quantrs2_core/
error_correction.rs

1//! Quantum error correction codes and decoders
2//!
3//! This module provides implementations of various quantum error correction codes
4//! including stabilizer codes, surface codes, and color codes, along with
5//! efficient decoder algorithms.
6
7use crate::error::{QuantRS2Error, QuantRS2Result};
8use scirs2_core::ndarray::Array2;
9use scirs2_core::Complex64;
10use std::collections::HashMap;
11use std::fmt;
12
13/// Pauli operator representation
14#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
15pub enum Pauli {
16    I,
17    X,
18    Y,
19    Z,
20}
21
22impl Pauli {
23    /// Get matrix representation
24    pub fn matrix(&self) -> Array2<Complex64> {
25        match self {
26            Pauli::I => Array2::from_shape_vec(
27                (2, 2),
28                vec![
29                    Complex64::new(1.0, 0.0),
30                    Complex64::new(0.0, 0.0),
31                    Complex64::new(0.0, 0.0),
32                    Complex64::new(1.0, 0.0),
33                ],
34            )
35            .unwrap(),
36            Pauli::X => Array2::from_shape_vec(
37                (2, 2),
38                vec![
39                    Complex64::new(0.0, 0.0),
40                    Complex64::new(1.0, 0.0),
41                    Complex64::new(1.0, 0.0),
42                    Complex64::new(0.0, 0.0),
43                ],
44            )
45            .unwrap(),
46            Pauli::Y => Array2::from_shape_vec(
47                (2, 2),
48                vec![
49                    Complex64::new(0.0, 0.0),
50                    Complex64::new(0.0, -1.0),
51                    Complex64::new(0.0, 1.0),
52                    Complex64::new(0.0, 0.0),
53                ],
54            )
55            .unwrap(),
56            Pauli::Z => Array2::from_shape_vec(
57                (2, 2),
58                vec![
59                    Complex64::new(1.0, 0.0),
60                    Complex64::new(0.0, 0.0),
61                    Complex64::new(0.0, 0.0),
62                    Complex64::new(-1.0, 0.0),
63                ],
64            )
65            .unwrap(),
66        }
67    }
68
69    /// Multiply two Pauli operators
70    pub fn multiply(&self, other: &Pauli) -> (Complex64, Pauli) {
71        use Pauli::*;
72        match (self, other) {
73            (I, p) | (p, I) => (Complex64::new(1.0, 0.0), *p),
74            (X, X) | (Y, Y) | (Z, Z) => (Complex64::new(1.0, 0.0), I),
75            (X, Y) => (Complex64::new(0.0, 1.0), Z),
76            (Y, X) => (Complex64::new(0.0, -1.0), Z),
77            (Y, Z) => (Complex64::new(0.0, 1.0), X),
78            (Z, Y) => (Complex64::new(0.0, -1.0), X),
79            (Z, X) => (Complex64::new(0.0, 1.0), Y),
80            (X, Z) => (Complex64::new(0.0, -1.0), Y),
81        }
82    }
83}
84
85/// Multi-qubit Pauli operator
86#[derive(Debug, Clone, PartialEq)]
87pub struct PauliString {
88    /// Phase factor (±1, ±i)
89    pub phase: Complex64,
90    /// Pauli operators for each qubit
91    pub paulis: Vec<Pauli>,
92}
93
94impl PauliString {
95    /// Create a new Pauli string
96    pub fn new(paulis: Vec<Pauli>) -> Self {
97        Self {
98            phase: Complex64::new(1.0, 0.0),
99            paulis,
100        }
101    }
102
103    /// Create identity on n qubits
104    pub fn identity(n: usize) -> Self {
105        Self::new(vec![Pauli::I; n])
106    }
107
108    /// Get the weight (number of non-identity operators)
109    pub fn weight(&self) -> usize {
110        self.paulis.iter().filter(|&&p| p != Pauli::I).count()
111    }
112
113    /// Multiply two Pauli strings
114    pub fn multiply(&self, other: &PauliString) -> QuantRS2Result<PauliString> {
115        if self.paulis.len() != other.paulis.len() {
116            return Err(QuantRS2Error::InvalidInput(
117                "Pauli strings must have same length".to_string(),
118            ));
119        }
120
121        let mut phase = self.phase * other.phase;
122        let mut paulis = Vec::with_capacity(self.paulis.len());
123
124        for (p1, p2) in self.paulis.iter().zip(&other.paulis) {
125            let (factor, result) = p1.multiply(p2);
126            phase *= factor;
127            paulis.push(result);
128        }
129
130        Ok(PauliString { phase, paulis })
131    }
132
133    /// Check if two Pauli strings commute
134    pub fn commutes_with(&self, other: &PauliString) -> QuantRS2Result<bool> {
135        if self.paulis.len() != other.paulis.len() {
136            return Err(QuantRS2Error::InvalidInput(
137                "Pauli strings must have same length".to_string(),
138            ));
139        }
140
141        let mut commutation_count = 0;
142        for (p1, p2) in self.paulis.iter().zip(&other.paulis) {
143            if *p1 != Pauli::I && *p2 != Pauli::I && p1 != p2 {
144                commutation_count += 1;
145            }
146        }
147
148        Ok(commutation_count % 2 == 0)
149    }
150}
151
152impl fmt::Display for PauliString {
153    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
154        let phase_str = if self.phase == Complex64::new(1.0, 0.0) {
155            "+".to_string()
156        } else if self.phase == Complex64::new(-1.0, 0.0) {
157            "-".to_string()
158        } else if self.phase == Complex64::new(0.0, 1.0) {
159            "+i".to_string()
160        } else {
161            "-i".to_string()
162        };
163
164        write!(f, "{}", phase_str)?;
165        for p in &self.paulis {
166            write!(f, "{:?}", p)?;
167        }
168        Ok(())
169    }
170}
171
172/// Stabilizer code definition
173#[derive(Debug, Clone)]
174pub struct StabilizerCode {
175    /// Number of physical qubits
176    pub n: usize,
177    /// Number of logical qubits
178    pub k: usize,
179    /// Minimum distance
180    pub d: usize,
181    /// Stabilizer generators
182    pub stabilizers: Vec<PauliString>,
183    /// Logical X operators
184    pub logical_x: Vec<PauliString>,
185    /// Logical Z operators
186    pub logical_z: Vec<PauliString>,
187}
188
189impl StabilizerCode {
190    /// Create a new stabilizer code
191    pub fn new(
192        n: usize,
193        k: usize,
194        d: usize,
195        stabilizers: Vec<PauliString>,
196        logical_x: Vec<PauliString>,
197        logical_z: Vec<PauliString>,
198    ) -> QuantRS2Result<Self> {
199        // Validate code parameters
200        // Note: For surface codes and other topological codes,
201        // some stabilizers may be linearly dependent, so we allow more flexibility
202        if stabilizers.len() > 2 * (n - k) {
203            return Err(QuantRS2Error::InvalidInput(format!(
204                "Too many stabilizers: got {}, maximum is {}",
205                stabilizers.len(),
206                2 * (n - k)
207            )));
208        }
209
210        if logical_x.len() != k || logical_z.len() != k {
211            return Err(QuantRS2Error::InvalidInput(
212                "Number of logical operators must equal k".to_string(),
213            ));
214        }
215
216        // Check that stabilizers commute
217        for i in 0..stabilizers.len() {
218            for j in i + 1..stabilizers.len() {
219                if !stabilizers[i].commutes_with(&stabilizers[j])? {
220                    return Err(QuantRS2Error::InvalidInput(
221                        "Stabilizers must commute".to_string(),
222                    ));
223                }
224            }
225        }
226
227        Ok(Self {
228            n,
229            k,
230            d,
231            stabilizers,
232            logical_x,
233            logical_z,
234        })
235    }
236
237    /// Create the 3-qubit repetition code
238    pub fn repetition_code() -> Self {
239        let stabilizers = vec![
