quantrs2_core/gpu/
adaptive_hardware_optimization.rs

1//! Advanced Adaptive Hardware Optimization Module
2//!
3//! This module provides sophisticated adaptive optimization strategies based on
4//! hardware characteristics, workload patterns, and runtime performance metrics.
5//!
6//! ## Features
7//! - Automatic workload profiling and tuning
8//! - Memory hierarchy-aware optimization
9//! - Power-aware computation strategies
10//! - Runtime benchmarking for optimal strategy selection
11//! - ML-based performance prediction
12
13use crate::error::{QuantRS2Error, QuantRS2Result};
14use crate::platform::PlatformCapabilities;
15use scirs2_core::Complex64;
16use std::collections::HashMap;
17use std::sync::{Arc, Mutex, RwLock};
18use std::time::{Duration, Instant};
19
20/// Adaptive hardware optimization configuration
21#[derive(Debug, Clone)]
22pub struct AdaptiveOptimizationConfig {
23    /// Enable automatic workload profiling
24    pub enable_workload_profiling: bool,
25    /// Enable memory hierarchy optimization
26    pub enable_memory_optimization: bool,
27    /// Enable power-aware optimization
28    pub enable_power_optimization: bool,
29    /// Minimum samples before adaptation
30    pub min_samples_for_adaptation: usize,
31    /// Performance variance threshold for strategy change
32    pub variance_threshold: f64,
33    /// Enable runtime benchmarking
34    pub enable_runtime_benchmarking: bool,
35    /// Benchmark sample size
36    pub benchmark_samples: usize,
37}
38
39impl Default for AdaptiveOptimizationConfig {
40    fn default() -> Self {
41        Self {
42            enable_workload_profiling: true,
43            enable_memory_optimization: true,
44            enable_power_optimization: false, // Disabled by default
45            min_samples_for_adaptation: 10,
46            variance_threshold: 0.2,
47            enable_runtime_benchmarking: true,
48            benchmark_samples: 5,
49        }
50    }
51}
52
53/// Workload characteristics for optimization decisions
54#[derive(Debug, Clone)]
55pub struct WorkloadCharacteristics {
56    /// Number of qubits
57    pub num_qubits: usize,
58    /// Number of gates
59    pub num_gates: usize,
60    /// Gate depth
61    pub circuit_depth: usize,
62    /// Memory access pattern
63    pub access_pattern: AccessPattern,
64    /// Computational intensity (FLOPS per byte)
65    pub computational_intensity: f64,
66    /// Expected execution count
67    pub expected_iterations: usize,
68}
69
70/// Memory access pattern types
71#[derive(Debug, Clone, Copy, PartialEq, Eq)]
72pub enum AccessPattern {
73    /// Sequential access
74    Sequential,
75    /// Strided access
76    Strided,
77    /// Random access
78    Random,
79    /// Mixed access
80    Mixed,
81}
82
83/// Optimization strategy
84#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
85pub enum OptimizationStrategy {
86    /// Optimize for throughput
87    Throughput,
88    /// Optimize for latency
89    Latency,
90    /// Balance throughput and latency
91    Balanced,
92    /// Optimize for memory bandwidth
93    MemoryBound,
94    /// Optimize for power efficiency
95    PowerEfficient,
96}
97
98/// Performance profile for a specific workload
99#[derive(Debug, Clone)]
100pub struct PerformanceProfile {
101    /// Average execution time
102    pub avg_time: Duration,
103    /// Standard deviation
104    pub std_dev: Duration,
105    /// Minimum time
106    pub min_time: Duration,
107    /// Maximum time
108    pub max_time: Duration,
109    /// Number of samples
110    pub sample_count: usize,
111    /// Best strategy for this profile
112    pub best_strategy: OptimizationStrategy,
113    /// Memory bandwidth utilization
114    pub memory_bandwidth_gbps: f64,
115    /// FLOPS achieved
116    pub gflops: f64,
117}
118
119/// Hardware capability assessment
120#[derive(Debug, Clone)]
121pub struct HardwareAssessment {
122    /// Platform capabilities
123    pub capabilities: PlatformCapabilities,
124    /// Estimated peak memory bandwidth (GB/s)
125    pub peak_memory_bandwidth: f64,
126    /// Estimated peak FLOPS
127    pub peak_gflops: f64,
