quantrs2_core/
ml_error_mitigation.rs

1//! Machine Learning-Based Quantum Error Mitigation
2//!
3//! This module implements advanced error mitigation techniques that use machine learning
4//! to adaptively learn and correct quantum errors. This goes beyond traditional error
5//! mitigation by learning error patterns from quantum hardware and optimizing mitigation
6//! strategies in real-time.
7
8use crate::error::{QuantRS2Error, QuantRS2Result};
9use crate::gate::GateOp;
10use crate::qubit::QubitId;
11use scirs2_core::ndarray::{Array1, Array2};
12use scirs2_core::random::{thread_rng, Rng};
13use scirs2_core::{Complex32, Complex64};
14use std::collections::HashMap;
15use std::sync::{Arc, RwLock};
16
17/// Neural network-based error predictor
18///
19/// Uses a simple feedforward neural network to predict error probabilities
20/// based on circuit characteristics and historical error data.
21#[derive(Debug, Clone)]
22pub struct NeuralErrorPredictor {
23    /// Input layer weights (circuit features -> hidden layer)
24    input_weights: Array2<f64>,
25    /// Hidden layer weights (hidden -> output)
26    hidden_weights: Array2<f64>,
27    /// Input layer bias
28    input_bias: Array1<f64>,
29    /// Hidden layer bias
30    hidden_bias: Array1<f64>,
31    /// Learning rate for gradient descent
32    learning_rate: f64,
33    /// Training history for adaptive learning
34    training_history: Arc<RwLock<Vec<TrainingExample>>>,
35}
36
37/// Training example for the neural error predictor
38#[derive(Debug, Clone)]
39pub struct TrainingExample {
40    /// Circuit features (depth, gate counts, connectivity, etc.)
41    pub features: Vec<f64>,
42    /// Observed error rate
43    pub error_rate: f64,
44    /// Timestamp of observation
45    pub timestamp: std::time::Instant,
46}
47
48/// Circuit features for error prediction
49#[derive(Debug, Clone)]
50pub struct CircuitFeatures {
51    /// Circuit depth (number of layers)
52    pub depth: usize,
53    /// Number of single-qubit gates
54    pub single_qubit_gates: usize,
55    /// Number of two-qubit gates
56    pub two_qubit_gates: usize,
57    /// Circuit connectivity (average qubits per gate)
58    pub connectivity: f64,
59    /// Estimated gate fidelity
60    pub average_gate_fidelity: f64,
61    /// Number of measurement operations
62    pub measurement_count: usize,
63    /// Circuit width (number of qubits)
64    pub width: usize,
65    /// Entanglement entropy estimate
66    pub entanglement_entropy: f64,
67}
68
69impl NeuralErrorPredictor {
70    /// Create a new neural error predictor
71    ///
72    /// # Arguments
73    /// * `input_size` - Number of input features
74    /// * `hidden_size` - Number of hidden neurons
75    /// * `learning_rate` - Learning rate for training
76    pub fn new(input_size: usize, hidden_size: usize, learning_rate: f64) -> Self {
77        let mut rng = thread_rng();
78
79        // Xavier initialization for better convergence
80        let xavier_input = (6.0 / (input_size + hidden_size) as f64).sqrt();
81        let xavier_hidden = (6.0 / (hidden_size + 1) as f64).sqrt();
82
83        let input_weights = Array2::from_shape_fn((hidden_size, input_size), |_| {
84            rng.gen_range(-xavier_input..xavier_input)
85        });
86
87        let hidden_weights = Array2::from_shape_fn((1, hidden_size), |_| {
88            rng.gen_range(-xavier_hidden..xavier_hidden)
89        });
90
91        let input_bias = Array1::zeros(hidden_size);
92        let hidden_bias = Array1::zeros(1);
93
94        Self {
95            input_weights,
96            hidden_weights,
97            input_bias,
98            hidden_bias,
99            learning_rate,
100            training_history: Arc::new(RwLock::new(Vec::new())),
101        }
102    }
103
104    /// Predict error rate for given circuit features
105    ///
106    /// # Arguments
107    /// * `features` - Circuit features to analyze
108    ///
109    /// # Returns
110    /// Predicted error rate (0.0 to 1.0)
111    pub fn predict(&self, features: &[f64]) -> QuantRS2Result<f64> {
