1use crate::error::{QuantRS2Error, QuantRS2Result};
9use crate::gate::GateOp;
10use crate::qubit::QubitId;
11use scirs2_core::ndarray::{Array1, Array2};
12use scirs2_core::random::{thread_rng, Rng};
13use scirs2_core::{Complex32, Complex64};
14use std::collections::HashMap;
15use std::sync::{Arc, RwLock};
16
17#[derive(Debug, Clone)]
22pub struct NeuralErrorPredictor {
23 input_weights: Array2<f64>,
25 hidden_weights: Array2<f64>,
27 input_bias: Array1<f64>,
29 hidden_bias: Array1<f64>,
31 learning_rate: f64,
33 training_history: Arc<RwLock<Vec<TrainingExample>>>,
35}
36
37#[derive(Debug, Clone)]
39pub struct TrainingExample {
40 pub features: Vec<f64>,
42 pub error_rate: f64,
44 pub timestamp: std::time::Instant,
46}
47
48#[derive(Debug, Clone)]
50pub struct CircuitFeatures {
51 pub depth: usize,
53 pub single_qubit_gates: usize,
55 pub two_qubit_gates: usize,
57 pub connectivity: f64,
59 pub average_gate_fidelity: f64,
61 pub measurement_count: usize,
63 pub width: usize,
65 pub entanglement_entropy: f64,
67}
68
69impl NeuralErrorPredictor {
70 pub fn new(input_size: usize, hidden_size: usize, learning_rate: f64) -> Self {
77 let mut rng = thread_rng();
78
79 let xavier_input = (6.0 / (input_size + hidden_size) as f64).sqrt();
81 let xavier_hidden = (6.0 / (hidden_size + 1) as f64).sqrt();
82
83 let input_weights = Array2::from_shape_fn((hidden_size, input_size), |_| {
84 rng.gen_range(-xavier_input..xavier_input)
85 });
86
87 let hidden_weights = Array2::from_shape_fn((1, hidden_size), |_| {
88 rng.gen_range(-xavier_hidden..xavier_hidden)
89 });
90
91 let input_bias = Array1::zeros(hidden_size);
92 let hidden_bias = Array1::zeros(1);
93
94 Self {
95 input_weights,
96 hidden_weights,
97 input_bias,
98 hidden_bias,
99 learning_rate,
100 training_history: Arc::new(RwLock::new(Vec::new())),
101 }
102 }
103
104 pub fn predict(&self, features: &[f64]) -> QuantRS2Result<f64> {
112 if features.len() != self.input_weights.ncols() {
113 return Err(QuantRS2Error::InvalidInput(format!(
114 "Expected {} features, got {}",
115 self.input_weights.ncols(),
116 features.len()
117 )));
118 }
119
120 let input = Array1::from_vec(features.to_vec());
122
123 let hidden_pre = self.input_weights.dot(&input) + &self.input_bias;
125 let hidden = hidden_pre.mapv(|x| x.max(0.0)); let output_pre = self.hidden_weights.dot(&hidden) + &self.hidden_bias;
129 let output = 1.0 / (1.0 + (-output_pre[0]).exp()); Ok(output.clamp(0.0, 1.0))
132 }
133
134 pub fn train(&mut self, features: &[f64], observed_error_rate: f64) -> QuantRS2Result<()> {
140 if features.len() != self.input_weights.ncols() {
141 return Err(QuantRS2Error::InvalidInput(
142 "Feature size mismatch".to_string(),
143 ));
144 }
145
146 {
148 let mut history = self.training_history.write().unwrap();
149 history.push(TrainingExample {
150 features: features.to_vec(),
151 error_rate: observed_error_rate,
152 timestamp: std::time::Instant::now(),
153 });
154
155 let len = history.len();
157 if len > 1000 {
158 history.drain(0..len - 1000);
159 }
160 }
161
162 let input = Array1::from_vec(features.to_vec());
164
165 let hidden_pre = self.input_weights.dot(&input) + &self.input_bias;
167 let hidden = hidden_pre.mapv(|x| x.max(0.0));
168
169 let output_pre = self.hidden_weights.dot(&hidden) + &self.hidden_bias;