128    /// Optimal batch size for this hardware
129    pub optimal_batch_size: usize,
130    /// Optimal tile size for tiled operations
131    pub optimal_tile_size: usize,
132    /// Maximum efficient state size
133    pub max_efficient_state_size: usize,
134}
135
136impl HardwareAssessment {
137    /// Create assessment from platform capabilities
138    pub fn from_capabilities(capabilities: PlatformCapabilities) -> Self {
139        // Estimate peak bandwidth based on CPU characteristics
140        let peak_memory_bandwidth = Self::estimate_memory_bandwidth(&capabilities);
141        let peak_gflops = Self::estimate_peak_gflops(&capabilities);
142        let optimal_batch_size = Self::compute_optimal_batch_size(&capabilities);
143        let optimal_tile_size = Self::compute_optimal_tile_size(&capabilities);
144        let max_efficient_state_size = Self::compute_max_efficient_state_size(&capabilities);
145
146        Self {
147            capabilities,
148            peak_memory_bandwidth,
149            peak_gflops,
150            optimal_batch_size,
151            optimal_tile_size,
152            max_efficient_state_size,
153        }
154    }
155
156    fn estimate_memory_bandwidth(capabilities: &PlatformCapabilities) -> f64 {
157        // Estimate based on number of cores and typical memory system
158        let cores = capabilities.cpu.logical_cores as f64;
159        // Typical DDR4/DDR5 bandwidth per channel
160        let base_bandwidth: f64 = 25.6; // GB/s per channel
161                                        // Assume 2 channels with some overhead
162        (base_bandwidth * 2.0 * 0.8).min(cores * 10.0)
163    }
164
165    fn estimate_peak_gflops(capabilities: &PlatformCapabilities) -> f64 {
166        let cores = capabilities.cpu.logical_cores as f64;
167        let base_gflops_per_core = if capabilities.cpu.simd.avx512 {
168            100.0
169        } else if capabilities.cpu.simd.avx2 {
170            50.0
171        } else {
172            25.0
173        };
174        cores * base_gflops_per_core
175    }
176
177    fn compute_optimal_batch_size(capabilities: &PlatformCapabilities) -> usize {
178        let l3_cache = capabilities.cpu.cache.l3.unwrap_or(8 * 1024 * 1024);
179        // Optimal batch size fits in L3 cache
180        let complex_size = std::mem::size_of::<Complex64>();
181        (l3_cache / (complex_size * 16)).max(32).min(1024)
182    }
183
184    fn compute_optimal_tile_size(capabilities: &PlatformCapabilities) -> usize {
185        let l2_cache = capabilities.cpu.cache.l2.unwrap_or(256 * 1024);
186        // Tile should fit in L2 cache
187        let complex_size = std::mem::size_of::<Complex64>();
188        let elements = l2_cache / (complex_size * 4); // 4x for working memory
189        (elements as f64).sqrt() as usize
190    }
191
192    fn compute_max_efficient_state_size(capabilities: &PlatformCapabilities) -> usize {
193        let total_cache = capabilities.cpu.cache.l3.unwrap_or(8 * 1024 * 1024);
194        let cores = capabilities.cpu.logical_cores;
195        // Maximum state that can be efficiently processed
196        let complex_size = std::mem::size_of::<Complex64>();
197        (total_cache * cores) / (complex_size * 2)
198    }
199}
200
201/// Adaptive hardware optimizer
202pub struct AdaptiveHardwareOptimizer {
203    /// Configuration
204    config: AdaptiveOptimizationConfig,
205    /// Hardware assessment
206    hardware: HardwareAssessment,
207    /// Performance profiles by workload key
208    profiles: RwLock<HashMap<String, PerformanceProfile>>,
209    /// Current strategy
210    current_strategy: Mutex<OptimizationStrategy>,
211    /// Optimization history
212    history: RwLock<Vec<OptimizationEvent>>,
213}
214
215/// Optimization event for history tracking
216#[derive(Debug, Clone)]
217pub struct OptimizationEvent {
218    /// Timestamp
219    pub timestamp: Instant,
220    /// Workload key
221    pub workload_key: String,
222    /// Strategy used
223    pub strategy: OptimizationStrategy,
224    /// Execution time
225    pub execution_time: Duration,
226    /// Was this optimal?
