1use crate::{
10 error::{QuantRS2Error, QuantRS2Result},
11 gate::GateOp,
12 qubit::QubitId,
13};
14use scirs2_core::ndarray::{Array1, Array2};
15use scirs2_core::Complex64;
16use std::sync::Arc;
17
18pub mod cpu_backend;
40pub use cpu_backend::CpuBackend;
41#[cfg(feature = "cuda")]
42pub mod cuda_backend;
43#[cfg(feature = "metal")]
44pub mod metal_backend;
45#[cfg(feature = "metal")]
46pub mod metal_backend_scirs2_ready;
47#[cfg(feature = "vulkan")]
48pub mod vulkan_backend;
49
50pub mod scirs2_adapter;
52pub use crate::gpu_stubs::SciRS2GpuConfig;
53
54pub use scirs2_adapter::{
56 get_gpu_system_info, is_gpu_available, SciRS2BufferAdapter, SciRS2GpuBackend, SciRS2GpuFactory,
57 SciRS2GpuMetrics, SciRS2KernelAdapter,
58};
59
60pub mod adaptive_hardware_optimization;
62pub mod adaptive_simd;
63pub mod large_scale_simulation;
64pub mod memory_bandwidth_optimization;
65pub mod specialized_kernels;
66
67#[cfg(test)]
69mod metal_backend_tests;
70
71pub use adaptive_hardware_optimization::{
73 AccessPattern, AdaptiveHardwareOptimizer, AdaptiveOptimizationConfig, CalibrationResult,
74 HardwareAssessment, OptimizationParams, OptimizationReport, OptimizationStrategy,
75 PerformanceProfile, WorkloadCharacteristics,
76};
77pub use adaptive_simd::{
78 apply_batch_gates_adaptive, apply_single_qubit_adaptive, apply_two_qubit_adaptive,
79 get_adaptive_performance_report, initialize_adaptive_simd, AdaptiveSimdDispatcher, CpuFeatures,
80 SimdVariant,
81};
82pub use large_scale_simulation::{
83 LargeScaleGateType, LargeScaleObservable, LargeScalePerformanceStats, LargeScaleSimAccelerator,
84 LargeScaleSimConfig, LargeScaleStateVectorSim, LargeScaleTensorContractor, SimulationTaskType,
85 TensorDecompositionType,
86};
87pub use memory_bandwidth_optimization::{
88 MemoryBandwidthConfig, MemoryBandwidthMetrics, MemoryBandwidthOptimizer, MemoryBufferPool,
89 MemoryLayout, PoolStatistics, StreamingTransfer,
90};
91pub use specialized_kernels::{
92 FusionType, OptimizationConfig, PerformanceReport, PostQuantumCompressionType,
93 SpecializedGpuKernels,
94};
95
96pub trait GpuBuffer: Send + Sync {
98 fn size(&self) -> usize;
100
101 fn upload(&mut self, data: &[Complex64]) -> QuantRS2Result<()>;
103
104 fn download(&self, data: &mut [Complex64]) -> QuantRS2Result<()>;
106
107 fn sync(&self) -> QuantRS2Result<()>;
109
110 fn as_any(&self) -> &dyn std::any::Any;
112
113 fn as_any_mut(&mut self) -> &mut dyn std::any::Any;
115}
116
117pub trait SpecializedGpuKernel: Send + Sync {
119 fn apply_holonomic_gate(
121 &self,
122 state: &mut dyn GpuBuffer,
123 holonomy_matrix: &[Complex64],
124 target_qubits: &[QubitId],
125 ) -> QuantRS2Result<()>;
126
127 fn apply_post_quantum_hash_gate(
129 &self,
130 state: &mut dyn GpuBuffer,
131 hash_circuit: &[Complex64],
132 compression_type: PostQuantumCompressionType,
133 ) -> QuantRS2Result<()>;
134
135 fn apply_quantum_ml_attention(
137 &self,
138 state: &mut dyn GpuBuffer,
139 query_params: &[Complex64],
140 key_params: &[Complex64],
141 value_params: &[Complex64],
142 num_heads: usize,
143 ) -> QuantRS2Result<()>;
144
145 fn apply_fused_gate_sequence(
147 &self,
148 state: &mut dyn GpuBuffer,
149 gates: &[Box<dyn GateOp>],
150 ) -> QuantRS2Result<()>;
151
152 fn apply_tensor_contraction(
154 &self,
