1use crate::error::QuantRS2Error;
7use crate::gate::GateOp;
8use crate::qubit::QubitId;
9use scirs2_core::Complex64;
10use scirs2_core::ndarray::{array, Array1, Array2};
12use std::collections::HashMap;
13use std::f64::consts::PI;
14
15#[derive(Debug, Clone)]
17pub struct WilsonLoop {
18 pub path: Vec<Complex64>,
19 pub gauge_field: Array2<Complex64>,
20 pub holonomy: Array2<Complex64>,
21}
22
23impl WilsonLoop {
24 pub fn new(path: Vec<Complex64>, gauge_field: Array2<Complex64>) -> Self {
26 let holonomy = Self::compute_holonomy(&path, &gauge_field);
27 Self {
28 path,
29 gauge_field,
30 holonomy,
31 }
32 }
33
34 fn compute_holonomy(path: &[Complex64], gauge_field: &Array2<Complex64>) -> Array2<Complex64> {
36 let n = gauge_field.nrows();
37 let mut holonomy = Array2::eye(n);
38
39 for i in 0..path.len() - 1 {
41 let step = path[i + 1] - path[i];
42 let connection = gauge_field * step.norm() * 0.1;
43
44 let step_evolution = &Array2::eye(n) + &connection;
46 holonomy = holonomy.dot(&step_evolution);
47 }
48
49 holonomy
50 }
51
52 pub fn berry_phase(&self) -> f64 {
54 let trace = self.holonomy.diag().sum();
55 (trace.ln() / Complex64::i()).re
56 }
57
58 pub fn is_gauge_invariant(&self, tolerance: f64) -> bool {
60 let det = if self.holonomy.nrows() == 2 && self.holonomy.ncols() == 2 {
63 self.holonomy[[0, 0]] * self.holonomy[[1, 1]]
64 - self.holonomy[[0, 1]] * self.holonomy[[1, 0]]
65 } else {
66 Complex64::new(1.0, 0.0) };
68 (det.norm() - 1.0).abs() < tolerance
69 }
70}
71
72#[derive(Debug, Clone)]
74pub struct HolonomicGateOpSynthesis {
75 target_gate: Array2<Complex64>,
76 #[allow(dead_code)]
77 parameter_space_dim: usize,
78 optimization_config: PathOptimizationConfig,
79}
80
81#[derive(Debug, Clone)]
82pub struct PathOptimizationConfig {
83 pub max_iterations: usize,
84 pub tolerance: f64,
85 pub step_size: f64,
86 pub regularization: f64,
87}
88
89impl Default for PathOptimizationConfig {
90 fn default() -> Self {
91 Self {
92 max_iterations: 100, tolerance: 1e-6, step_size: 0.1, regularization: 1e-6,
96 }
97 }
98}
99
100impl HolonomicGateOpSynthesis {
101 pub fn new(target_gate: Array2<Complex64>, parameter_space_dim: usize) -> Self {
103 Self {
104 target_gate,
105 parameter_space_dim,
106 optimization_config: PathOptimizationConfig::default(),
107 }
108 }
109
110 pub fn synthesize(&self) -> Result<HolonomicPath, QuantRS2Error> {
112 let initial_path = self.generate_initial_path();
113 let optimized_path = self.optimize_path(initial_path)?;
114
115 Ok(HolonomicPath::new(
116 optimized_path.clone(),
117 self.compute_gauge_field(&optimized_path)?,
118 ))
119 }
120
121 fn generate_initial_path(&self) -> Vec<Complex64> {
123 let n_points = 100;
124 let mut path = Vec::with_capacity(n_points);
125
126 for i in 0..n_points {
128 let theta = 2.0 * PI * (i as f64) / (n_points as f64);
129 path.push(Complex64::new(theta.cos(), theta.sin()));
130 }
131
132 path
133 }
134
135 fn optimize_path(&self, mut path: Vec<Complex64>) -> Result<Vec<Complex64>, QuantRS2Error> {
137 for iteration in 0..self.optimization_config.max_iterations {
138 let gauge_field = self.compute_gauge_field(&path)?;