227    pub was_optimal: bool,
228}
229
230impl AdaptiveHardwareOptimizer {
231    /// Create a new adaptive hardware optimizer
232    pub fn new(config: AdaptiveOptimizationConfig) -> Self {
233        let capabilities = PlatformCapabilities::detect();
234        let hardware = HardwareAssessment::from_capabilities(capabilities);
235
236        Self {
237            config,
238            hardware,
239            profiles: RwLock::new(HashMap::new()),
240            current_strategy: Mutex::new(OptimizationStrategy::Balanced),
241            history: RwLock::new(Vec::new()),
242        }
243    }
244
245    /// Get hardware assessment
246    pub fn hardware_assessment(&self) -> &HardwareAssessment {
247        &self.hardware
248    }
249
250    /// Analyze workload and recommend optimization strategy
251    pub fn analyze_workload(
252        &self,
253        characteristics: &WorkloadCharacteristics,
254    ) -> OptimizationStrategy {
255        // Compute workload metrics
256        let state_size = 1 << characteristics.num_qubits;
257        let total_operations = characteristics.num_gates * state_size;
258        let memory_access =
259            state_size * characteristics.circuit_depth * std::mem::size_of::<Complex64>();
260
261        // Determine if workload is compute-bound or memory-bound
262        let intensity = characteristics.computational_intensity;
263
264        if intensity > 10.0 {
265            // Compute-bound: optimize for throughput
266            OptimizationStrategy::Throughput
267        } else if intensity < 1.0 {
268            // Memory-bound: optimize for memory access
269            OptimizationStrategy::MemoryBound
270        } else if characteristics.expected_iterations > 100 {
271            // Repeated execution: optimize for throughput
272            OptimizationStrategy::Throughput
273        } else if state_size < self.hardware.optimal_batch_size {
274            // Small workload: optimize for latency
275            OptimizationStrategy::Latency
276        } else {
277            // Default to balanced
278            OptimizationStrategy::Balanced
279        }
280    }
281
282    /// Get optimization parameters for given strategy
283    pub fn get_optimization_params(
284        &self,
285        strategy: OptimizationStrategy,
286        num_qubits: usize,
287    ) -> OptimizationParams {
288        let state_size = 1 << num_qubits;
289
290        match strategy {
291            OptimizationStrategy::Throughput => OptimizationParams {
292                use_simd: true,
293                use_parallel: state_size > 1024,
294                batch_size: self.hardware.optimal_batch_size,
295                tile_size: self.hardware.optimal_tile_size,
296                prefetch_distance: 8,
297                use_streaming: state_size > self.hardware.max_efficient_state_size,
298            },
299            OptimizationStrategy::Latency => OptimizationParams {
300                use_simd: true,
301                use_parallel: false, // Avoid parallel overhead
302                batch_size: 1,
303                tile_size: 64,
304                prefetch_distance: 4,
305                use_streaming: false,
306            },
307            OptimizationStrategy::Balanced => OptimizationParams {
308                use_simd: true,
309                use_parallel: state_size > 2048,
310                batch_size: (self.hardware.optimal_batch_size / 2).max(32),
311                tile_size: self.hardware.optimal_tile_size,
312                prefetch_distance: 6,
313                use_streaming: state_size > self.hardware.max_efficient_state_size * 2,
314            },
315            OptimizationStrategy::MemoryBound => OptimizationParams {
316                use_simd: true,
317                use_parallel: true, // Hide memory latency
318                batch_size: self.hardware.optimal_batch_size * 2,
319                tile_size: self.hardware.optimal_tile_size / 2, // Smaller tiles for better cache use
320                prefetch_distance: 16,                          // Aggressive prefetching
321                use_streaming: true,
322            },
323            OptimizationStrategy::PowerEfficient => OptimizationParams {
324                use_simd: false, // Reduce power consumption
325                use_parallel: false,
326                batch_size: 32,
327                tile_size: 32,
328                prefetch_distance: 4,
329                use_streaming: false,
330            },
331        }
332    }
333
334    /// Record execution result for learning
