quantrs2_core/gpu/
mod.rs

1//! GPU acceleration backend for quantum operations
2//!
3//! This module provides an abstraction layer for GPU-accelerated quantum
4//! computations, supporting multiple backends through SciRS2 GPU abstractions.
5//!
6//! NOTE: This module is being migrated to use scirs2_core::gpu as per SciRS2 policy.
7//! New code should use the SciRS2 GPU abstractions directly.
8
9use crate::{
10    error::{QuantRS2Error, QuantRS2Result},
11    gate::GateOp,
12    qubit::QubitId,
13};
14use scirs2_core::ndarray::{Array1, Array2};
15use scirs2_core::Complex64;
16use std::sync::Arc;
17
18// Import SciRS2 GPU abstractions
19// Note: These will be used when full migration to SciRS2 GPU is implemented
20// #[cfg(feature = "gpu")]
21// #[allow(unused_imports)]
22// use scirs2_core::gpu::{GpuDevice, GpuKernel as SciRS2GpuKernel};
23
24// GPU Backend Status for v0.1.0-beta.3
25// ======================================
26// Current: Stable CPU fallback implementation with SciRS2 adapter layer
27// The GPU backend is fully functional using optimized CPU implementations
28// with memory tracking and performance metrics.
29//
30// Future: Full SciRS2 GPU Integration (post-beta.3)
31// When scirs2_core::gpu API stabilizes, this module will migrate to:
32// 1. Direct GPU memory transfer via scirs2_core::gpu buffers
33// 2. Native GPU kernel execution via scirs2_core::gpu::GpuKernel
34// 3. Hardware-accelerated CUDA/Metal/Vulkan via SciRS2 abstractions
35// 4. Unified device selection via GpuDevice::default()
36//
37// The current implementation is production-ready for beta.3 release.
38
39pub mod cpu_backend;
40pub use cpu_backend::CpuBackend;
41#[cfg(feature = "cuda")]
42pub mod cuda_backend;
43#[cfg(feature = "metal")]
44pub mod metal_backend;
45#[cfg(feature = "metal")]
46pub mod metal_backend_scirs2_ready;
47#[cfg(feature = "vulkan")]
48pub mod vulkan_backend;
49
50// SciRS2 GPU migration adapter
51pub mod scirs2_adapter;
52pub use crate::gpu_stubs::SciRS2GpuConfig;
53
54// Re-export SciRS2 adapter types for external use
55pub use scirs2_adapter::{
56    get_gpu_system_info, is_gpu_available, SciRS2BufferAdapter, SciRS2GpuBackend, SciRS2GpuFactory,
57    SciRS2GpuMetrics, SciRS2KernelAdapter,
58};
59
60// Enhanced GPU optimization modules
61pub mod adaptive_hardware_optimization;
62pub mod adaptive_simd;
63pub mod large_scale_simulation;
64pub mod memory_bandwidth_optimization;
65pub mod specialized_kernels;
66
67// Tests
68#[cfg(test)]
69mod metal_backend_tests;
70
71// Re-export key optimization components
72pub use adaptive_hardware_optimization::{
73    AccessPattern, AdaptiveHardwareOptimizer, AdaptiveOptimizationConfig, CalibrationResult,
74    HardwareAssessment, OptimizationParams, OptimizationReport, OptimizationStrategy,
75    PerformanceProfile, WorkloadCharacteristics,
76};
77pub use adaptive_simd::{
78    apply_batch_gates_adaptive, apply_single_qubit_adaptive, apply_two_qubit_adaptive,
79    get_adaptive_performance_report, initialize_adaptive_simd, AdaptiveSimdDispatcher, CpuFeatures,
80    SimdVariant,
81};
82pub use large_scale_simulation::{
83    LargeScaleGateType, LargeScaleObservable, LargeScalePerformanceStats, LargeScaleSimAccelerator,
84    LargeScaleSimConfig, LargeScaleStateVectorSim, LargeScaleTensorContractor, SimulationTaskType,
85    TensorDecompositionType,
86};
87pub use memory_bandwidth_optimization::{
88    MemoryBandwidthConfig, MemoryBandwidthMetrics, MemoryBandwidthOptimizer, MemoryBufferPool,
89    MemoryLayout, PoolStatistics, StreamingTransfer,
90};
91pub use specialized_kernels::{
92    FusionType, OptimizationConfig, PerformanceReport, PostQuantumCompressionType,
93    SpecializedGpuKernels,
94};
95
96/// GPU memory buffer abstraction
97pub trait GpuBuffer: Send + Sync {
98    /// Get the size of the buffer in bytes
99    fn size(&self) -> usize;
100
101    /// Copy data from host to device
102    fn upload(&mut self, data: &[Complex64]) -> QuantRS2Result<()>;
103
104    /// Copy data from device to host