112        if features.len() != self.input_weights.ncols() {
113            return Err(QuantRS2Error::InvalidInput(format!(
114                "Expected {} features, got {}",
115                self.input_weights.ncols(),
116                features.len()
117            )));
118        }
119
120        // Forward pass
121        let input = Array1::from_vec(features.to_vec());
122
123        // Hidden layer: ReLU(W1 * x + b1)
124        let hidden_pre = self.input_weights.dot(&input) + &self.input_bias;
125        let hidden = hidden_pre.mapv(|x| x.max(0.0)); // ReLU activation
126
127        // Output layer: sigmoid(W2 * h + b2)
128        let output_pre = self.hidden_weights.dot(&hidden) + &self.hidden_bias;
129        let output = 1.0 / (1.0 + (-output_pre[0]).exp()); // Sigmoid activation
130
131        Ok(output.clamp(0.0, 1.0))
132    }
133
134    /// Train the predictor with a new example
135    ///
136    /// # Arguments
137    /// * `features` - Circuit features
138    /// * `observed_error_rate` - Observed error rate from execution
139    pub fn train(&mut self, features: &[f64], observed_error_rate: f64) -> QuantRS2Result<()> {
140        if features.len() != self.input_weights.ncols() {
141            return Err(QuantRS2Error::InvalidInput(
142                "Feature size mismatch".to_string(),
143            ));
144        }
145
146        // Store training example
147        {
148            let mut history = self.training_history.write().unwrap();
149            history.push(TrainingExample {
150                features: features.to_vec(),
151                error_rate: observed_error_rate,
152                timestamp: std::time::Instant::now(),
153            });
154
155            // Keep only recent history (last 1000 examples)
156            let len = history.len();
157            if len > 1000 {
158                history.drain(0..len - 1000);
159            }
160        }
161
162        // Backpropagation
163        let input = Array1::from_vec(features.to_vec());
164
165        // Forward pass
166        let hidden_pre = self.input_weights.dot(&input) + &self.input_bias;
167        let hidden = hidden_pre.mapv(|x| x.max(0.0));
168
169        let output_pre = self.hidden_weights.dot(&hidden) + &self.hidden_bias;
170        let predicted = 1.0 / (1.0 + (-output_pre[0]).exp());
171
172        // Backward pass
173        // Output layer gradient
174        let output_error = predicted - observed_error_rate;
175        let output_delta = output_error * predicted * (1.0 - predicted); // Sigmoid derivative
176
177        // Hidden layer gradient
178        let hidden_error = output_delta * self.hidden_weights.row(0).to_owned();
179        let hidden_delta = hidden_error.mapv(|x| if x > 0.0 { x } else { 0.0 }); // ReLU derivative
180
181        // Update weights
182        for i in 0..self.hidden_weights.ncols() {
183            self.hidden_weights[[0, i]] -= self.learning_rate * output_delta * hidden[i];
184        }
185        self.hidden_bias[0] -= self.learning_rate * output_delta;
186
187        for i in 0..self.input_weights.nrows() {
188            for j in 0..self.input_weights.ncols() {
189                self.input_weights[[i, j]] -= self.learning_rate * hidden_delta[i] * input[j];
190            }
191            self.input_bias[i] -= self.learning_rate * hidden_delta[i];
192        }
193
194        Ok(())
195    }
196
197    /// Get training history
198    pub fn get_training_history(&self) -> Vec<TrainingExample> {
199        self.training_history.read().unwrap().clone()
200    }
201
202    /// Calculate prediction accuracy on historical data
203    pub fn calculate_accuracy(&self) -> f64 {
204        let history = self.training_history.read().unwrap();
205        if history.is_empty() {
206            return 0.0;
207        }
208
209        let mut total_error = 0.0;
210        for example in history.iter() {
211            if let Ok(predicted) = self.predict(&example.features) {
212                total_error += (predicted - example.error_rate).abs();