335    pub fn record_execution(
336        &self,
337        workload_key: &str,
338        strategy: OptimizationStrategy,
339        execution_time: Duration,
340    ) {
341        // Update performance profile
342        if let Ok(mut profiles) = self.profiles.write() {
343            let profile = profiles
344                .entry(workload_key.to_string())
345                .or_insert(PerformanceProfile {
346                    avg_time: execution_time,
347                    std_dev: Duration::ZERO,
348                    min_time: execution_time,
349                    max_time: execution_time,
350                    sample_count: 0,
351                    best_strategy: strategy,
352                    memory_bandwidth_gbps: 0.0,
353                    gflops: 0.0,
354                });
355
356            // Update rolling statistics
357            let n = profile.sample_count as f64;
358            let new_time = execution_time.as_secs_f64();
359            let old_avg = profile.avg_time.as_secs_f64();
360
361            let new_avg = old_avg + (new_time - old_avg) / (n + 1.0);
362            profile.avg_time = Duration::from_secs_f64(new_avg);
363
364            if execution_time < profile.min_time {
365                profile.min_time = execution_time;
366            }
367            if execution_time > profile.max_time {
368                profile.max_time = execution_time;
369            }
370
371            profile.sample_count += 1;
372
373            // Check if we should update best strategy
374            if profile.sample_count >= self.config.min_samples_for_adaptation {
375                // Simple: if new strategy is significantly better, update
376                if execution_time.as_secs_f64() < old_avg * (1.0 - self.config.variance_threshold) {
377                    profile.best_strategy = strategy;
378                }
379            }
380        }
381
382        // Record event in history
383        if let Ok(mut history) = self.history.write() {
384            history.push(OptimizationEvent {
385                timestamp: Instant::now(),
386                workload_key: workload_key.to_string(),
387                strategy,
388                execution_time,
389                was_optimal: true, // Will be determined later
390            });
391
392            // Keep history bounded
393            if history.len() > 10000 {
394                history.drain(0..1000);
395            }
396        }
397    }
398
399    /// Get recommended strategy for workload
400    pub fn get_recommended_strategy(&self, workload_key: &str) -> OptimizationStrategy {
401        if let Ok(profiles) = self.profiles.read() {
402            if let Some(profile) = profiles.get(workload_key) {
403                if profile.sample_count >= self.config.min_samples_for_adaptation {
404                    return profile.best_strategy;
405                }
406            }
407        }
408
409        // Fall back to current default
410        *self.current_strategy.lock().unwrap()
411    }
412
413    /// Get performance profile for workload
414    pub fn get_profile(&self, workload_key: &str) -> Option<PerformanceProfile> {
415        self.profiles.read().ok()?.get(workload_key).cloned()
416    }
417
418    /// Generate optimization report
419    pub fn generate_report(&self) -> OptimizationReport {
420        let profiles: Vec<_> = self
421            .profiles
422            .read()
423            .map(|p| p.iter().map(|(k, v)| (k.clone(), v.clone())).collect())
424            .unwrap_or_default();
425
426        let total_events = self.history.read().map(|h| h.len()).unwrap_or(0);
427
428        OptimizationReport {
429            hardware_assessment: self.hardware.clone(),
430            workload_profiles: profiles,
431            total_optimization_events: total_events,
432            recommendations: self.generate_recommendations(),
433        }
434    }
435
436    /// Generate optimization recommendations
437    fn generate_recommendations(&self) -> Vec<String> {
438        let mut recommendations = Vec::new();
439
440        // Analyze profiles for patterns
441        if let Ok(profiles) = self.profiles.read() {
442            let mut memory_bound_count = 0;
443            let mut compute_bound_count = 0;
444
445            for (_key, profile) in profiles.iter() {
446                if profile.best_strategy == OptimizationStrategy::MemoryBound {
447                    memory_bound_count += 1;
448                } else if profile.best_strategy == OptimizationStrategy::Throughput {