240            PauliString::new(vec![Pauli::Z, Pauli::Z, Pauli::I]),
241            PauliString::new(vec![Pauli::I, Pauli::Z, Pauli::Z]),
242        ];
243
244        let logical_x = vec![PauliString::new(vec![Pauli::X, Pauli::X, Pauli::X])];
245        let logical_z = vec![PauliString::new(vec![Pauli::Z, Pauli::I, Pauli::I])];
246
247        Self::new(3, 1, 1, stabilizers, logical_x, logical_z).unwrap()
248    }
249
250    /// Create the 5-qubit perfect code
251    pub fn five_qubit_code() -> Self {
252        let stabilizers = vec![
253            PauliString::new(vec![Pauli::X, Pauli::Z, Pauli::Z, Pauli::X, Pauli::I]),
254            PauliString::new(vec![Pauli::I, Pauli::X, Pauli::Z, Pauli::Z, Pauli::X]),
255            PauliString::new(vec![Pauli::X, Pauli::I, Pauli::X, Pauli::Z, Pauli::Z]),
256            PauliString::new(vec![Pauli::Z, Pauli::X, Pauli::I, Pauli::X, Pauli::Z]),
257        ];
258
259        let logical_x = vec![PauliString::new(vec![
260            Pauli::X,
261            Pauli::X,
262            Pauli::X,
263            Pauli::X,
264            Pauli::X,
265        ])];
266        let logical_z = vec![PauliString::new(vec![
267            Pauli::Z,
268            Pauli::Z,
269            Pauli::Z,
270            Pauli::Z,
271            Pauli::Z,
272        ])];
273
274        Self::new(5, 1, 3, stabilizers, logical_x, logical_z).unwrap()
275    }
276
277    /// Create the 7-qubit Steane code
278    pub fn steane_code() -> Self {
279        let stabilizers = vec![
280            PauliString::new(vec![
281                Pauli::I,
282                Pauli::I,
283                Pauli::I,
284                Pauli::X,
285                Pauli::X,
286                Pauli::X,
287                Pauli::X,
288            ]),
289            PauliString::new(vec![
290                Pauli::I,
291                Pauli::X,
292                Pauli::X,
293                Pauli::I,
294                Pauli::I,
295                Pauli::X,
296                Pauli::X,
297            ]),
298            PauliString::new(vec![
299                Pauli::X,
300                Pauli::I,
301                Pauli::X,
302                Pauli::I,
303                Pauli::X,
304                Pauli::I,
305                Pauli::X,
306            ]),
307            PauliString::new(vec![
308                Pauli::I,
309                Pauli::I,
310                Pauli::I,
311                Pauli::Z,
312                Pauli::Z,
313                Pauli::Z,
314                Pauli::Z,
315            ]),
316            PauliString::new(vec![
317                Pauli::I,
318                Pauli::Z,
319                Pauli::Z,
320                Pauli::I,
321                Pauli::I,
322                Pauli::Z,
323                Pauli::Z,
324            ]),
325            PauliString::new(vec![
326                Pauli::Z,
327                Pauli::I,
328                Pauli::Z,
329                Pauli::I,
330                Pauli::Z,
331                Pauli::I,
332                Pauli::Z,
333            ]),
334        ];
335
336        let logical_x = vec![PauliString::new(vec![
337            Pauli::X,
338            Pauli::X,
339            Pauli::X,
340            Pauli::X,
341            Pauli::X,
342            Pauli::X,
343            Pauli::X,
344        ])];
345        let logical_z = vec![PauliString::new(vec![
346            Pauli::Z,
347            Pauli::Z,
348            Pauli::Z,
349            Pauli::Z,
350            Pauli::Z,
351            Pauli::Z,
352            Pauli::Z,
353        ])];
354
355        Self::new(7, 1, 3, stabilizers, logical_x, logical_z).unwrap()
356    }
357
358    /// Get syndrome for a given error
359    pub fn syndrome(&self, error: &PauliString) -> QuantRS2Result<Vec<bool>> {
360        if error.paulis.len() != self.n {
361            return Err(QuantRS2Error::InvalidInput(
362                "Error must act on all physical qubits".to_string(),
363            ));
364        }
365
366        let mut syndrome = Vec::with_capacity(self.stabilizers.len());
367        for stabilizer in &self.stabilizers {
368            syndrome.push(!stabilizer.commutes_with(error)?);
369        }
370
371        Ok(syndrome)
372    }
373}
374
375/// Surface code lattice
376#[derive(Debug, Clone)]
377pub struct SurfaceCode {
378    /// Number of rows in the lattice
379    pub rows: usize,
380    /// Number of columns in the lattice
381    pub cols: usize,
382    /// Qubit positions (row, col) -> qubit index
383    pub qubit_map: HashMap<(usize, usize), usize>,
384    /// Stabilizer plaquettes
385    pub x_stabilizers: Vec<Vec<usize>>,
386    pub z_stabilizers: Vec<Vec<usize>>,
387}
388
389impl SurfaceCode {
390    /// Create a new surface code
391    pub fn new(rows: usize, cols: usize) -> Self {
392        let mut qubit_map = HashMap::new();
393        let mut qubit_index = 0;
394
395        // Place qubits on the lattice
396        for r in 0..rows {
397            for c in 0..cols {
398                qubit_map.insert((r, c), qubit_index);
399                qubit_index += 1;
400            }
401        }
402
403        let mut x_stabilizers = Vec::new();
404        let mut z_stabilizers = Vec::new();
405
406        // Create X stabilizers (vertex operators)
407        for r in 0..rows - 1 {
408            for c in 0..cols - 1 {
409                if (r + c) % 2 == 0 {
410                    let stabilizer = vec![
411                        qubit_map[&(r, c)],
412                        qubit_map[&(r, c + 1)],
413                        qubit_map[&(r + 1, c)],
414                        qubit_map[&(r + 1, c + 1)],
415                    ];
416                    x_stabilizers.push(stabilizer);
417                }
418            }
419        }
420
421        // Create Z stabilizers (plaquette operators)
422        for r in 0..rows - 1 {
423            for c in 0..cols - 1 {
424                if (r + c) % 2 == 1 {
425                    let stabilizer = vec![
426                        qubit_map[&(r, c)],
427                        qubit_map[&(r, c + 1)],
428                        qubit_map[&(r + 1, c)],
429                        qubit_map[&(r + 1, c + 1)],
430                    ];
431                    z_stabilizers.push(stabilizer);
432                }
433            }
434        }
435
436        Self {
437            rows,
438            cols,
439            qubit_map,
440            x_stabilizers,
441            z_stabilizers,
442        }
443    }
444
445    /// Get the code distance
446    pub fn distance(&self) -> usize {
447        self.rows.min(self.cols)
448    }
449
450    /// Convert to stabilizer code representation
451    pub fn to_stabilizer_code(&self) -> StabilizerCode {
452        let n = self.qubit_map.len();
453        let mut stabilizers = Vec::new();
454
455        // Add X stabilizers
456        for x_stab in &self.x_stabilizers {
457            let mut paulis = vec![Pauli::I; n];
458            for &qubit in x_stab {
459                paulis[qubit] = Pauli::X;
460            }
461            stabilizers.push(PauliString::new(paulis));
462        }
463
464        // Add Z stabilizers
465        for z_stab in &self.z_stabilizers {
466            let mut paulis = vec![Pauli::I; n];
467            for &qubit in z_stab {
468                paulis[qubit] = Pauli::Z;
469            }
470            stabilizers.push(PauliString::new(paulis));
471        }
472
473        // Create logical operators (simplified - just use boundary chains)
474        let mut logical_x_paulis = vec![Pauli::I; n];
475        let mut logical_z_paulis = vec![Pauli::I; n];
476
477        // Logical X: horizontal chain on top boundary
478        for c in 0..self.cols {
479            if let Some(&qubit) = self.qubit_map.get(&(0, c)) {
480                logical_x_paulis[qubit] = Pauli::X;
481            }