155 tensor_data: &mut dyn GpuBuffer,
156 contraction_indices: &[usize],
157 bond_dimension: usize,
158 ) -> QuantRS2Result<()>;
159}
160
161pub trait GpuKernel: Send + Sync {
163 fn apply_single_qubit_gate(
165 &self,
166 state: &mut dyn GpuBuffer,
167 gate_matrix: &[Complex64; 4],
168 qubit: QubitId,
169 n_qubits: usize,
170 ) -> QuantRS2Result<()>;
171
172 fn apply_two_qubit_gate(
174 &self,
175 state: &mut dyn GpuBuffer,
176 gate_matrix: &[Complex64; 16],
177 control: QubitId,
178 target: QubitId,
179 n_qubits: usize,
180 ) -> QuantRS2Result<()>;
181
182 fn apply_multi_qubit_gate(
184 &self,
185 state: &mut dyn GpuBuffer,
186 gate_matrix: &Array2<Complex64>,
187 qubits: &[QubitId],
188 n_qubits: usize,
189 ) -> QuantRS2Result<()>;
190
191 fn measure_qubit(
193 &self,
194 state: &dyn GpuBuffer,
195 qubit: QubitId,
196 n_qubits: usize,
197 ) -> QuantRS2Result<(bool, f64)>;
198
199 fn expectation_value(
201 &self,
202 state: &dyn GpuBuffer,
203 observable: &Array2<Complex64>,
204 qubits: &[QubitId],
205 n_qubits: usize,
206 ) -> QuantRS2Result<f64>;
207}
208
209pub trait EnhancedGpuBackend: GpuBackend {
211 fn specialized_kernel(&self) -> Option<&dyn SpecializedGpuKernel>;
213
214 fn apply_holonomic_gate(
216 &self,
217 state: &mut dyn GpuBuffer,
218 holonomy_matrix: &[Complex64],
219 target_qubits: &[QubitId],
220 ) -> QuantRS2Result<()> {
221 if let Some(kernel) = self.specialized_kernel() {
222 kernel.apply_holonomic_gate(state, holonomy_matrix, target_qubits)
223 } else {
224 Err(QuantRS2Error::UnsupportedOperation(
225 "Holonomic gates not supported by this backend".to_string(),
226 ))
227 }
228 }
229
230 fn apply_post_quantum_crypto(
232 &self,
233 state: &mut dyn GpuBuffer,
234 hash_circuit: &[Complex64],
235 compression_type: PostQuantumCompressionType,
236 ) -> QuantRS2Result<()> {
237 if let Some(kernel) = self.specialized_kernel() {
238 kernel.apply_post_quantum_hash_gate(state, hash_circuit, compression_type)
239 } else {
240 Err(QuantRS2Error::UnsupportedOperation(
241 "Post-quantum crypto gates not supported by this backend".to_string(),
242 ))
243 }
244 }
245
246 fn apply_quantum_ml_attention(
248 &self,
249 state: &mut dyn GpuBuffer,
250 query_params: &[Complex64],
251 key_params: &[Complex64],
252 value_params: &[Complex64],
253 num_heads: usize,
254 ) -> QuantRS2Result<()> {
255 if let Some(kernel) = self.specialized_kernel() {
256 kernel.apply_quantum_ml_attention(
257 state,
258 query_params,
259 key_params,
260 value_params,
261 num_heads,
262 )
263 } else {
264 Err(QuantRS2Error::UnsupportedOperation(
265 "Quantum ML attention not supported by this backend".to_string(),
266 ))
267 }
268 }
269
270 fn apply_fused_gates(
272 &self,
273 state: &mut dyn GpuBuffer,
274 gates: &[Box<dyn GateOp>],
275 ) -> QuantRS2Result<()> {
276 if let Some(kernel) = self.specialized_kernel() {
277 kernel.apply_fused_gate_sequence(state, gates)
278 } else {
279 for gate in gates {
281 let qubits = gate.qubits();
282 self.apply_gate(state, gate.as_ref(), &qubits, qubits.len())?;
283 }
284 Ok(())
285 }
286 }
287
288 fn optimization_config(&self) -> OptimizationConfig {
290 OptimizationConfig::default()
291 }
292
293 fn performance_stats(&self) -> PerformanceReport {
295 PerformanceReport {