213            }
214        }
215
216        1.0 - (total_error / history.len() as f64)
217    }
218}
219
220impl CircuitFeatures {
221    /// Extract features from a quantum circuit
222    ///
223    /// # Arguments
224    /// * `gates` - List of quantum gates in the circuit
225    /// * `num_qubits` - Total number of qubits
226    pub fn extract_from_circuit(gates: &[Box<dyn GateOp>], num_qubits: usize) -> Self {
227        let mut single_qubit_gates = 0;
228        let mut two_qubit_gates = 0;
229        let mut measurement_count = 0;
230        let mut max_depth = 0;
231        let mut qubit_depths: HashMap<QubitId, usize> = HashMap::new();
232
233        // Analyze gate structure
234        for gate in gates {
235            let qubits = gate.qubits();
236
237            match qubits.len() {
238                1 => single_qubit_gates += 1,
239                2 => two_qubit_gates += 1,
240                _ => {}
241            }
242
243            // Track depth per qubit
244            let current_depth = qubits
245                .iter()
246                .map(|q| *qubit_depths.get(q).unwrap_or(&0))
247                .max()
248                .unwrap_or(0)
249                + 1;
250
251            for qubit in qubits {
252                qubit_depths.insert(qubit, current_depth);
253            }
254
255            max_depth = max_depth.max(current_depth);
256
257            // Count measurements (check gate name)
258            if gate.name().to_lowercase().contains("measure") {
259                measurement_count += 1;
260            }
261        }
262
263        let total_gates = single_qubit_gates + two_qubit_gates;
264        let connectivity = if total_gates > 0 {
265            (single_qubit_gates + 2 * two_qubit_gates) as f64 / total_gates as f64
266        } else {
267            0.0
268        };
269
270        // Estimate entanglement entropy (simplified)
271        // More two-qubit gates relative to qubits = higher entanglement
272        let entanglement_entropy = if num_qubits > 0 {
273            (two_qubit_gates as f64 / num_qubits as f64).min(num_qubits as f64)
274        } else {
275            0.0
276        };
277
278        // Estimate average gate fidelity (simplified, would be calibrated)
279        let average_gate_fidelity = 0.99 - (two_qubit_gates as f64 * 0.005);
280
281        Self {
282            depth: max_depth,
283            single_qubit_gates,
284            two_qubit_gates,
285            connectivity,
286            average_gate_fidelity: average_gate_fidelity.max(0.90),
287            measurement_count,
288            width: num_qubits,
289            entanglement_entropy,
290        }
291    }
292
293    /// Convert features to vector for ML input
294    pub fn to_vector(&self) -> Vec<f64> {
295        vec![
296            self.depth as f64,
297            self.single_qubit_gates as f64,
298            self.two_qubit_gates as f64,
299            self.connectivity,
300            self.average_gate_fidelity,
301            self.measurement_count as f64,
302            self.width as f64,
303            self.entanglement_entropy,
304        ]
305    }
306}
307
308/// Adaptive error mitigation strategy
309///
310/// Dynamically adjusts mitigation parameters based on learned error patterns
311pub struct AdaptiveErrorMitigation {
312    /// Neural predictor for error rates
313    predictor: NeuralErrorPredictor,
314    /// Mitigation strength multiplier
315    mitigation_strength: f64,
316    /// Minimum shots for statistical significance
317    min_shots: usize,
318    /// Performance metrics
319    metrics: Arc<RwLock<MitigationMetrics>>,
320}
321
322/// Metrics tracking mitigation performance
323#[derive(Debug, Clone)]
324pub struct MitigationMetrics {
325    pub total_circuits: usize,
326    pub average_improvement: f64,
327    pub prediction_accuracy: f64,
328    pub adaptive_adjustments: usize,
329}
330
331impl AdaptiveErrorMitigation {
332    /// Create new adaptive error mitigation system
333    pub fn new() -> Self {