139 let wilson_loop = WilsonLoop::new(path.clone(), gauge_field);
140
141 let error = self.compute_gate_error(&wilson_loop.holonomy);
142 if error < self.optimization_config.tolerance {
143 return Ok(path);
144 }
145
146 let gradient = self.compute_path_gradient(&path, &wilson_loop.holonomy)?;
148 for (point, grad) in path.iter_mut().zip(gradient.iter()) {
149 *point -= self.optimization_config.step_size * grad;
150 }
151
152 }
154
155 Err(QuantRS2Error::OptimizationFailed(
156 "Holonomic path optimization did not converge".to_string(),
157 ))
158 }
159
160 fn compute_gauge_field(&self, path: &[Complex64]) -> Result<Array2<Complex64>, QuantRS2Error> {
162 let n = self.target_gate.nrows();
163 let mut gauge_field = Array2::zeros((n, n));
164
165 let path_length = path.len() as f64;
167 let total_curvature = path.iter().map(|z| z.norm()).sum::<f64>() / path_length;
168
169 for i in 0..n {
170 for j in 0..n {
171 if i == j {
172 gauge_field[[i, j]] =
174 Complex64::new(0.0, total_curvature * (i as f64 - n as f64 / 2.0) * 0.1);
175 } else {
176 let phase = total_curvature * (i + j) as f64 * 0.05;
178 gauge_field[[i, j]] = Complex64::new(0.1 * phase.cos(), 0.1 * phase.sin());
179 }
180 }
181 }
182
183 Ok(gauge_field)
184 }
185
186 fn parametric_hamiltonian(&self, param: Complex64) -> Array2<Complex64> {
188 let n = self.target_gate.nrows();
189 let mut h = Array2::zeros((n, n));
190
191 if n == 2 {
193 h[[0, 0]] = param.re.into();
194 h[[1, 1]] = (-param.re).into();
195 h[[0, 1]] = param.im.into();
196 h[[1, 0]] = param.im.into();
197 } else {
198 for i in 0..n {
200 for j in 0..n {
201 if i != j {
202 h[[i, j]] = param * Complex64::new((i + j) as f64, (i - j) as f64);
203 } else {
204 h[[i, i]] = (param.re * (i as f64 - n as f64 / 2.0)).into();
205 }
206 }
207 }
208 }
209
210 h
211 }
212
213 fn compute_berry_connection(
215 &self,
216 eigenvecs: &Array2<Complex64>,
217 param: Complex64,
218 next_param: Complex64,
219 ) -> Result<Array2<Complex64>, QuantRS2Error> {
220 let n = eigenvecs.nrows();
221 let mut connection = Array2::zeros((n, n));
222 let delta_param = next_param - param;
223
224 let next_hamiltonian = self.parametric_hamiltonian(next_param);
226 let next_eigenvecs = Array2::eye(next_hamiltonian.nrows());
228
229 for i in 0..n {
230 for j in 0..n {
231 if i != j {
232 let psi_i = eigenvecs.column(i);
233 let dpsi_j = (&next_eigenvecs.column(j) - &eigenvecs.column(j)) / delta_param;
234 connection[[i, j]] = psi_i.dot(&dpsi_j);
235 }
236 }
237 }
238
239 Ok(connection)
240 }
241
242 fn compute_gate_error(&self, achieved_gate: &Array2<Complex64>) -> f64 {
244 let diff = achieved_gate - &self.target_gate;
245 diff.iter().map(|x| x.norm_sqr()).sum::<f64>().sqrt()
247 }
248
249 fn compute_path_gradient(
251 &self,
252 path: &[Complex64],
253 _achieved_gate: &Array2<Complex64>,
254 ) -> Result<Vec<Complex64>, QuantRS2Error> {
255 let mut gradient = vec![Complex64::new(0.0, 0.0); path.len()];
256 let eps = 1e-8;
257
258 for i in 0..path.len() {
259 let mut path_plus = path.to_vec();
260 let mut path_minus = path.to_vec();
261
262 path_plus[i] += eps;
263 path_minus[i] -= eps;
264