170 let predicted = 1.0 / (1.0 + (-output_pre[0]).exp());
171
172 let output_error = predicted - observed_error_rate;
175 let output_delta = output_error * predicted * (1.0 - predicted); let hidden_error = output_delta * self.hidden_weights.row(0).to_owned();
179 let hidden_delta = hidden_error.mapv(|x| if x > 0.0 { x } else { 0.0 }); for i in 0..self.hidden_weights.ncols() {
183 self.hidden_weights[[0, i]] -= self.learning_rate * output_delta * hidden[i];
184 }
185 self.hidden_bias[0] -= self.learning_rate * output_delta;
186
187 for i in 0..self.input_weights.nrows() {
188 for j in 0..self.input_weights.ncols() {
189 self.input_weights[[i, j]] -= self.learning_rate * hidden_delta[i] * input[j];
190 }
191 self.input_bias[i] -= self.learning_rate * hidden_delta[i];
192 }
193
194 Ok(())
195 }
196
197 pub fn get_training_history(&self) -> Vec<TrainingExample> {
199 self.training_history.read().unwrap().clone()
200 }
201
202 pub fn calculate_accuracy(&self) -> f64 {
204 let history = self.training_history.read().unwrap();
205 if history.is_empty() {
206 return 0.0;
207 }
208
209 let mut total_error = 0.0;
210 for example in history.iter() {
211 if let Ok(predicted) = self.predict(&example.features) {
212 total_error += (predicted - example.error_rate).abs();
213 }
214 }
215
216 1.0 - (total_error / history.len() as f64)
217 }
218}
219
220impl CircuitFeatures {
221 pub fn extract_from_circuit(gates: &[Box<dyn GateOp>], num_qubits: usize) -> Self {
227 let mut single_qubit_gates = 0;
228 let mut two_qubit_gates = 0;
229 let mut measurement_count = 0;
230 let mut max_depth = 0;
231 let mut qubit_depths: HashMap<QubitId, usize> = HashMap::new();
232
233 for gate in gates {
235 let qubits = gate.qubits();
236
237 match qubits.len() {
238 1 => single_qubit_gates += 1,
239 2 => two_qubit_gates += 1,
240 _ => {}
241 }
242
243 let current_depth = qubits
245 .iter()
246 .map(|q| *qubit_depths.get(q).unwrap_or(&0))
247 .max()
248 .unwrap_or(0)
249 + 1;
250
251 for qubit in qubits {
252 qubit_depths.insert(qubit, current_depth);
253 }
254
255 max_depth = max_depth.max(current_depth);
256
257 if gate.name().to_lowercase().contains("measure") {
259 measurement_count += 1;
260 }
261 }
262
263 let total_gates = single_qubit_gates + two_qubit_gates;
264 let connectivity = if total_gates > 0 {
265 (single_qubit_gates + 2 * two_qubit_gates) as f64 / total_gates as f64
266 } else {
267 0.0
268 };
269
270 let entanglement_entropy = if num_qubits > 0 {
273 (two_qubit_gates as f64 / num_qubits as f64).min(num_qubits as f64)
274 } else {
275 0.0
276 };
277
278 let average_gate_fidelity = 0.99 - (two_qubit_gates as f64 * 0.005);
280
281 Self {
282 depth: max_depth,
283 single_qubit_gates,
284 two_qubit_gates,
285 connectivity,
286 average_gate_fidelity: average_gate_fidelity.max(0.90),
287 measurement_count,
288 width: num_qubits,
289 entanglement_entropy,
290 }
291 }
292
293 pub fn to_vector(&self) -> Vec<f64> {
295 vec![
296 self.depth as f64,
297 self.single_qubit_gates as f64,
298 self.two_qubit_gates as f64,
299 self.connectivity,
300 self.average_gate_fidelity,
301 self.measurement_count as f64,
302 self.width as f64,
303 self.entanglement_entropy,
304 ]
305 }
306}
307
308pub struct AdaptiveErrorMitigation {
312 predictor: NeuralErrorPredictor,