482        }
483
484        // Logical Z: vertical chain on left boundary
485        for r in 0..self.rows {
486            if let Some(&qubit) = self.qubit_map.get(&(r, 0)) {
487                logical_z_paulis[qubit] = Pauli::Z;
488            }
489        }
490
491        let logical_x = vec![PauliString::new(logical_x_paulis)];
492        let logical_z = vec![PauliString::new(logical_z_paulis)];
493
494        StabilizerCode::new(n, 1, self.distance(), stabilizers, logical_x, logical_z).unwrap()
495    }
496}
497
498/// Syndrome decoder interface
499pub trait SyndromeDecoder {
500    /// Decode syndrome to find most likely error
501    fn decode(&self, syndrome: &[bool]) -> QuantRS2Result<PauliString>;
502}
503
504/// Lookup table decoder
505pub struct LookupDecoder {
506    /// Syndrome to error mapping
507    syndrome_table: HashMap<Vec<bool>, PauliString>,
508}
509
510impl LookupDecoder {
511    /// Create decoder for a stabilizer code
512    pub fn new(code: &StabilizerCode) -> QuantRS2Result<Self> {
513        let mut syndrome_table = HashMap::new();
514
515        // Generate all correctable errors (up to weight floor(d/2))
516        let max_weight = (code.d - 1) / 2;
517        let all_errors = Self::generate_pauli_errors(code.n, max_weight);
518
519        for error in all_errors {
520            let syndrome = code.syndrome(&error)?;
521
522            // Only keep lowest weight error for each syndrome
523            syndrome_table
524                .entry(syndrome)
525                .and_modify(|e: &mut PauliString| {
526                    if error.weight() < e.weight() {
527                        *e = error.clone();
528                    }
529                })
530                .or_insert(error);
531        }
532
533        Ok(Self { syndrome_table })
534    }
535
536    /// Generate all Pauli errors up to given weight
537    fn generate_pauli_errors(n: usize, max_weight: usize) -> Vec<PauliString> {
538        let mut errors = vec![PauliString::identity(n)];
539
540        for weight in 1..=max_weight {
541            let weight_errors = Self::generate_weight_k_errors(n, weight);
542            errors.extend(weight_errors);
543        }
544
545        errors
546    }
547
548    /// Generate all weight-k Pauli errors
549    fn generate_weight_k_errors(n: usize, k: usize) -> Vec<PauliString> {
550        let mut errors = Vec::new();
551        let paulis = [Pauli::X, Pauli::Y, Pauli::Z];
552
553        // Generate all combinations of k positions
554        let positions = Self::combinations(n, k);
555
556        for pos_set in positions {
557            // For each position set, try all Pauli combinations
558            let pauli_combinations = Self::cartesian_power(&paulis, k);
559
560            for pauli_combo in pauli_combinations {
561                let mut error_paulis = vec![Pauli::I; n];
562                for (i, &pos) in pos_set.iter().enumerate() {
563                    error_paulis[pos] = pauli_combo[i];
564                }
565                errors.push(PauliString::new(error_paulis));
566            }
567        }
568
569        errors
570    }
571
572    /// Generate all k-combinations from n elements
573    fn combinations(n: usize, k: usize) -> Vec<Vec<usize>> {
574        let mut result = Vec::new();
575        let mut combo = (0..k).collect::<Vec<_>>();
576
577        loop {
578            result.push(combo.clone());
579
580            // Find rightmost element that can be incremented
581            let mut i = k;
582            while i > 0 && (i == k || combo[i] == n - k + i) {
583                i -= 1;
584            }
585
586            if i == 0 && combo[0] == n - k {
587                break;
588            }
589
590            // Increment and reset following elements
591            combo[i] += 1;
592            for j in i + 1..k {
593                combo[j] = combo[j - 1] + 1;
594            }
595        }
596
597        result
598    }
599
600    /// Generate Cartesian power of a set
601    fn cartesian_power<T: Clone>(set: &[T], k: usize) -> Vec<Vec<T>> {
602        if k == 0 {
603            return vec![vec![]];
604        }
605
606        let mut result = Vec::new();
607        let smaller = Self::cartesian_power(set, k - 1);
608
609        for item in set {
610            for mut combo in smaller.clone() {
611                combo.push(item.clone());
612                result.push(combo);
613            }
614        }
615
616        result
617    }
618}
619
620impl SyndromeDecoder for LookupDecoder {
621    fn decode(&self, syndrome: &[bool]) -> QuantRS2Result<PauliString> {
622        self.syndrome_table
623            .get(syndrome)
624            .cloned()
625            .ok_or_else(|| QuantRS2Error::InvalidInput("Unknown syndrome".to_string()))
626    }
627}
628
629/// Minimum Weight Perfect Matching decoder for surface codes
630pub struct MWPMDecoder {
631    surface_code: SurfaceCode,
632}
633
634impl MWPMDecoder {
635    /// Create MWPM decoder for surface code
636    pub fn new(surface_code: SurfaceCode) -> Self {
637        Self { surface_code }
638    }
639
640    /// Find minimum weight matching for syndrome
641    pub fn decode_syndrome(
642        &self,
643        x_syndrome: &[bool],
644        z_syndrome: &[bool],
645    ) -> QuantRS2Result<PauliString> {
646        let n = self.surface_code.qubit_map.len();
647        let mut error_paulis = vec![Pauli::I; n];
648
649        // Decode X errors using Z syndrome
650        let z_defects = self.find_defects(z_syndrome, &self.surface_code.z_stabilizers);
651        let x_corrections = self.minimum_weight_matching(&z_defects, Pauli::X)?;
652
653        for (qubit, pauli) in x_corrections {
654            error_paulis[qubit] = pauli;
655        }
656
657        // Decode Z errors using X syndrome
658        let x_defects = self.find_defects(x_syndrome, &self.surface_code.x_stabilizers);
659        let z_corrections = self.minimum_weight_matching(&x_defects, Pauli::Z)?;
660
661        for (qubit, pauli) in z_corrections {
662            if error_paulis[qubit] != Pauli::I {
663                // Combine X and Z to get Y
664                error_paulis[qubit] = Pauli::Y;
665            } else {
666                error_paulis[qubit] = pauli;
667            }
668        }
669
670        Ok(PauliString::new(error_paulis))
671    }
672
673    /// Find stabilizer defects from syndrome
674    fn find_defects(&self, syndrome: &[bool], _stabilizers: &[Vec<usize>]) -> Vec<usize> {
675        syndrome
676            .iter()
677            .enumerate()
678            .filter_map(|(i, &s)| if s { Some(i) } else { None })
679            .collect()
680    }
681
682    /// Simple minimum weight matching (for demonstration)
683    fn minimum_weight_matching(
684        &self,
685        defects: &[usize],
686        error_type: Pauli,
687    ) -> QuantRS2Result<Vec<(usize, Pauli)>> {
688        // This is a simplified version - real implementation would use blossom algorithm
689        let mut corrections = Vec::new();
690
691        if defects.len() % 2 != 0 {
692            return Err(QuantRS2Error::InvalidInput(
693                "Odd number of defects".to_string(),
694            ));
695        }
696
697        // Simple greedy pairing
698        let mut paired = vec![false; defects.len()];
699
700        for i in 0..defects.len() {
701            if paired[i] {
702                continue;
703            }
704
705            // Find nearest unpaired defect
706            let mut min_dist = usize::MAX;
707            let mut min_j = i;
708
709            for j in i + 1..defects.len() {
710                if !paired[j] {
711                    let dist = self.defect_distance(defects[i], defects[j]);
712                    if dist < min_dist {
713                        min_dist = dist;
714                        min_j = j;