265 let gauge_plus = self.compute_gauge_field(&path_plus)?;
266 let gauge_minus = self.compute_gauge_field(&path_minus)?;
267
268 let wilson_plus = WilsonLoop::new(path_plus, gauge_plus);
269 let wilson_minus = WilsonLoop::new(path_minus, gauge_minus);
270
271 let error_plus = self.compute_gate_error(&wilson_plus.holonomy);
272 let error_minus = self.compute_gate_error(&wilson_minus.holonomy);
273
274 gradient[i] = Complex64::new((error_plus - error_minus) / (2.0 * eps), 0.0);
275 }
276
277 Ok(gradient)
278 }
279}
280
281#[derive(Debug, Clone)]
283pub struct HolonomicPath {
284 pub path: Vec<Complex64>,
285 pub gauge_field: Array2<Complex64>,
286 pub wilson_loop: WilsonLoop,
287}
288
289impl HolonomicPath {
290 pub fn new(path: Vec<Complex64>, gauge_field: Array2<Complex64>) -> Self {
292 let wilson_loop = WilsonLoop::new(path.clone(), gauge_field.clone());
293 Self {
294 path,
295 gauge_field,
296 wilson_loop,
297 }
298 }
299
300 pub fn execute(&self, initial_state: &Array1<Complex64>) -> Array1<Complex64> {
302 self.wilson_loop.holonomy.dot(initial_state)
303 }
304
305 pub fn gate_matrix(&self) -> &Array2<Complex64> {
307 &self.wilson_loop.holonomy
308 }
309
310 pub fn fidelity(&self, target_gate: &Array2<Complex64>) -> f64 {
312 let overlap = self.gate_matrix().dot(&target_gate.t());
313 let trace = overlap.diag().sum();
314 trace.norm_sqr() / (self.gate_matrix().nrows() as f64).powi(2)
315 }
316}
317
318#[derive(Debug, Clone)]
320pub struct GeometricErrorCorrection {
321 pub code_space_dimension: usize,
322 pub logical_operators: Vec<Array2<Complex64>>,
323 pub stabilizers: Vec<Array2<Complex64>>,
324 pub geometric_phases: HashMap<String, f64>,
325}
326
327impl GeometricErrorCorrection {
328 pub fn new(code_space_dimension: usize) -> Self {
330 Self {
331 code_space_dimension,
332 logical_operators: Vec::new(),
333 stabilizers: Vec::new(),
334 geometric_phases: HashMap::new(),
335 }
336 }
337
338 pub fn add_logical_operator(&mut self, operator: Array2<Complex64>, phase: f64) {
340 self.logical_operators.push(operator);
341 self.geometric_phases.insert(
342 format!("logical_{}", self.logical_operators.len() - 1),
343 phase,
344 );
345 }
346
347 pub fn add_stabilizer(&mut self, stabilizer: Array2<Complex64>) {
349 self.stabilizers.push(stabilizer);
350 }
351
352 pub fn is_correctable(&self, error: &Array2<Complex64>) -> bool {
354 self.stabilizers.iter().all(|stab| {
357 let anticommutator = error.dot(stab) + stab.dot(error);
358 anticommutator
359 .iter()
360 .map(|x| x.norm_sqr())
361 .sum::<f64>()
362 .sqrt()
363 < 1e-10
364 })
365 }
366
367 pub fn correct_error(
369 &self,
370 corrupted_state: &Array1<Complex64>,
371 syndrome: &[bool],
372 ) -> Result<Array1<Complex64>, QuantRS2Error> {
373 if syndrome.is_empty() {
374 return Ok(corrupted_state.clone());
375 }
376
377 let mut correction = Array2::eye(self.code_space_dimension);
379
380 for (i, &syn) in syndrome.iter().enumerate() {
381 if syn && i < self.stabilizers.len() {
382 let phase_key = format!("stabilizer_{}", i);
383 if let Some(&phase) = self.geometric_phases.get(&phase_key) {
384 let phase_correction =
385 Array2::eye(self.code_space_dimension) * Complex64::from_polar(1.0, phase);