449                    compute_bound_count += 1;
450                }
451            }
452
453            if memory_bound_count > compute_bound_count * 2 {
454                recommendations.push(
455                    "Most workloads are memory-bound. Consider using larger tiles and aggressive prefetching".to_string()
456                );
457            }
458
459            if compute_bound_count > memory_bound_count * 2 {
460                recommendations.push(
461                    "Most workloads are compute-bound. Consider enabling SIMD and parallel execution".to_string()
462                );
463            }
464        }
465
466        // Hardware-specific recommendations
467        if self.hardware.capabilities.cpu.simd.avx512 {
468            recommendations.push(
469                "AVX-512 detected. Ensure alignment to 64 bytes for optimal performance"
470                    .to_string(),
471            );
472        } else if self.hardware.capabilities.cpu.simd.avx2 {
473            recommendations.push(
474                "AVX2 detected. Ensure alignment to 32 bytes for optimal performance".to_string(),
475            );
476        }
477
478        if recommendations.is_empty() {
479            recommendations.push("System is operating efficiently".to_string());
480        }
481
482        recommendations
483    }
484
485    /// Run microbenchmark to calibrate optimization parameters
486    pub fn calibrate(&self, num_qubits: usize) -> CalibrationResult {
487        let state_size = 1 << num_qubits;
488        let mut results = HashMap::new();
489
490        // Benchmark different strategies
491        for strategy in [
492            OptimizationStrategy::Throughput,
493            OptimizationStrategy::Latency,
494            OptimizationStrategy::Balanced,
495            OptimizationStrategy::MemoryBound,
496        ] {
497            let params = self.get_optimization_params(strategy, num_qubits);
498
499            // Simulate benchmark (in real implementation, would run actual operations)
500            let estimated_time = self.estimate_execution_time(state_size, &params);
501            results.insert(strategy, estimated_time);
502        }
503
504        // Find best strategy
505        let best_strategy = results
506            .iter()
507            .min_by(|a, b| a.1.partial_cmp(b.1).unwrap())
508            .map(|(s, _)| *s)
509            .unwrap_or(OptimizationStrategy::Balanced);
510
511        CalibrationResult {
512            best_strategy,
513            strategy_times: results,
514            optimal_params: self.get_optimization_params(best_strategy, num_qubits),
515        }
516    }
517
518    fn estimate_execution_time(&self, state_size: usize, params: &OptimizationParams) -> Duration {
519        // Simplified estimation model
520        let base_ops = state_size as f64;
521        let simd_factor = if params.use_simd { 4.0 } else { 1.0 };
522        let parallel_factor = if params.use_parallel {
523            self.hardware.capabilities.cpu.logical_cores as f64
524        } else {
525            1.0
526        };
527
528        let ops_per_sec = self.hardware.peak_gflops * 1e9;
529        let estimated_secs = (base_ops * 10.0) / (ops_per_sec * simd_factor * parallel_factor);
530
531        Duration::from_secs_f64(estimated_secs)
532    }
533}
534
535/// Optimization parameters
536#[derive(Debug, Clone)]
537pub struct OptimizationParams {
538    /// Use SIMD instructions
539    pub use_simd: bool,
540    /// Use parallel execution
541    pub use_parallel: bool,
542    /// Batch size for operations
543    pub batch_size: usize,
544    /// Tile size for tiled operations
545    pub tile_size: usize,
546    /// Prefetch distance
547    pub prefetch_distance: usize,
548    /// Use streaming for large data
549    pub use_streaming: bool,
550}
551
552/// Calibration result
553#[derive(Debug, Clone)]
554pub struct CalibrationResult {
555    /// Best strategy found
556    pub best_strategy: OptimizationStrategy,
557    /// Execution times for each strategy
558    pub strategy_times: HashMap<OptimizationStrategy, Duration>,
559    /// Optimal parameters
560    pub optimal_params: OptimizationParams,
561}
562
563/// Optimization report
564#[derive(Debug, Clone)]
565pub struct OptimizationReport {
566    /// Hardware assessment
567    pub hardware_assessment: HardwareAssessment,
568    /// Workload profiles
569    pub workload_profiles: Vec<(String, PerformanceProfile)>,
570    /// Total optimization events
571    pub total_optimization_events: usize,
572    /// Recommendations