105    fn download(&self, data: &mut [Complex64]) -> QuantRS2Result<()>;
106
107    /// Synchronize GPU operations
108    fn sync(&self) -> QuantRS2Result<()>;
109
110    /// Enable downcasting to concrete types
111    fn as_any(&self) -> &dyn std::any::Any;
112
113    /// Enable mutable downcasting to concrete types
114    fn as_any_mut(&mut self) -> &mut dyn std::any::Any;
115}
116
117/// Enhanced GPU kernel for specialized quantum operations
118pub trait SpecializedGpuKernel: Send + Sync {
119    /// Apply a holonomic gate with optimized GPU execution
120    fn apply_holonomic_gate(
121        &self,
122        state: &mut dyn GpuBuffer,
123        holonomy_matrix: &[Complex64],
124        target_qubits: &[QubitId],
125    ) -> QuantRS2Result<()>;
126
127    /// Apply post-quantum cryptographic hash gate
128    fn apply_post_quantum_hash_gate(
129        &self,
130        state: &mut dyn GpuBuffer,
131        hash_circuit: &[Complex64],
132        compression_type: PostQuantumCompressionType,
133    ) -> QuantRS2Result<()>;
134
135    /// Apply quantum ML attention mechanism
136    fn apply_quantum_ml_attention(
137        &self,
138        state: &mut dyn GpuBuffer,
139        query_params: &[Complex64],
140        key_params: &[Complex64],
141        value_params: &[Complex64],
142        num_heads: usize,
143    ) -> QuantRS2Result<()>;
144
145    /// Apply fused gate sequences for optimal performance
146    fn apply_fused_gate_sequence(
147        &self,
148        state: &mut dyn GpuBuffer,
149        gates: &[Box<dyn GateOp>],
150    ) -> QuantRS2Result<()>;
151
152    /// Apply tensor network contraction
153    fn apply_tensor_contraction(
154        &self,
155        tensor_data: &mut dyn GpuBuffer,
156        contraction_indices: &[usize],
157        bond_dimension: usize,
158    ) -> QuantRS2Result<()>;
159}
160
161/// GPU kernel for quantum operations
162pub trait GpuKernel: Send + Sync {
163    /// Apply a single-qubit gate
164    fn apply_single_qubit_gate(
165        &self,
166        state: &mut dyn GpuBuffer,
167        gate_matrix: &[Complex64; 4],
168        qubit: QubitId,
169        n_qubits: usize,
170    ) -> QuantRS2Result<()>;
171
172    /// Apply a two-qubit gate
173    fn apply_two_qubit_gate(
174        &self,
175        state: &mut dyn GpuBuffer,
176        gate_matrix: &[Complex64; 16],
177        control: QubitId,
178        target: QubitId,
179        n_qubits: usize,
180    ) -> QuantRS2Result<()>;
181
182    /// Apply a multi-qubit gate
183    fn apply_multi_qubit_gate(
184        &self,
185        state: &mut dyn GpuBuffer,
186        gate_matrix: &Array2<Complex64>,
187        qubits: &[QubitId],
188        n_qubits: usize,
189    ) -> QuantRS2Result<()>;
190
191    /// Measure a qubit
192    fn measure_qubit(
193        &self,
194        state: &dyn GpuBuffer,
195        qubit: QubitId,
196        n_qubits: usize,
197    ) -> QuantRS2Result<(bool, f64)>;
198
199    /// Calculate expectation value
200    fn expectation_value(
201        &self,
202        state: &dyn GpuBuffer,
203        observable: &Array2<Complex64>,
204        qubits: &[QubitId],
205        n_qubits: usize,
206    ) -> QuantRS2Result<f64>;
207}
208
209/// Enhanced GPU backend trait for specialized quantum computations
210pub trait EnhancedGpuBackend: GpuBackend {
211    /// Get the specialized kernel implementation
212    fn specialized_kernel(&self) -> Option<&dyn SpecializedGpuKernel>;
213
214    /// Apply a holonomic gate with GPU optimization
215    fn apply_holonomic_gate(
216        &self,
217        state: &mut dyn GpuBuffer,
218        holonomy_matrix: &[Complex64],
219        target_qubits: &[QubitId],
220    ) -> QuantRS2Result<()> {
221        if let Some(kernel) = self.specialized_kernel() {
222            kernel.apply_holonomic_gate(state, holonomy_matrix, target_qubits)
223        } else {
224            Err(QuantRS2Error::UnsupportedOperation(
225                "Holonomic gates not supported by this backend".to_string(),