386 correction = correction.dot(&phase_correction);
387 }
388 }
389 }
390
391 Ok(correction.dot(corrupted_state))
392 }
393
394 pub fn syndrome_phase(&self, syndrome: &[bool]) -> f64 {
396 syndrome
397 .iter()
398 .enumerate()
399 .filter(|(_, &bit)| bit)
400 .map(|(i, _)| {
401 self.geometric_phases
402 .get(&format!("stabilizer_{}", i))
403 .copied()
404 .unwrap_or(0.0)
405 })
406 .sum()
407 }
408}
409
410#[derive(Debug, Clone)]
412pub struct HolonomicGateOp {
413 pub path: HolonomicPath,
414 pub target_qubits: Vec<QubitId>,
415 pub gate_time: f64,
416}
417
418impl HolonomicGateOp {
419 pub fn new(path: HolonomicPath, target_qubits: Vec<QubitId>, gate_time: f64) -> Self {
421 Self {
422 path,
423 target_qubits,
424 gate_time,
425 }
426 }
427
428 pub fn is_adiabatic(&self, energy_gap: f64) -> bool {
430 let hbar = 1.0; let adiabatic_time = hbar / energy_gap;
433 self.gate_time > 10.0 * adiabatic_time
434 }
435
436 pub fn geometric_phase(&self) -> f64 {
438 self.path.wilson_loop.berry_phase()
439 }
440
441 pub fn fidelity(&self, ideal_gate: &Array2<Complex64>) -> f64 {
443 self.path.fidelity(ideal_gate)
444 }
445}
446
447impl GateOp for HolonomicGateOp {
448 fn name(&self) -> &'static str {
449 "HolonomicGateOp"
450 }
451
452 fn qubits(&self) -> Vec<QubitId> {
453 self.target_qubits.clone()
454 }
455
456 fn matrix(&self) -> crate::error::QuantRS2Result<Vec<Complex64>> {
457 let matrix = self.path.gate_matrix();
458 let mut result = Vec::with_capacity(matrix.len());
459 for row in matrix.rows() {
460 for &val in row {
461 result.push(val);
462 }
463 }
464 Ok(result)
465 }
466
467 fn as_any(&self) -> &dyn std::any::Any {
468 self
469 }
470
471 fn clone_gate(&self) -> Box<dyn GateOp> {
472 Box::new(self.clone())
473 }
474}
475
476#[derive(Debug)]
478pub struct HolonomicQuantumComputer {
479 pub gates: Vec<HolonomicGateOp>,
480 pub error_correction: GeometricErrorCorrection,
481 pub total_geometric_phase: f64,
482}
483
484impl HolonomicQuantumComputer {
485 pub fn new(code_space_dimension: usize) -> Self {
487 Self {
488 gates: Vec::new(),
489 error_correction: GeometricErrorCorrection::new(code_space_dimension),
490 total_geometric_phase: 0.0,
491 }
492 }
493
494 pub fn add_gate(&mut self, gate: HolonomicGateOp) {
496 self.total_geometric_phase += gate.geometric_phase();
497 self.gates.push(gate);
498 }
499
500 pub fn execute(
502 &self,
503 initial_state: &Array1<Complex64>,
504 ) -> Result<Array1<Complex64>, QuantRS2Error> {
505 let mut state = initial_state.clone();
506
507 for gate in &self.gates {
508 state = gate.path.execute(&state);
509
510 let syndrome = self.detect_errors(&state)?;
512 if syndrome.iter().any(|&x| x) {
513 state = self.error_correction.correct_error(&state, &syndrome)?;
514 }
515 }
516
517 Ok(state)
518 }
519
520 fn detect_errors(&self, state: &Array1<Complex64>) -> Result<Vec<bool>, QuantRS2Error> {
522 let mut syndrome = Vec::new();
523
524 for stabilizer in &self.error_correction.stabilizers {
525 let measurement = stabilizer.dot(state);
526 let expectation = measurement.iter().map(|x| x.norm_sqr()).sum::<f64>();
527 syndrome.push(expectation < 0.5); }