296 average_kernel_times: std::collections::HashMap::new(),
297 cache_hit_rate: 0.0,
298 tensor_core_utilization: 0.0,
299 memory_bandwidth_utilization: 0.0,
300 }
301 }
302}
303
304pub trait GpuBackend: Send + Sync {
306 fn is_available() -> bool
308 where
309 Self: Sized;
310
311 fn name(&self) -> &str;
313
314 fn device_info(&self) -> String;
316
317 fn allocate_state_vector(&self, n_qubits: usize) -> QuantRS2Result<Box<dyn GpuBuffer>>;
319
320 fn allocate_density_matrix(&self, n_qubits: usize) -> QuantRS2Result<Box<dyn GpuBuffer>>;
322
323 fn kernel(&self) -> &dyn GpuKernel;
325
326 fn apply_gate(
328 &self,
329 state: &mut dyn GpuBuffer,
330 gate: &dyn GateOp,
331 qubits: &[QubitId],
332 n_qubits: usize,
333 ) -> QuantRS2Result<()> {
334 match qubits.len() {
335 1 => {
336 let matrix = gate.matrix()?;
337 let gate_array: [Complex64; 4] = [matrix[0], matrix[1], matrix[2], matrix[3]];
338 self.kernel()
339 .apply_single_qubit_gate(state, &gate_array, qubits[0], n_qubits)
340 }
341 2 => {
342 let matrix = gate.matrix()?;
343 let mut gate_array = [Complex64::new(0.0, 0.0); 16];
344 for (i, &val) in matrix.iter().enumerate() {
345 gate_array[i] = val;
346 }
347 self.kernel().apply_two_qubit_gate(
348 state,
349 &gate_array,
350 qubits[0],
351 qubits[1],
352 n_qubits,
353 )
354 }
355 _ => {
356 let matrix_vec = gate.matrix()?;
357 let size = (1 << qubits.len(), 1 << qubits.len());
358 let matrix = Array2::from_shape_vec(size, matrix_vec)?;
359 self.kernel()
360 .apply_multi_qubit_gate(state, &matrix, qubits, n_qubits)
361 }
362 }
363 }
364
365 fn measure(
367 &self,
368 state: &mut dyn GpuBuffer,
369 qubit: QubitId,
370 n_qubits: usize,
371 ) -> QuantRS2Result<bool> {
372 let (outcome, _prob) = self.kernel().measure_qubit(state, qubit, n_qubits)?;
373 Ok(outcome)
374 }
375
376 fn get_probability(
378 &self,
379 state: &dyn GpuBuffer,
380 qubit: QubitId,
381 n_qubits: usize,
382 ) -> QuantRS2Result<f64> {
383 let (_outcome, prob) = self.kernel().measure_qubit(state, qubit, n_qubits)?;
384 Ok(prob)
385 }
386}
387
388pub struct GpuStateVector {
390 backend: Arc<dyn GpuBackend>,
392 buffer: Box<dyn GpuBuffer>,
394 n_qubits: usize,
396}
397
398impl GpuStateVector {
399 pub fn new(backend: Arc<dyn GpuBackend>, n_qubits: usize) -> QuantRS2Result<Self> {
401 let buffer = backend.allocate_state_vector(n_qubits)?;
402 Ok(Self {
403 backend,
404 buffer,
405 n_qubits,
406 })
407 }
408
409 pub fn initialize_zero_state(&mut self) -> QuantRS2Result<()> {
411 let size = 1 << self.n_qubits;
412 let mut data = vec![Complex64::new(0.0, 0.0); size];
413 data[0] = Complex64::new(1.0, 0.0);
414 self.buffer.upload(&data)
415 }
416
417 pub fn apply_gate(&mut self, gate: &dyn GateOp, qubits: &[QubitId]) -> QuantRS2Result<()> {
419 self.backend
420 .apply_gate(self.buffer.as_mut(), gate, qubits, self.n_qubits)
421 }
422
423 pub fn measure(&mut self, qubit: QubitId) -> QuantRS2Result<bool> {
425 self.backend
426 .measure(self.buffer.as_mut(), qubit, self.n_qubits)
427 }
428
429 pub fn to_array(&self) -> QuantRS2Result<Array1<Complex64>> {
431 let size = 1 << self.n_qubits;
432 let mut data = vec![Complex64::new(0.0, 0.0); size];
433 self.buffer.download(&mut data)?;
434 Ok(Array1::from_vec(data))
435 }
436
437 pub fn get_probabilities(&self) -> QuantRS2Result<Vec<f64>> {