715                    }
716                }
717            }
718
719            if min_j != i {
720                paired[i] = true;
721                paired[min_j] = true;
722
723                // Add correction path
724                let path = self.shortest_path(defects[i], defects[min_j])?;
725                for qubit in path {
726                    corrections.push((qubit, error_type));
727                }
728            }
729        }
730
731        Ok(corrections)
732    }
733
734    /// Manhattan distance between defects
735    fn defect_distance(&self, defect1: usize, defect2: usize) -> usize {
736        // This is simplified - would need proper defect coordinates
737        (defect1 as isize - defect2 as isize).unsigned_abs()
738    }
739
740    /// Find shortest path between defects
741    fn shortest_path(&self, start: usize, end: usize) -> QuantRS2Result<Vec<usize>> {
742        // Simplified path - in practice would use proper graph traversal
743        let path = if start < end {
744            (start..=end).collect()
745        } else {
746            (end..=start).rev().collect()
747        };
748
749        Ok(path)
750    }
751}
752
753/// Color code
754#[derive(Debug, Clone)]
755pub struct ColorCode {
756    /// Number of physical qubits
757    pub n: usize,
758    /// Face coloring (red, green, blue)
759    pub faces: Vec<(Vec<usize>, Color)>,
760    /// Vertex to qubit mapping
761    pub vertex_map: HashMap<(i32, i32), usize>,
762}
763
764#[derive(Debug, Clone, Copy, PartialEq, Eq)]
765pub enum Color {
766    Red,
767    Green,
768    Blue,
769}
770
771impl ColorCode {
772    /// Create a triangular color code
773    pub fn triangular(size: usize) -> Self {
774        let mut vertex_map = HashMap::new();
775        let mut qubit_index = 0;
776
777        // Create hexagonal lattice vertices
778        for i in 0..size as i32 {
779            for j in 0..size as i32 {
780                vertex_map.insert((i, j), qubit_index);
781                qubit_index += 1;
782            }
783        }
784
785        let mut faces = Vec::new();
786
787        // Create colored faces
788        for i in 0..size as i32 - 1 {
789            for j in 0..size as i32 - 1 {
790                // Red face
791                if let (Some(&q1), Some(&q2), Some(&q3)) = (
792                    vertex_map.get(&(i, j)),
793                    vertex_map.get(&(i + 1, j)),
794                    vertex_map.get(&(i, j + 1)),
795                ) {
796                    faces.push((vec![q1, q2, q3], Color::Red));
797                }
798
799                // Green face
800                if let (Some(&q1), Some(&q2), Some(&q3)) = (
801                    vertex_map.get(&(i + 1, j)),
802                    vertex_map.get(&(i + 1, j + 1)),
803                    vertex_map.get(&(i, j + 1)),
804                ) {
805                    faces.push((vec![q1, q2, q3], Color::Green));
806                }
807            }
808        }
809
810        Self {
811            n: vertex_map.len(),
812            faces,
813            vertex_map,
814        }
815    }
816
817    /// Convert to stabilizer code
818    pub fn to_stabilizer_code(&self) -> StabilizerCode {
819        let mut x_stabilizers = Vec::new();
820        let mut z_stabilizers = Vec::new();
821
822        for (qubits, _color) in &self.faces {
823            // X-type stabilizer
824            let mut x_paulis = vec![Pauli::I; self.n];
825            for &q in qubits {
826                x_paulis[q] = Pauli::X;
827            }
828            x_stabilizers.push(PauliString::new(x_paulis));
829
830            // Z-type stabilizer
831            let mut z_paulis = vec![Pauli::I; self.n];
832            for &q in qubits {
833                z_paulis[q] = Pauli::Z;
834            }
835            z_stabilizers.push(PauliString::new(z_paulis));
836        }
837
838        let mut stabilizers = x_stabilizers;
839        stabilizers.extend(z_stabilizers);
840
841        // Simplified logical operators
842        let logical_x = vec![PauliString::new(vec![Pauli::X; self.n])];
843        let logical_z = vec![PauliString::new(vec![Pauli::Z; self.n])];
844
845        StabilizerCode::new(
846            self.n,
847            1,
848            3, // minimum distance
849            stabilizers,
850            logical_x,
851            logical_z,
852        )
853        .unwrap()
854    }
855}
856
857/// Concatenated quantum error correction codes
858#[derive(Debug, Clone)]
859pub struct ConcatenatedCode {
860    /// Inner code (applied first)
861    pub inner_code: StabilizerCode,
862    /// Outer code (applied to logical qubits of inner code)
863    pub outer_code: StabilizerCode,
864}
865
866impl ConcatenatedCode {
867    /// Create a new concatenated code
868    pub fn new(inner_code: StabilizerCode, outer_code: StabilizerCode) -> Self {
869        Self {
870            inner_code,
871            outer_code,
872        }
873    }
874
875    /// Get total number of physical qubits
876    pub fn total_qubits(&self) -> usize {
877        self.inner_code.n * self.outer_code.n
878    }
879
880    /// Get number of logical qubits
881    pub fn logical_qubits(&self) -> usize {
882        self.inner_code.k * self.outer_code.k
883    }
884
885    /// Get effective distance
886    pub fn distance(&self) -> usize {
887        self.inner_code.d * self.outer_code.d
888    }
889
890    /// Encode a logical state
891    pub fn encode(&self, logical_state: &[Complex64]) -> QuantRS2Result<Vec<Complex64>> {
892        if logical_state.len() != 1 << self.logical_qubits() {
893            return Err(QuantRS2Error::InvalidInput(
894                "Logical state dimension mismatch".to_string(),
895            ));
896        }
897
898        // First encode with outer code
899        let outer_encoded = self.encode_with_code(logical_state, &self.outer_code)?;
900
901        // Then encode each logical qubit of outer code with inner code
902        let mut final_encoded = vec![Complex64::new(0.0, 0.0); 1 << self.total_qubits()];
903
904        // This is a simplified encoding - proper implementation would require
905        // tensor product operations and proper state manipulation
906        for (i, &amplitude) in outer_encoded.iter().enumerate() {
907            if amplitude.norm() > 1e-10 {
908                final_encoded[i * (1 << self.inner_code.n)] = amplitude;
909            }
910        }
911
912        Ok(final_encoded)
913    }
914
915    /// Correct errors using concatenated decoding
916    pub fn correct_error(
917        &self,
918        encoded_state: &[Complex64],
919        error: &PauliString,
920    ) -> QuantRS2Result<Vec<Complex64>> {
921        if error.paulis.len() != self.total_qubits() {
922            return Err(QuantRS2Error::InvalidInput(
923                "Error must act on all physical qubits".to_string(),
924            ));
925        }
926
927        // Simplified error correction - apply error and return corrected state
928        // In practice, would implement syndrome extraction and decoding
929        let mut corrected = encoded_state.to_vec();
930
931        // Apply error (simplified)
932        for (i, &pauli) in error.paulis.iter().enumerate() {
933            if pauli != Pauli::I && i < corrected.len() {
934                // Simplified error application
935                corrected[i] *= -1.0;
936            }
937        }
938
939        Ok(corrected)
940    }
941
942    /// Encode with a specific code
943    fn encode_with_code(
944        &self,
945        state: &[Complex64],
946        code: &StabilizerCode,
947    ) -> QuantRS2Result<Vec<Complex64>> {
948        // Simplified encoding - proper implementation would use stabilizer formalism
949        let mut encoded = vec![Complex64::new(0.0, 0.0); 1 << code.n];
950