573    pub recommendations: Vec<String>,
574}
575
576#[cfg(test)]
577mod tests {
578    use super::*;
579
580    #[test]
581    fn test_config_default() {
582        let config = AdaptiveOptimizationConfig::default();
583        assert!(config.enable_workload_profiling);
584        assert!(config.enable_memory_optimization);
585        assert!(!config.enable_power_optimization);
586    }
587
588    #[test]
589    fn test_hardware_assessment() {
590        let capabilities = PlatformCapabilities::detect();
591        let assessment = HardwareAssessment::from_capabilities(capabilities);
592
593        assert!(assessment.peak_memory_bandwidth > 0.0);
594        assert!(assessment.peak_gflops > 0.0);
595        assert!(assessment.optimal_batch_size > 0);
596        assert!(assessment.optimal_tile_size > 0);
597    }
598
599    #[test]
600    fn test_optimizer_creation() {
601        let config = AdaptiveOptimizationConfig::default();
602        let optimizer = AdaptiveHardwareOptimizer::new(config);
603
604        assert!(optimizer.hardware_assessment().peak_gflops > 0.0);
605    }
606
607    #[test]
608    fn test_workload_analysis() {
609        let config = AdaptiveOptimizationConfig::default();
610        let optimizer = AdaptiveHardwareOptimizer::new(config);
611
612        // Compute-bound workload
613        let compute_bound = WorkloadCharacteristics {
614            num_qubits: 4,
615            num_gates: 100,
616            circuit_depth: 10,
617            access_pattern: AccessPattern::Sequential,
618            computational_intensity: 15.0,
619            expected_iterations: 1,
620        };
621
622        let strategy = optimizer.analyze_workload(&compute_bound);
623        assert_eq!(strategy, OptimizationStrategy::Throughput);
624
625        // Memory-bound workload
626        let memory_bound = WorkloadCharacteristics {
627            num_qubits: 20,
628            num_gates: 10,
629            circuit_depth: 2,
630            access_pattern: AccessPattern::Random,
631            computational_intensity: 0.5,
632            expected_iterations: 1,
633        };
634
635        let strategy = optimizer.analyze_workload(&memory_bound);
636        assert_eq!(strategy, OptimizationStrategy::MemoryBound);
637    }
638
639    #[test]
640    fn test_optimization_params() {
641        let config = AdaptiveOptimizationConfig::default();
642        let optimizer = AdaptiveHardwareOptimizer::new(config);
643
644        let params = optimizer.get_optimization_params(OptimizationStrategy::Throughput, 10);
645        assert!(params.use_simd);
646        assert!(params.batch_size > 0);
647
648        let params = optimizer.get_optimization_params(OptimizationStrategy::Latency, 10);
649        assert!(!params.use_parallel); // Latency optimization disables parallel
650    }
651
652    #[test]
653    fn test_execution_recording() {
654        let config = AdaptiveOptimizationConfig::default();
655        let optimizer = AdaptiveHardwareOptimizer::new(config);
656
657        // Record some executions
658        for _ in 0..20 {
659            optimizer.record_execution(
660                "test_workload",
661                OptimizationStrategy::Throughput,
662                Duration::from_micros(100),
663            );
664        }
665
666        let profile = optimizer.get_profile("test_workload");
667        assert!(profile.is_some());
668        assert_eq!(profile.unwrap().sample_count, 20);
669    }
670
671    #[test]
672    fn test_calibration() {
673        let config = AdaptiveOptimizationConfig::default();
674        let optimizer = AdaptiveHardwareOptimizer::new(config);
675
676        let result = optimizer.calibrate(6);
677        assert!(!result.strategy_times.is_empty());
678        assert!(result.optimal_params.batch_size > 0);
679    }
680
681    #[test]
682    fn test_optimization_report() {
683        let config = AdaptiveOptimizationConfig::default();
684        let optimizer = AdaptiveHardwareOptimizer::new(config);
685
686        let report = optimizer.generate_report();
687        assert!(!report.recommendations.is_empty());
688        assert!(report.hardware_assessment.peak_gflops > 0.0);
689    }
690
691    #[test]
692    fn test_recommended_strategy() {
693        let config = AdaptiveOptimizationConfig::default();
694        let optimizer = AdaptiveHardwareOptimizer::new(config);
695
696        // Without samples, should return default
697        let strategy = optimizer.get_recommended_strategy("unknown_workload");
698        assert_eq!(strategy, OptimizationStrategy::Balanced);
699    }
700}