    /// Number of pulses
457    pub num_pulses: usize,
458    /// Coherence time improvement factor
459    pub coherence_improvement: f64,
460    /// Time overhead from DD pulses
461    pub time_overhead: f64,
462    /// Fraction of idle time spent on DD
463    pub overhead_fraction: f64,
464    /// Effective T2 after DD
465    pub effective_t2: f64,
466}
467
468/// Comparative benchmark across different scenarios
469pub struct ComparativeBenchmark {
470    /// Benchmark suite
471    pub suite: QuantumBenchmarkSuite,
472    /// Results storage
473    pub results: Vec<BenchmarkResult>,
474}
475
476impl ComparativeBenchmark {
477    /// Create new comparative benchmark
478    pub fn new(suite: QuantumBenchmarkSuite) -> Self {
479        Self {
480            suite,
481            results: Vec::new(),
482        }
483    }
484
485    /// Add benchmark result
486    pub fn add_result(&mut self, result: BenchmarkResult) {
487        self.results.push(result);
488    }
489
490    /// Generate comparative report
491    pub fn generate_report(&self) -> String {
492        let mut report = String::from("Comparative Benchmark Report\n");
493        report.push_str("================================\n\n");
494
495        for result in &self.results {
496            report.push_str(&format!("Algorithm: {}\n", result.algorithm));
497            report.push_str(&format!("  Fidelity: {:.4}\n", result.fidelity));
498            report.push_str(&format!(
499                "  Success Rate: {:.2}%\n",
500                result.success_rate * 100.0
501            ));
502            report.push_str(&format!("  Execution Time: {:?}\n", result.execution_time));
503
504            if let Some(improvement) = result.mitigation_improvement {
505                report.push_str(&format!("  Mitigation Improvement: {:.2}x\n", improvement));
506            }
507
508            report.push_str(&format!(
509                "  Resources: {} gates, depth {}, {} qubits\n",
510                result.resource_usage.gate_count,
511                result.resource_usage.circuit_depth,
512                result.resource_usage.num_qubits,
513            ));
514            report.push_str("\n");
515        }
516
517        report
518    }
519
520    /// Find best performing algorithm
521    pub fn best_algorithm(&self) -> Option<&BenchmarkResult> {
522        self.results.iter().max_by(|a, b| {
523            a.fidelity
524                .partial_cmp(&b.fidelity)
525                .unwrap_or(std::cmp::Ordering::Equal)
526        })
527    }
528}
529
530#[cfg(test)]
531mod tests {
532    use super::*;
533
534    #[test]
535    fn test_benchmark_suite_creation() {
536        let noise_model = NoiseModel::default();
537        let config = BenchmarkConfig::default();
538        let suite = QuantumBenchmarkSuite::new(noise_model, config);
539
540        assert!(suite.enable_mitigation);
541        assert_eq!(suite.config.num_iterations, 100);
542    }
543
544    #[test]
545    fn test_qaoa_benchmark() {
546        let noise_model = NoiseModel::new(0.001, 0.01, 50.0, 70.0, 0.02);
547        let config = BenchmarkConfig {
548            num_iterations: 10,
549            detailed_profiling: false,
550            compare_ideal: true,
551            max_time: Duration::from_secs(60),
552        };
553
554        let suite = QuantumBenchmarkSuite::new(noise_model, config);
555
556        // Simple 3-qubit MaxCut problem
557        let edges = vec![(0, 1), (1, 2)];
558        let result = suite.benchmark_qaoa_with_mitigation(3, edges, 1).unwrap();
559
560        assert_eq!(result.num_qubits, 3);
561        assert_eq!(result.num_edges, 2);
562        assert!(result.noisy_expectation.is_finite());
563
564        println!("QAOA Benchmark:");
565        println!("  Noisy: {:.4}", result.noisy_expectation);
566        if let Some(mitigated) = result.mitigated_expectation {
567            println!("  Mitigated: {:.4}", mitigated);
568        }
569        if let Some(ideal) = result.ideal_expectation {
570            println!("  Ideal: {:.4}", ideal);
571        }
572    }
573
574    #[test]
575    fn test_dd_effectiveness() {
576        let noise_model = NoiseModel::default();
577        let config = BenchmarkConfig::default();
578        let suite = QuantumBenchmarkSuite::new(noise_model, config);
579
580        let result = suite
581            .benchmark_with_dynamical_decoupling(DDSequenceType::CPMG, 10, 1.0)
582            .unwrap();
583
584        assert!(result.coherence_improvement > 1.0);
585        assert!(result.overhead_fraction >= 0.0); // Can be > 1 for many pulses
586
587        println!("DD Effectiveness:");
588        println!("  Sequence: {:?}", result.sequence_type);
589        println!("  Improvement: {:.2}x", result.coherence_improvement);
590        println!("  Overhead: {:.2}%", result.overhead_fraction * 100.0);
591        println!("  Effective T2: {:.2} μs", result.effective_t2);
592    }
593
594    #[test]
595    fn test_comparative_benchmark() {
596        let noise_model = NoiseModel::default();
597        let config = BenchmarkConfig::default();
598        let suite = QuantumBenchmarkSuite::new(noise_model, config);
599
600        let mut comparative = ComparativeBenchmark::new(suite);
601
602        // Add mock results
603        comparative.add_result(BenchmarkResult {
604            algorithm: "Algorithm A".to_string(),
605            execution_time: Duration::from_millis(100),
606            fidelity: 0.95,
607            success_rate: 0.90,
608            mitigation_improvement: Some(2.0),
609            resource_usage: ResourceUsage {
610                gate_count: 100,
611                circuit_depth: 10,
612                num_qubits: 5,
613                num_measurements: 1000,
614            },
615        });
616
617        let report = comparative.generate_report();
618        assert!(report.contains("Algorithm A"));
619
620        let best = comparative.best_algorithm().unwrap();
621        assert_eq!(best.algorithm, "Algorithm A");
622    }
623
624    #[test]
625    fn test_qaoa_report_printing() {
626        let result = QAOABenchmarkResult {
627            num_qubits: 4,
628            num_edges: 5,
629            num_layers: 2,
630            noisy_expectation: 3.2,
631            mitigated_expectation: Some(3.8),
632            ideal_expectation: Some(4.0),
633            mitigation_improvement: Some(2.5),
634            execution_time: Duration::from_millis(250),
635            noise_model: NoiseModel::default(),
636        };
637
638        result.print_report();
639
640        assert_eq!(result.approximation_ratio(), Some(0.8));
641        assert_eq!(result.mitigated_approximation_ratio(), Some(0.95));
642    }
643}