951        for (i, &amplitude) in state.iter().enumerate() {
952            if i < encoded.len() {
953                encoded[i * (1 << (code.n - code.k))] = amplitude;
954            }
955        }
956
957        Ok(encoded)
958    }
959}
960
961/// Hypergraph product codes for quantum LDPC
962#[derive(Debug, Clone)]
963pub struct HypergraphProductCode {
964    /// Number of physical qubits
965    pub n: usize,
966    /// Number of logical qubits
967    pub k: usize,
968    /// X-type stabilizers
969    pub x_stabilizers: Vec<PauliString>,
970    /// Z-type stabilizers
971    pub z_stabilizers: Vec<PauliString>,
972}
973
974impl HypergraphProductCode {
975    /// Create hypergraph product code from two classical codes
976    pub fn new(h1: Array2<u8>, h2: Array2<u8>) -> Self {
977        let (m1, n1) = h1.dim();
978        let (m2, n2) = h2.dim();
979
980        let n = n1 * m2 + m1 * n2;
981        let k = (n1 - m1) * (n2 - m2);
982
983        let mut x_stabilizers = Vec::new();
984        let mut z_stabilizers = Vec::new();
985
986        // X-type stabilizers: H1 ⊗ I2
987        for i in 0..m1 {
988            for j in 0..m2 {
989                let mut paulis = vec![Pauli::I; n];
990
991                // Apply H1 to first block
992                for l in 0..n1 {
993                    if h1[[i, l]] == 1 {
994                        paulis[l * m2 + j] = Pauli::X;
995                    }
996                }
997
998                x_stabilizers.push(PauliString::new(paulis));
999            }
1000        }
1001
1002        // Z-type stabilizers: I1 ⊗ H2^T
1003        for i in 0..m1 {
1004            for j in 0..m2 {
1005                let mut paulis = vec![Pauli::I; n];
1006
1007                // Apply H2^T to second block
1008                for l in 0..n2 {
1009                    if h2[[j, l]] == 1 {
1010                        paulis[n1 * m2 + i * n2 + l] = Pauli::Z;
1011                    }
1012                }
1013
1014                z_stabilizers.push(PauliString::new(paulis));
1015            }
1016        }
1017
1018        Self {
1019            n,
1020            k,
1021            x_stabilizers,
1022            z_stabilizers,
1023        }
1024    }
1025
1026    /// Convert to stabilizer code representation
1027    pub fn to_stabilizer_code(&self) -> StabilizerCode {
1028        let mut stabilizers = self.x_stabilizers.clone();
1029        stabilizers.extend(self.z_stabilizers.clone());
1030
1031        // Simplified logical operators
1032        let logical_x = vec![PauliString::new(vec![Pauli::X; self.n])];
1033        let logical_z = vec![PauliString::new(vec![Pauli::Z; self.n])];
1034
1035        StabilizerCode::new(
1036            self.n,
1037            self.k,
1038            3, // Simplified distance
1039            stabilizers,
1040            logical_x,
1041            logical_z,
1042        )
1043        .unwrap()
1044    }
1045}
1046
1047/// Quantum Low-Density Parity-Check (LDPC) codes
1048#[derive(Debug, Clone)]
1049pub struct QuantumLDPCCode {
1050    /// Number of physical qubits
1051    pub n: usize,
1052    /// Number of logical qubits
1053    pub k: usize,
1054    /// Maximum stabilizer weight
1055    pub max_weight: usize,
1056    /// X-type stabilizers
1057    pub x_stabilizers: Vec<PauliString>,
1058    /// Z-type stabilizers
1059    pub z_stabilizers: Vec<PauliString>,
1060}
1061
1062impl QuantumLDPCCode {
1063    /// Create a bicycle code (CSS LDPC)
1064    pub fn bicycle_code(a: usize, b: usize) -> Self {
1065        let n = 2 * a * b;
1066        let k = 2;
1067        let max_weight = 6; // Typical for bicycle codes
1068
1069        let mut x_stabilizers = Vec::new();
1070        let mut z_stabilizers = Vec::new();
1071
1072        // Generate bicycle code stabilizers
1073        for i in 0..a {
1074            for j in 0..b {
1075                // X-type stabilizer
1076                let mut x_paulis = vec![Pauli::I; n];
1077                let base_idx = i * b + j;
1078
1079                // Create a 6-cycle in the Cayley graph
1080                x_paulis[base_idx] = Pauli::X;
1081                x_paulis[(base_idx + 1) % (a * b)] = Pauli::X;
1082                x_paulis[(base_idx + b) % (a * b)] = Pauli::X;
1083                x_paulis[a * b + base_idx] = Pauli::X;
1084                x_paulis[a * b + (base_idx + 1) % (a * b)] = Pauli::X;
1085                x_paulis[a * b + (base_idx + b) % (a * b)] = Pauli::X;
1086
1087                x_stabilizers.push(PauliString::new(x_paulis));
1088
1089                // Z-type stabilizer (similar structure)
1090                let mut z_paulis = vec![Pauli::I; n];
1091                z_paulis[base_idx] = Pauli::Z;
1092                z_paulis[(base_idx + a) % (a * b)] = Pauli::Z;
1093                z_paulis[(base_idx + 1) % (a * b)] = Pauli::Z;
1094                z_paulis[a * b + base_idx] = Pauli::Z;
1095                z_paulis[a * b + (base_idx + a) % (a * b)] = Pauli::Z;
1096                z_paulis[a * b + (base_idx + 1) % (a * b)] = Pauli::Z;
1097
1098                z_stabilizers.push(PauliString::new(z_paulis));
1099            }
1100        }
1101
1102        Self {
1103            n,
1104            k,
1105            max_weight,
1106            x_stabilizers,
1107            z_stabilizers,
1108        }
1109    }
1110
1111    /// Convert to stabilizer code representation
1112    pub fn to_stabilizer_code(&self) -> StabilizerCode {
1113        let mut stabilizers = self.x_stabilizers.clone();
1114        stabilizers.extend(self.z_stabilizers.clone());
1115
1116        // Create logical operators (simplified)
1117        let logical_x = vec![
1118            PauliString::new(vec![Pauli::X; self.n]),
1119            PauliString::new(vec![Pauli::Y; self.n]),
1120        ];
1121        let logical_z = vec![
1122            PauliString::new(vec![Pauli::Z; self.n]),
1123            PauliString::new(vec![Pauli::Y; self.n]),
1124        ];
1125
1126        StabilizerCode::new(
1127            self.n,
1128            self.k,
1129            4, // Typical distance for bicycle codes
1130            stabilizers,
1131            logical_x,
1132            logical_z,
1133        )
1134        .unwrap()
1135    }
1136}
1137
1138/// Toric code (generalization of surface code on torus)
1139#[derive(Debug, Clone)]
1140pub struct ToricCode {
1141    /// Number of rows in the torus
1142    pub rows: usize,
1143    /// Number of columns in the torus
1144    pub cols: usize,
1145    /// Qubit mapping
1146    pub qubit_map: HashMap<(usize, usize), usize>,
1147}
1148
1149impl ToricCode {
1150    /// Create a new toric code
1151    pub fn new(rows: usize, cols: usize) -> Self {
1152        let mut qubit_map = HashMap::new();
1153        let mut qubit_index = 0;
1154
1155        // Place qubits on torus (two qubits per unit cell)
1156        for r in 0..rows {
1157            for c in 0..cols {
1158                // Horizontal edge qubit
1159                qubit_map.insert((2 * r, c), qubit_index);
1160                qubit_index += 1;
1161                // Vertical edge qubit
1162                qubit_map.insert((2 * r + 1, c), qubit_index);
1163                qubit_index += 1;
1164            }
1165        }
1166
1167        Self {
1168            rows,
1169            cols,
1170            qubit_map,
1171        }
1172    }
1173
1174    /// Get number of logical qubits
1175    pub fn logical_qubits(&self) -> usize {
1176        2 // Two logical qubits for torus topology
1177    }
1178
1179    /// Get code distance
1180    pub fn distance(&self) -> usize {
1181        self.rows.min(self.cols)
1182    }
1183
1184    /// Convert to stabilizer code representation
1185    pub fn to_stabilizer_code(&self) -> StabilizerCode {
1186        let n = self.qubit_map.len();
1187        let mut stabilizers = Vec::new();
1188