439 let state = self.to_array()?;
440 Ok(state.iter().map(|c| c.norm_sqr()).collect())
441 }
442}
443
444pub struct GpuBackendFactory;
446
447impl GpuBackendFactory {
448 pub fn create_best_available() -> QuantRS2Result<Arc<dyn GpuBackend>> {
450 #[cfg(feature = "cuda")]
452 if cuda_backend::CudaBackend::is_available() {
453 return Ok(Arc::new(cuda_backend::CudaBackend::new()?));
454 }
455
456 #[cfg(feature = "metal")]
457 if metal_backend::MetalBackend::is_available() {
458 return Ok(Arc::new(metal_backend::MetalBackend::new()?));
459 }
460
461 #[cfg(feature = "vulkan")]
462 if vulkan_backend::VulkanBackend::is_available() {
463 return Ok(Arc::new(vulkan_backend::VulkanBackend::new()?));
464 }
465
466 Ok(Arc::new(cpu_backend::CpuBackend::new()))
468 }
469
470 pub fn create_backend(backend_type: &str) -> QuantRS2Result<Arc<dyn GpuBackend>> {
472 match backend_type.to_lowercase().as_str() {
473 #[cfg(feature = "cuda")]
474 "cuda" => Ok(Arc::new(cuda_backend::CudaBackend::new()?)),
475
476 #[cfg(feature = "metal")]
477 "metal" => Ok(Arc::new(metal_backend::MetalBackend::new()?)),
478
479 #[cfg(feature = "vulkan")]
480 "vulkan" => Ok(Arc::new(vulkan_backend::VulkanBackend::new()?)),
481
482 "cpu" => Ok(Arc::new(cpu_backend::CpuBackend::new())),
483
484 _ => Err(QuantRS2Error::InvalidInput(format!(
485 "Unknown backend type: {}",
486 backend_type
487 ))),
488 }
489 }
490
491 pub fn available_backends() -> Vec<&'static str> {
493 #[allow(unused_mut)]
494 let mut backends = vec!["cpu"];
495
496 #[cfg(feature = "cuda")]
497 if cuda_backend::CudaBackend::is_available() {
498 backends.push("cuda");
499 }
500
501 #[cfg(feature = "metal")]
502 if metal_backend::MetalBackend::is_available() {
503 backends.push("metal");
504 }
505
506 #[cfg(feature = "vulkan")]
507 if vulkan_backend::VulkanBackend::is_available() {
508 backends.push("vulkan");
509 }
510
511 backends
512 }
513}
514
515#[derive(Debug, Clone)]
517pub struct GpuConfig {
518 pub backend: Option<String>,
520 pub max_memory: Option<usize>,
522 pub num_threads: Option<usize>,
524 pub enable_profiling: bool,
526}
527
528impl Default for GpuConfig {
529 fn default() -> Self {
530 Self {
531 backend: None,
532 max_memory: None,
533 num_threads: None,
534 enable_profiling: false,
535 }
536 }
537}
538
539#[cfg(test)]
540mod tests {
541 use super::*;
542 use crate::gate::single::Hadamard;
543
544 #[test]
545 fn test_gpu_backend_factory() {
546 let backends = GpuBackendFactory::available_backends();
547 assert!(backends.contains(&"cpu"));
548
549 let backend = GpuBackendFactory::create_backend("cpu").unwrap();
551 assert_eq!(backend.name(), "CPU");
552 }
553
554 #[test]
555 fn test_gpu_state_vector() {
556 let backend = GpuBackendFactory::create_best_available().unwrap();
557 let mut state = GpuStateVector::new(backend, 2).unwrap();
558
559 state.initialize_zero_state().unwrap();
561
562 let h_gate = Hadamard { target: QubitId(0) };
564 state.apply_gate(&h_gate, &[QubitId(0)]).unwrap();
565
566 let probs = state.get_probabilities().unwrap();
568 assert_eq!(probs.len(), 4);
569
570 assert!((probs[0] - 0.5).abs() < 1e-10); assert!((probs[1] - 0.5).abs() < 1e-10); assert!((probs[2] - 0.0).abs() < 1e-10); assert!((probs[3] - 0.0).abs() < 1e-10); }
577}