226            ))
227        }
228    }
229
230    /// Apply post-quantum cryptographic operations
231    fn apply_post_quantum_crypto(
232        &self,
233        state: &mut dyn GpuBuffer,
234        hash_circuit: &[Complex64],
235        compression_type: PostQuantumCompressionType,
236    ) -> QuantRS2Result<()> {
237        if let Some(kernel) = self.specialized_kernel() {
238            kernel.apply_post_quantum_hash_gate(state, hash_circuit, compression_type)
239        } else {
240            Err(QuantRS2Error::UnsupportedOperation(
241                "Post-quantum crypto gates not supported by this backend".to_string(),
242            ))
243        }
244    }
245
246    /// Apply quantum ML operations
247    fn apply_quantum_ml_attention(
248        &self,
249        state: &mut dyn GpuBuffer,
250        query_params: &[Complex64],
251        key_params: &[Complex64],
252        value_params: &[Complex64],
253        num_heads: usize,
254    ) -> QuantRS2Result<()> {
255        if let Some(kernel) = self.specialized_kernel() {
256            kernel.apply_quantum_ml_attention(
257                state,
258                query_params,
259                key_params,
260                value_params,
261                num_heads,
262            )
263        } else {
264            Err(QuantRS2Error::UnsupportedOperation(
265                "Quantum ML attention not supported by this backend".to_string(),
266            ))
267        }
268    }
269
270    /// Apply optimized gate fusion
271    fn apply_fused_gates(
272        &self,
273        state: &mut dyn GpuBuffer,
274        gates: &[Box<dyn GateOp>],
275    ) -> QuantRS2Result<()> {
276        if let Some(kernel) = self.specialized_kernel() {
277            kernel.apply_fused_gate_sequence(state, gates)
278        } else {
279            // Fallback to applying gates individually
280            for gate in gates {
281                let qubits = gate.qubits();
282                self.apply_gate(state, gate.as_ref(), &qubits, qubits.len())?;
283            }
284            Ok(())
285        }
286    }
287
288    /// Get optimization configuration
289    fn optimization_config(&self) -> OptimizationConfig {
290        OptimizationConfig::default()
291    }
292
293    /// Get performance statistics
294    fn performance_stats(&self) -> PerformanceReport {
295        PerformanceReport {
296            average_kernel_times: std::collections::HashMap::new(),
297            cache_hit_rate: 0.0,
298            tensor_core_utilization: 0.0,
299            memory_bandwidth_utilization: 0.0,
300        }
301    }
302}
303
304/// GPU backend trait for quantum computations
305pub trait GpuBackend: Send + Sync {
306    /// Check if this backend is available on the current system
307    fn is_available() -> bool
308    where
309        Self: Sized;
310
311    /// Get the name of this backend
312    fn name(&self) -> &str;
313
314    /// Get device information
315    fn device_info(&self) -> String;
316
317    /// Allocate a GPU buffer for a state vector
318    fn allocate_state_vector(&self, n_qubits: usize) -> QuantRS2Result<Box<dyn GpuBuffer>>;
319
320    /// Allocate a GPU buffer for a density matrix
321    fn allocate_density_matrix(&self, n_qubits: usize) -> QuantRS2Result<Box<dyn GpuBuffer>>;
322
323    /// Get the kernel implementation
324    fn kernel(&self) -> &dyn GpuKernel;
325
326    /// Apply a quantum gate
327    fn apply_gate(
328        &self,
329        state: &mut dyn GpuBuffer,
330        gate: &dyn GateOp,
331        qubits: &[QubitId],
332        n_qubits: usize,
333    ) -> QuantRS2Result<()> {
334        match qubits.len() {
335            1 => {
336                let matrix = gate.matrix()?;
337                let gate_array: [Complex64; 4] = [matrix[0], matrix[1], matrix[2], matrix[3]];
338                self.kernel()
339                    .apply_single_qubit_gate(state, &gate_array, qubits[0], n_qubits)
340            }
341            2 => {
342                let matrix = gate.matrix()?;