1189        // Vertex stabilizers (X-type) - star operators
1190        for r in 0..self.rows {
1191            for c in 0..self.cols {
1192                let mut paulis = vec![Pauli::I; n];
1193
1194                // Four edges around vertex with correct torus indexing
1195                let h_edge_below = (2 * r, c);
1196                let h_edge_above = (2 * ((r + self.rows - 1) % self.rows), c);
1197                let v_edge_left = (2 * r + 1, (c + self.cols - 1) % self.cols);
1198                let v_edge_right = (2 * r + 1, c);
1199
1200                for &coord in &[h_edge_below, h_edge_above, v_edge_left, v_edge_right] {
1201                    if let Some(&qubit) = self.qubit_map.get(&coord) {
1202                        paulis[qubit] = Pauli::X;
1203                    }
1204                }
1205
1206                stabilizers.push(PauliString::new(paulis));
1207            }
1208        }
1209
1210        // Plaquette stabilizers (Z-type) - face operators
1211        for r in 0..self.rows {
1212            for c in 0..self.cols {
1213                let mut paulis = vec![Pauli::I; n];
1214
1215                // Four edges around plaquette with correct indexing
1216                let h_edge_top = (2 * r, c);
1217                let h_edge_bottom = (2 * ((r + 1) % self.rows), c);
1218                let v_edge_left = (2 * r + 1, c);
1219                let v_edge_right = (2 * r + 1, (c + 1) % self.cols);
1220
1221                for &coord in &[h_edge_top, h_edge_bottom, v_edge_left, v_edge_right] {
1222                    if let Some(&qubit) = self.qubit_map.get(&coord) {
1223                        paulis[qubit] = Pauli::Z;
1224                    }
1225                }
1226
1227                stabilizers.push(PauliString::new(paulis));
1228            }
1229        }
1230
1231        // Logical operators (horizontal and vertical loops)
1232        let mut logical_x1 = vec![Pauli::I; n];
1233        let mut logical_z1 = vec![Pauli::I; n];
1234        let mut logical_x2 = vec![Pauli::I; n];
1235        let mut logical_z2 = vec![Pauli::I; n];
1236
1237        // Horizontal logical loop operators
1238        for c in 0..self.cols {
1239            // Logical X along horizontal direction (vertical edges)
1240            if let Some(&qubit) = self.qubit_map.get(&(1, c)) {
1241                logical_x1[qubit] = Pauli::X;
1242            }
1243            // Logical Z along horizontal direction (horizontal edges)
1244            if let Some(&qubit) = self.qubit_map.get(&(0, c)) {
1245                logical_z2[qubit] = Pauli::Z;
1246            }
1247        }
1248
1249        // Vertical logical loop operators
1250        for r in 0..self.rows {
1251            // Logical X along vertical direction (horizontal edges)
1252            if let Some(&qubit) = self.qubit_map.get(&(2 * r, 0)) {
1253                logical_x2[qubit] = Pauli::X;
1254            }
1255            // Logical Z along vertical direction (vertical edges)
1256            if let Some(&qubit) = self.qubit_map.get(&(2 * r + 1, 0)) {
1257                logical_z1[qubit] = Pauli::Z;
1258            }
1259        }
1260
1261        let logical_x = vec![PauliString::new(logical_x1), PauliString::new(logical_x2)];
1262        let logical_z = vec![PauliString::new(logical_z1), PauliString::new(logical_z2)];
1263
1264        StabilizerCode::new(n, 2, self.distance(), stabilizers, logical_x, logical_z).unwrap()
1265    }
1266}
1267
1268/// Machine learning-based syndrome decoder
1269pub struct MLDecoder {
1270    /// The code being decoded
1271    code: StabilizerCode,
1272    /// Neural network weights (simplified representation)
1273    weights: Vec<Vec<f64>>,
1274}
1275
1276impl MLDecoder {
1277    /// Create a new ML decoder
1278    pub fn new(code: StabilizerCode) -> Self {
1279        // Initialize random weights for a simple neural network
1280        let input_size = code.stabilizers.len();
1281        let hidden_size = 2 * input_size;
1282        let output_size = code.n * 3; // 3 Pauli operators per qubit
1283
1284        use scirs2_core::random::prelude::*;
1285        let mut rng = thread_rng();
1286        let mut weights = Vec::new();
1287
1288        // Input to hidden layer
1289        let mut w1 = Vec::new();
1290        for _ in 0..hidden_size {
1291            let mut row = Vec::new();
1292            for _ in 0..input_size {
1293                row.push((rng.gen::<f64>() - 0.5) * 0.1);
1294            }
1295            w1.push(row);
1296        }
1297        weights.push(w1.into_iter().flatten().collect());
1298
1299        // Hidden to output layer
1300        let mut w2 = Vec::new();
1301        for _ in 0..output_size {
1302            let mut row = Vec::new();
1303            for _ in 0..hidden_size {
1304                row.push((rng.gen::<f64>() - 0.5) * 0.1);
1305            }
1306            w2.push(row);
1307        }
1308        weights.push(w2.into_iter().flatten().collect());
1309
1310        Self { code, weights }
1311    }
1312
1313    /// Simple feedforward prediction
1314    fn predict(&self, syndrome: &[bool]) -> Vec<f64> {
1315        let input: Vec<f64> = syndrome
1316            .iter()
1317            .map(|&b| if b { 1.0 } else { 0.0 })
1318            .collect();
1319
1320        // This is a greatly simplified neural network
1321        // In practice, would use proper ML framework
1322        let hidden_size = 2 * input.len();
1323        let mut hidden = vec![0.0; hidden_size];
1324
1325        // Input to hidden
1326        for i in 0..hidden_size {
1327            for j in 0..input.len() {
1328                if i * input.len() + j < self.weights[0].len() {
1329                    hidden[i] += input[j] * self.weights[0][i * input.len() + j];
1330                }
1331            }
1332            hidden[i] = hidden[i].tanh(); // Activation function
1333        }
1334
1335        // Hidden to output
1336        let output_size = self.code.n * 3;
1337        let mut output = vec![0.0; output_size];
1338
1339        for i in 0..output_size {
1340            for j in 0..hidden_size {
1341                if i * hidden_size + j < self.weights[1].len() {
1342                    output[i] += hidden[j] * self.weights[1][i * hidden_size + j];
1343                }
1344            }
1345        }
1346
1347        output
1348    }
1349}
1350
1351impl SyndromeDecoder for MLDecoder {
1352    fn decode(&self, syndrome: &[bool]) -> QuantRS2Result<PauliString> {
1353        let prediction = self.predict(syndrome);
1354
1355        // Convert prediction to Pauli string
1356        let mut paulis = Vec::with_capacity(self.code.n);
1357
1358        for qubit in 0..self.code.n {
1359            let base_idx = qubit * 3;
1360            if base_idx + 2 < prediction.len() {
1361                let x_prob = prediction[base_idx];
1362                let y_prob = prediction[base_idx + 1];
1363                let z_prob = prediction[base_idx + 2];
1364
1365                // Choose Pauli with highest probability
1366                if x_prob > y_prob && x_prob > z_prob && x_prob > 0.5 {
1367                    paulis.push(Pauli::X);
1368                } else if y_prob > z_prob && y_prob > 0.5 {
1369                    paulis.push(Pauli::Y);
1370                } else if z_prob > 0.5 {
1371                    paulis.push(Pauli::Z);
1372                } else {
1373                    paulis.push(Pauli::I);
1374                }
1375            } else {
1376                paulis.push(Pauli::I);
1377            }
1378        }
1379
1380        Ok(PauliString::new(paulis))
1381    }
1382}
1383
1384/// Real-time error correction with hardware integration
1385/// This module provides interfaces and implementations for real-time quantum error correction
1386/// that can be integrated with quantum hardware control systems.