314 mitigation_strength: f64,
316 min_shots: usize,
318 metrics: Arc<RwLock<MitigationMetrics>>,
320}
321
322#[derive(Debug, Clone)]
324pub struct MitigationMetrics {
325 pub total_circuits: usize,
326 pub average_improvement: f64,
327 pub prediction_accuracy: f64,
328 pub adaptive_adjustments: usize,
329}
330
331impl AdaptiveErrorMitigation {
332 pub fn new() -> Self {
334 Self {
335 predictor: NeuralErrorPredictor::new(8, 16, 0.01),
336 mitigation_strength: 1.0,
337 min_shots: 1024,
338 metrics: Arc::new(RwLock::new(MitigationMetrics {
339 total_circuits: 0,
340 average_improvement: 0.0,
341 prediction_accuracy: 0.0,
342 adaptive_adjustments: 0,
343 })),
344 }
345 }
346
347 pub fn recommend_mitigation(&self, features: &CircuitFeatures) -> QuantRS2Result<(usize, f64)> {
355 let predicted_error = self.predictor.predict(&features.to_vector())?;
356
357 let recommended_shots = (self.min_shots as f64 * (1.0 + predicted_error * 10.0)) as usize;
359
360 let strength = self.mitigation_strength * (1.0 + predicted_error * 2.0);
362
363 Ok((recommended_shots, strength))
364 }
365
366 pub fn update_from_results(
368 &mut self,
369 features: &CircuitFeatures,
370 observed_error: f64,
371 ) -> QuantRS2Result<()> {
372 self.predictor
373 .train(&features.to_vector(), observed_error)?;
374
375 {
377 let mut metrics = self.metrics.write().unwrap();
378 metrics.total_circuits += 1;
379 metrics.prediction_accuracy = self.predictor.calculate_accuracy();
380 }
381
382 Ok(())
383 }
384
385 pub fn get_metrics(&self) -> MitigationMetrics {
387 self.metrics.read().unwrap().clone()
388 }
389}
390
391impl Default for AdaptiveErrorMitigation {
392 fn default() -> Self {
393 Self::new()
394 }
395}
396
397#[cfg(test)]
398mod tests {
399 use super::*;
400
401 #[test]
402 fn test_neural_predictor_creation() {
403 let predictor = NeuralErrorPredictor::new(8, 16, 0.01);
404 assert_eq!(predictor.input_weights.ncols(), 8);
405 assert_eq!(predictor.input_weights.nrows(), 16);
406 }
407
408 #[test]
409 fn test_prediction() {
410 let predictor = NeuralErrorPredictor::new(8, 16, 0.01);
411 let features = vec![10.0, 5.0, 3.0, 1.5, 0.99, 2.0, 4.0, 1.2];
412
413 let result = predictor.predict(&features);
414 assert!(result.is_ok());
415
416 let error_rate = result.unwrap();
417 assert!(error_rate >= 0.0 && error_rate <= 1.0);
418 }
419
420 #[test]
421 fn test_training() {
422 let mut predictor = NeuralErrorPredictor::new(8, 16, 0.01);
423 let features = vec![10.0, 5.0, 3.0, 1.5, 0.99, 2.0, 4.0, 1.2];
424
425 for _ in 0..100 {
427 let result = predictor.train(&features, 0.05);
428 assert!(result.is_ok());
429 }
430
431 let history = predictor.get_training_history();
433 assert_eq!(history.len(), 100);
434 }
435
436 #[test]
437 fn test_adaptive_mitigation() {
438 let mitigation = AdaptiveErrorMitigation::new();
439
440 let features = CircuitFeatures {
441 depth: 10,
442 single_qubit_gates: 20,
443 two_qubit_gates: 8,
444 connectivity: 1.4,
445 average_gate_fidelity: 0.99,
446 measurement_count: 4,
447 width: 4,
448 entanglement_entropy: 2.0,
449 };
450
451 let result = mitigation.recommend_mitigation(&features);
452 assert!(result.is_ok());
453
454 let (shots, strength) = result.unwrap();
455 assert!(shots >= 1024);
456 assert!(strength > 0.0);
457 }
458}