343                let mut gate_array = [Complex64::new(0.0, 0.0); 16];
344                for (i, &val) in matrix.iter().enumerate() {
345                    gate_array[i] = val;
346                }
347                self.kernel().apply_two_qubit_gate(
348                    state,
349                    &gate_array,
350                    qubits[0],
351                    qubits[1],
352                    n_qubits,
353                )
354            }
355            _ => {
356                let matrix_vec = gate.matrix()?;
357                let size = (1 << qubits.len(), 1 << qubits.len());
358                let matrix = Array2::from_shape_vec(size, matrix_vec)?;
359                self.kernel()
360                    .apply_multi_qubit_gate(state, &matrix, qubits, n_qubits)
361            }
362        }
363    }
364
365    /// Measure a qubit and collapse the state
366    fn measure(
367        &self,
368        state: &mut dyn GpuBuffer,
369        qubit: QubitId,
370        n_qubits: usize,
371    ) -> QuantRS2Result<bool> {
372        let (outcome, _prob) = self.kernel().measure_qubit(state, qubit, n_qubits)?;
373        Ok(outcome)
374    }
375
376    /// Get measurement probability without collapsing
377    fn get_probability(
378        &self,
379        state: &dyn GpuBuffer,
380        qubit: QubitId,
381        n_qubits: usize,
382    ) -> QuantRS2Result<f64> {
383        let (_outcome, prob) = self.kernel().measure_qubit(state, qubit, n_qubits)?;
384        Ok(prob)
385    }
386}
387
388/// GPU-accelerated state vector
389pub struct GpuStateVector {
390    /// The GPU backend
391    backend: Arc<dyn GpuBackend>,
392    /// The GPU buffer holding the state
393    buffer: Box<dyn GpuBuffer>,
394    /// Number of qubits
395    n_qubits: usize,
396}
397
398impl GpuStateVector {
399    /// Create a new GPU state vector
400    pub fn new(backend: Arc<dyn GpuBackend>, n_qubits: usize) -> QuantRS2Result<Self> {
401        let buffer = backend.allocate_state_vector(n_qubits)?;
402        Ok(Self {
403            backend,
404            buffer,
405            n_qubits,
406        })
407    }
408
409    /// Initialize to |00...0⟩ state
410    pub fn initialize_zero_state(&mut self) -> QuantRS2Result<()> {
411        let size = 1 << self.n_qubits;
412        let mut data = vec![Complex64::new(0.0, 0.0); size];
413        data[0] = Complex64::new(1.0, 0.0);
414        self.buffer.upload(&data)
415    }
416
417    /// Apply a gate
418    pub fn apply_gate(&mut self, gate: &dyn GateOp, qubits: &[QubitId]) -> QuantRS2Result<()> {
419        self.backend
420            .apply_gate(self.buffer.as_mut(), gate, qubits, self.n_qubits)
421    }
422
423    /// Measure a qubit
424    pub fn measure(&mut self, qubit: QubitId) -> QuantRS2Result<bool> {
425        self.backend
426            .measure(self.buffer.as_mut(), qubit, self.n_qubits)
427    }
428
429    /// Get the state vector as a host array
430    pub fn to_array(&self) -> QuantRS2Result<Array1<Complex64>> {
431        let size = 1 << self.n_qubits;
432        let mut data = vec![Complex64::new(0.0, 0.0); size];
433        self.buffer.download(&mut data)?;
434        Ok(Array1::from_vec(data))
435    }
436
437    /// Get measurement probabilities for all basis states
438    pub fn get_probabilities(&self) -> QuantRS2Result<Vec<f64>> {
439        let state = self.to_array()?;
440        Ok(state.iter().map(|c| c.norm_sqr()).collect())
441    }
442}
443
444/// GPU backend factory
445pub struct GpuBackendFactory;
446
447impl GpuBackendFactory {
448    /// Create the best available GPU backend
449    pub fn create_best_available() -> QuantRS2Result<Arc<dyn GpuBackend>> {
450        // Try backends in order of preference
451        #[cfg(feature = "cuda")]
452        if cuda_backend::CudaBackend::is_available() {
453            return Ok(Arc::new(cuda_backend::CudaBackend::new()?));
454        }
455
456        #[cfg(feature = "metal")]
457        if metal_backend::MetalBackend::is_available() {