1387pub mod real_time {
1388    use super::*;
1389    use std::collections::VecDeque;
1390    use std::sync::{Arc, Mutex, RwLock};
1391    use std::thread;
1392    use std::time::{Duration, Instant};
1393
1394    /// Hardware interface trait for quantum error correction
1395    pub trait QuantumHardwareInterface: Send + Sync {
1396        /// Get syndrome measurements from hardware
1397        fn measure_syndromes(&self) -> QuantRS2Result<Vec<bool>>;
1398
1399        /// Apply error correction operations to hardware
1400        fn apply_correction(&self, correction: &PauliString) -> QuantRS2Result<()>;
1401
1402        /// Get hardware error rates and characterization data
1403        fn get_error_characteristics(&self) -> QuantRS2Result<HardwareErrorCharacteristics>;
1404
1405        /// Check if hardware is ready for error correction
1406        fn is_ready(&self) -> bool;
1407
1408        /// Get hardware latency statistics
1409        fn get_latency_stats(&self) -> QuantRS2Result<LatencyStats>;
1410    }
1411
1412    /// Hardware error characteristics for adaptive error correction
1413    #[derive(Debug, Clone)]
1414    pub struct HardwareErrorCharacteristics {
1415        /// Single-qubit error rates (T1, T2, gate errors)
1416        pub single_qubit_error_rates: Vec<f64>,
1417        /// Two-qubit gate error rates
1418        pub two_qubit_error_rates: Vec<f64>,
1419        /// Measurement error rates
1420        pub measurement_error_rates: Vec<f64>,
1421        /// Correlated error patterns
1422        pub correlated_errors: Vec<CorrelatedErrorPattern>,
1423        /// Error rate temporal variation
1424        pub temporal_variation: f64,
1425    }
1426
1427    /// Correlated error pattern for adaptive decoding
1428    #[derive(Debug, Clone)]
1429    pub struct CorrelatedErrorPattern {
1430        pub qubits: Vec<usize>,
1431        pub probability: f64,
1432        pub pauli_pattern: PauliString,
1433    }
1434
1435    /// Performance and latency statistics
1436    #[derive(Debug, Clone)]
1437    pub struct LatencyStats {
1438        pub syndrome_measurement_time: Duration,
1439        pub decoding_time: Duration,
1440        pub correction_application_time: Duration,
1441        pub total_cycle_time: Duration,
1442        pub throughput_hz: f64,
1443    }
1444
1445    /// Real-time syndrome stream processor
1446    pub struct SyndromeStreamProcessor {
1447        buffer: Arc<Mutex<VecDeque<SyndromePacket>>>,
1448        decoder: Arc<dyn SyndromeDecoder + Send + Sync>,
1449        hardware: Arc<dyn QuantumHardwareInterface>,
1450        performance_monitor: Arc<RwLock<PerformanceMonitor>>,
1451        config: RealTimeConfig,
1452    }
1453
1454    /// Syndrome packet with timing information
1455    #[derive(Debug, Clone)]
1456    pub struct SyndromePacket {
1457        pub syndrome: Vec<bool>,
1458        pub timestamp: Instant,
1459        pub sequence_number: u64,
1460        pub measurement_fidelity: f64,
1461    }
1462
1463    /// Real-time error correction configuration
1464    #[derive(Debug, Clone)]
1465    pub struct RealTimeConfig {
1466        pub max_latency: Duration,
1467        pub buffer_size: usize,
1468        pub parallel_workers: usize,
1469        pub adaptive_threshold: bool,
1470        pub hardware_feedback: bool,
1471        pub performance_logging: bool,
1472    }
1473
1474    impl Default for RealTimeConfig {
1475        fn default() -> Self {
1476            Self {
1477                max_latency: Duration::from_micros(100), // 100μs for fast correction
1478                buffer_size: 1000,
1479                parallel_workers: 4,
1480                adaptive_threshold: true,
1481                hardware_feedback: true,
1482                performance_logging: true,
1483            }
1484        }
1485    }
1486
1487    /// Performance monitoring for real-time error correction
1488    #[derive(Debug, Clone)]
1489    pub struct PerformanceMonitor {
1490        pub cycles_processed: u64,
1491        pub errors_corrected: u64,
1492        pub false_positives: u64,
1493        pub latency_histogram: Vec<Duration>,
1494        pub throughput_samples: VecDeque<f64>,
1495        pub start_time: Instant,
1496    }
1497
1498    impl PerformanceMonitor {
1499        pub fn new() -> Self {
1500            Self {
1501                cycles_processed: 0,
1502                errors_corrected: 0,
1503                false_positives: 0,
1504                latency_histogram: Vec::new(),
1505                throughput_samples: VecDeque::new(),
1506                start_time: Instant::now(),
1507            }
1508        }
1509
1510        pub fn record_cycle(&mut self, latency: Duration, error_corrected: bool) {
1511            self.cycles_processed += 1;
1512            if error_corrected {
1513                self.errors_corrected += 1;
1514            }
1515            self.latency_histogram.push(latency);
1516
1517            // Calculate current throughput
1518            let elapsed = self.start_time.elapsed();
1519            if elapsed.as_secs_f64() > 0.0 {
1520                let throughput = self.cycles_processed as f64 / elapsed.as_secs_f64();
1521                self.throughput_samples.push_back(throughput);
1522
1523                // Keep only recent samples
1524                if self.throughput_samples.len() > 100 {
1525                    self.throughput_samples.pop_front();
1526                }
1527            }
1528        }
1529
1530        pub fn average_latency(&self) -> Duration {
1531            if self.latency_histogram.is_empty() {
1532                return Duration::from_nanos(0);
1533            }
1534
1535            let total_nanos: u64 = self
1536                .latency_histogram
1537                .iter()
1538                .map(|d| d.as_nanos() as u64)
1539                .sum();
1540            Duration::from_nanos(total_nanos / self.latency_histogram.len() as u64)
1541        }
1542
1543        pub fn current_throughput(&self) -> f64 {
1544            self.throughput_samples.back().copied().unwrap_or(0.0)
1545        }
1546
1547        pub fn error_correction_rate(&self) -> f64 {
1548            if self.cycles_processed == 0 {
1549                0.0
1550            } else {
1551                self.errors_corrected as f64 / self.cycles_processed as f64
1552            }
1553        }
1554    }
1555
1556    impl SyndromeStreamProcessor {
1557        /// Create a new real-time syndrome stream processor
1558        pub fn new(
1559            decoder: Arc<dyn SyndromeDecoder + Send + Sync>,
1560            hardware: Arc<dyn QuantumHardwareInterface>,
1561            config: RealTimeConfig,
1562        ) -> Self {
1563            Self {
1564                buffer: Arc::new(Mutex::new(VecDeque::with_capacity(config.buffer_size))),
1565                decoder,
1566                hardware,
1567                performance_monitor: Arc::new(RwLock::new(PerformanceMonitor::new())),
1568                config,
1569            }
1570        }
1571
1572        /// Start real-time error correction processing
1573        pub fn start_processing(&self) -> QuantRS2Result<thread::JoinHandle<()>> {
1574            let buffer = Arc::clone(&self.buffer);
1575            let decoder = Arc::clone(&self.decoder);
1576            let hardware = Arc::clone(&self.hardware);