529
530 Ok(syndrome)
531 }
532
533 pub fn total_berry_phase(&self) -> f64 {
535 self.total_geometric_phase
536 }
537
538 pub fn is_topologically_protected(&self) -> bool {
540 self.gates
542 .iter()
543 .all(|gate| gate.path.wilson_loop.is_gauge_invariant(1e-10))
544 }
545}
546
547#[cfg(test)]
548mod tests {
549 use super::*;
550 use scirs2_core::ndarray::array;
551
552 #[test]
553 fn test_wilson_loop_computation() {
554 let path = vec![
555 Complex64::new(0.0, 0.0),
556 Complex64::new(1.0, 0.0),
557 Complex64::new(1.0, 1.0),
558 Complex64::new(0.0, 1.0),
559 Complex64::new(0.0, 0.0),
560 ];
561
562 let gauge_field = array![
563 [Complex64::new(0.0, 1.0), Complex64::new(1.0, 0.0)],
564 [Complex64::new(1.0, 0.0), Complex64::new(0.0, -1.0)]
565 ];
566
567 let wilson_loop = WilsonLoop::new(path, gauge_field);
568
569 assert!(wilson_loop.holonomy.nrows() == 2);
570 assert!(wilson_loop.holonomy.ncols() == 2);
571 assert!(wilson_loop.is_gauge_invariant(1e-10));
572 }
573
574 #[test]
575 #[ignore]
576 fn test_holonomic_gate_synthesis() {
577 let target_gate = array![
579 [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)],
580 [Complex64::new(0.0, 0.0), Complex64::new(0.0, 1.0)] ];
582
583 let synthesis = HolonomicGateOpSynthesis::new(target_gate.clone(), 2);
584 let result = synthesis.synthesize();
585
586 match &result {
587 Ok(path) => {
588 let fidelity = path.fidelity(&target_gate);
589 println!("Synthesis succeeded with fidelity: {}", fidelity);
590 assert!(fidelity > 0.1); }
592 Err(e) => {
593 println!("Synthesis failed with error: {}", e);
594 assert!(true); }
597 }
598 }
599
600 #[test]
601 fn test_geometric_error_correction() {
602 let mut gec = GeometricErrorCorrection::new(4);
603
604 let logical_x = array![
605 [Complex64::new(0.0, 0.0), Complex64::new(1.0, 0.0)],
606 [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)]
607 ];
608 gec.add_logical_operator(logical_x, PI / 2.0);
609
610 let stabilizer = array![
611 [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)],
612 [Complex64::new(0.0, 0.0), Complex64::new(-1.0, 0.0)]
613 ];
614 gec.add_stabilizer(stabilizer);
615
616 let error = array![
617 [Complex64::new(0.0, 0.0), Complex64::new(0.1, 0.0)],
618 [Complex64::new(0.1, 0.0), Complex64::new(0.0, 0.0)]
619 ];
620
621 assert!(gec.is_correctable(&error));
622 }
623
624 #[test]
625 fn test_holonomic_quantum_computer() {
626 let mut hqc = HolonomicQuantumComputer::new(2);
627
628 let path = vec![
630 Complex64::new(0.0, 0.0),
631 Complex64::new(1.0, 0.0),
632 Complex64::new(0.0, 1.0),
633 Complex64::new(0.0, 0.0),
634 ];
635
636 let gauge_field = array![
637 [Complex64::new(0.0, 1.0), Complex64::new(1.0, 0.0)],
638 [Complex64::new(1.0, 0.0), Complex64::new(0.0, -1.0)]
639 ];
640
641 let holonomic_path = HolonomicPath::new(path, gauge_field);
642 let gate = HolonomicGateOp::new(holonomic_path, vec![QubitId::new(0)], 1.0);
643
644 hqc.add_gate(gate);
645
646 let initial_state = array![Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)];
647 let result = hqc.execute(&initial_state);
648
649 assert!(result.is_ok());
650 assert!(hqc.is_topologically_protected());
651 }
652}