334        Self {
335            predictor: NeuralErrorPredictor::new(8, 16, 0.01),
336            mitigation_strength: 1.0,
337            min_shots: 1024,
338            metrics: Arc::new(RwLock::new(MitigationMetrics {
339                total_circuits: 0,
340                average_improvement: 0.0,
341                prediction_accuracy: 0.0,
342                adaptive_adjustments: 0,
343            })),
344        }
345    }
346
347    /// Predict optimal mitigation parameters for a circuit
348    ///
349    /// # Arguments
350    /// * `features` - Circuit features
351    ///
352    /// # Returns
353    /// Recommended number of shots and mitigation strength
354    pub fn recommend_mitigation(&self, features: &CircuitFeatures) -> QuantRS2Result<(usize, f64)> {
355        let predicted_error = self.predictor.predict(&features.to_vector())?;
356
357        // Adaptive shot allocation: more errors = more shots needed
358        let recommended_shots = (self.min_shots as f64 * (1.0 + predicted_error * 10.0)) as usize;
359
360        // Adaptive mitigation strength
361        let strength = self.mitigation_strength * (1.0 + predicted_error * 2.0);
362
363        Ok((recommended_shots, strength))
364    }
365
366    /// Update predictor with observed results
367    pub fn update_from_results(
368        &mut self,
369        features: &CircuitFeatures,
370        observed_error: f64,
371    ) -> QuantRS2Result<()> {
372        self.predictor
373            .train(&features.to_vector(), observed_error)?;
374
375        // Update metrics
376        {
377            let mut metrics = self.metrics.write().unwrap();
378            metrics.total_circuits += 1;
379            metrics.prediction_accuracy = self.predictor.calculate_accuracy();
380        }
381
382        Ok(())
383    }
384
385    /// Get current metrics
386    pub fn get_metrics(&self) -> MitigationMetrics {
387        self.metrics.read().unwrap().clone()
388    }
389}
390
391impl Default for AdaptiveErrorMitigation {
392    fn default() -> Self {
393        Self::new()
394    }
395}
396
397#[cfg(test)]
398mod tests {
399    use super::*;
400
401    #[test]
402    fn test_neural_predictor_creation() {
403        let predictor = NeuralErrorPredictor::new(8, 16, 0.01);
404        assert_eq!(predictor.input_weights.ncols(), 8);
405        assert_eq!(predictor.input_weights.nrows(), 16);
406    }
407
408    #[test]
409    fn test_prediction() {
410        let predictor = NeuralErrorPredictor::new(8, 16, 0.01);
411        let features = vec![10.0, 5.0, 3.0, 1.5, 0.99, 2.0, 4.0, 1.2];
412
413        let result = predictor.predict(&features);
414        assert!(result.is_ok());
415
416        let error_rate = result.unwrap();
417        assert!(error_rate >= 0.0 && error_rate <= 1.0);
418    }
419
420    #[test]
421    fn test_training() {
422        let mut predictor = NeuralErrorPredictor::new(8, 16, 0.01);
423        let features = vec![10.0, 5.0, 3.0, 1.5, 0.99, 2.0, 4.0, 1.2];
424
425        // Train multiple times
426        for _ in 0..100 {
427            let result = predictor.train(&features, 0.05);
428            assert!(result.is_ok());
429        }
430
431        // Check that training history is updated
432        let history = predictor.get_training_history();
433        assert_eq!(history.len(), 100);
434    }
435
436    #[test]
437    fn test_adaptive_mitigation() {
438        let mitigation = AdaptiveErrorMitigation::new();
439
440        let features = CircuitFeatures {
441            depth: 10,
442            single_qubit_gates: 20,
443            two_qubit_gates: 8,
444            connectivity: 1.4,
445            average_gate_fidelity: 0.99,
446            measurement_count: 4,
447            width: 4,
448            entanglement_entropy: 2.0,
449        };
450
451        let result = mitigation.recommend_mitigation(&features);
452        assert!(result.is_ok());
453
454        let (shots, strength) = result.unwrap();
455        assert!(shots >= 1024);
456        assert!(strength > 0.0);
457    }
458}