458            return Ok(Arc::new(metal_backend::MetalBackend::new()?));
459        }
460
461        #[cfg(feature = "vulkan")]
462        if vulkan_backend::VulkanBackend::is_available() {
463            return Ok(Arc::new(vulkan_backend::VulkanBackend::new()?));
464        }
465
466        // Fallback to CPU backend
467        Ok(Arc::new(cpu_backend::CpuBackend::new()))
468    }
469
470    /// Create a specific backend
471    pub fn create_backend(backend_type: &str) -> QuantRS2Result<Arc<dyn GpuBackend>> {
472        match backend_type.to_lowercase().as_str() {
473            #[cfg(feature = "cuda")]
474            "cuda" => Ok(Arc::new(cuda_backend::CudaBackend::new()?)),
475
476            #[cfg(feature = "metal")]
477            "metal" => Ok(Arc::new(metal_backend::MetalBackend::new()?)),
478
479            #[cfg(feature = "vulkan")]
480            "vulkan" => Ok(Arc::new(vulkan_backend::VulkanBackend::new()?)),
481
482            "cpu" => Ok(Arc::new(cpu_backend::CpuBackend::new())),
483
484            _ => Err(QuantRS2Error::InvalidInput(format!(
485                "Unknown backend type: {}",
486                backend_type
487            ))),
488        }
489    }
490
491    /// List available backends
492    pub fn available_backends() -> Vec<&'static str> {
493        #[allow(unused_mut)]
494        let mut backends = vec!["cpu"];
495
496        #[cfg(feature = "cuda")]
497        if cuda_backend::CudaBackend::is_available() {
498            backends.push("cuda");
499        }
500
501        #[cfg(feature = "metal")]
502        if metal_backend::MetalBackend::is_available() {
503            backends.push("metal");
504        }
505
506        #[cfg(feature = "vulkan")]
507        if vulkan_backend::VulkanBackend::is_available() {
508            backends.push("vulkan");
509        }
510
511        backends
512    }
513}
514
515/// Configuration for GPU operations
516#[derive(Debug, Clone)]
517pub struct GpuConfig {
518    /// Preferred backend (None for auto-selection)
519    pub backend: Option<String>,
520    /// Maximum GPU memory to use (in bytes)
521    pub max_memory: Option<usize>,
522    /// Number of GPU threads/work items
523    pub num_threads: Option<usize>,
524    /// Enable profiling
525    pub enable_profiling: bool,
526}
527
528impl Default for GpuConfig {
529    fn default() -> Self {
530        Self {
531            backend: None,
532            max_memory: None,
533            num_threads: None,
534            enable_profiling: false,
535        }
536    }
537}
538
539#[cfg(test)]
540mod tests {
541    use super::*;
542    use crate::gate::single::Hadamard;
543
544    #[test]
545    fn test_gpu_backend_factory() {
546        let backends = GpuBackendFactory::available_backends();
547        assert!(backends.contains(&"cpu"));
548
549        // Should always be able to create CPU backend
550        let backend = GpuBackendFactory::create_backend("cpu").unwrap();
551        assert_eq!(backend.name(), "CPU");
552    }
553
554    #[test]
555    fn test_gpu_state_vector() {
556        let backend = GpuBackendFactory::create_best_available().unwrap();
557        let mut state = GpuStateVector::new(backend, 2).unwrap();
558
559        // Initialize to |00⟩
560        state.initialize_zero_state().unwrap();
561
562        // Apply Hadamard to first qubit
563        let h_gate = Hadamard { target: QubitId(0) };
564        state.apply_gate(&h_gate, &[QubitId(0)]).unwrap();
565
566        // Get probabilities
567        let probs = state.get_probabilities().unwrap();
568        assert_eq!(probs.len(), 4);
569
570        // Should be in equal superposition on first qubit
571        // With our bit ordering (LSB), |00⟩ and |01⟩ should have probability 0.5 each
572        assert!((probs[0] - 0.5).abs() < 1e-10); // |00⟩
573        assert!((probs[1] - 0.5).abs() < 1e-10); // |01⟩
574        assert!((probs[2] - 0.0).abs() < 1e-10); // |10⟩
575        assert!((probs[3] - 0.0).abs() < 1e-10); // |11⟩
576    }
577}