1577            let monitor = Arc::clone(&self.performance_monitor);
1578            let config = self.config.clone();
1579
1580            let handle = thread::spawn(move || {
1581                let mut sequence_number = 0u64;
1582
1583                loop {
1584                    let cycle_start = Instant::now();
1585
1586                    // Check if hardware is ready
1587                    if !hardware.is_ready() {
1588                        thread::sleep(Duration::from_micros(10));
1589                        continue;
1590                    }
1591
1592                    // Measure syndromes from hardware
1593                    match hardware.measure_syndromes() {
1594                        Ok(syndrome) => {
1595                            let packet = SyndromePacket {
1596                                syndrome: syndrome.clone(),
1597                                timestamp: Instant::now(),
1598                                sequence_number,
1599                                measurement_fidelity: 0.99, // Would be measured from hardware
1600                            };
1601
1602                            // Add to buffer
1603                            {
1604                                let mut buf = buffer.lock().unwrap();
1605                                if buf.len() >= config.buffer_size {
1606                                    buf.pop_front(); // Remove oldest if buffer full
1607                                }
1608                                buf.push_back(packet);
1609                            }
1610
1611                            // Process syndrome if not all zeros (no error)
1612                            let has_error = syndrome.iter().any(|&x| x);
1613                            let mut error_corrected = false;
1614
1615                            if has_error {
1616                                match decoder.decode(&syndrome) {
1617                                    Ok(correction) => {
1618                                        match hardware.apply_correction(&correction) {
1619                                            Ok(()) => {
1620                                                error_corrected = true;
1621                                            }
1622                                            Err(e) => {
1623                                                eprintln!("Failed to apply correction: {}", e);
1624                                            }
1625                                        }
1626                                    }
1627                                    Err(e) => {
1628                                        eprintln!("Decoding failed: {}", e);
1629                                    }
1630                                }
1631                            }
1632
1633                            // Record performance metrics
1634                            let cycle_time = cycle_start.elapsed();
1635                            {
1636                                let mut mon = monitor.write().unwrap();
1637                                mon.record_cycle(cycle_time, error_corrected);
1638                            }
1639
1640                            // Check latency constraint
1641                            if cycle_time > config.max_latency {
1642                                eprintln!("Warning: Error correction cycle exceeded max latency: {:?} > {:?}",
1643                                         cycle_time, config.max_latency);
1644                            }
1645
1646                            sequence_number += 1;
1647                        }
1648                        Err(e) => {
1649                            eprintln!("Failed to measure syndromes: {}", e);
1650                            thread::sleep(Duration::from_micros(10));
1651                        }
1652                    }
1653
1654                    // Small sleep to prevent busy waiting
1655                    thread::sleep(Duration::from_micros(1));
1656                }
1657            });
1658
1659            Ok(handle)
1660        }
1661
1662        /// Get current performance statistics
1663        pub fn get_performance_stats(&self) -> PerformanceMonitor {
1664            (*self.performance_monitor.read().unwrap()).clone()
1665        }
1666
1667        /// Get syndrome buffer status
1668        pub fn get_buffer_status(&self) -> (usize, usize) {
1669            let buffer = self.buffer.lock().unwrap();
1670            (buffer.len(), self.config.buffer_size)
1671        }
1672    }
1673
1674    /// Adaptive threshold decoder that learns from hardware feedback
1675    pub struct AdaptiveThresholdDecoder {
1676        base_decoder: Arc<dyn SyndromeDecoder + Send + Sync>,
1677        error_characteristics: Arc<RwLock<HardwareErrorCharacteristics>>,
1678        learning_rate: f64,
1679        threshold_history: VecDeque<f64>,
1680    }
1681
1682    impl AdaptiveThresholdDecoder {
1683        pub fn new(
1684            base_decoder: Arc<dyn SyndromeDecoder + Send + Sync>,
1685            initial_characteristics: HardwareErrorCharacteristics,
1686        ) -> Self {
1687            Self {
1688                base_decoder,
1689                error_characteristics: Arc::new(RwLock::new(initial_characteristics)),
1690                learning_rate: 0.01,
1691                threshold_history: VecDeque::with_capacity(1000),
1692            }
1693        }
1694
1695        /// Update error characteristics based on hardware feedback
1696        pub fn update_characteristics(
1697            &mut self,
1698            new_characteristics: HardwareErrorCharacteristics,
1699        ) {
1700            *self.error_characteristics.write().unwrap() = new_characteristics;
1701        }
1702
1703        /// Adapt thresholds based on observed error patterns
1704        pub fn adapt_thresholds(&mut self, syndrome: &[bool], correction_success: bool) {
1705            let error_weight = syndrome.iter().filter(|&&x| x).count() as f64;
1706
1707            if correction_success {
1708                // Increase confidence in current threshold
1709                self.threshold_history.push_back(error_weight);
1710            } else {
1711                // Decrease threshold to be more aggressive
1712                self.threshold_history.push_back(error_weight * 0.8);
1713            }
1714
1715            if self.threshold_history.len() > 100 {
1716                self.threshold_history.pop_front();
1717            }
1718        }
1719
1720        /// Get current adaptive threshold
1721        pub fn current_threshold(&self) -> f64 {
1722            if self.threshold_history.is_empty() {
1723                return 1.0; // Default threshold
1724            }
1725
1726            let sum: f64 = self.threshold_history.iter().sum();
1727            sum / self.threshold_history.len() as f64
1728        }
1729    }
1730
1731    impl SyndromeDecoder for AdaptiveThresholdDecoder {
1732        fn decode(&self, syndrome: &[bool]) -> QuantRS2Result<PauliString> {
1733            let threshold = self.current_threshold();
1734            let error_weight = syndrome.iter().filter(|&&x| x).count() as f64;
1735
1736            // Use adaptive threshold to decide decoding strategy
1737            if error_weight > threshold {
1738                // High-confidence error: use more aggressive decoding
1739                self.base_decoder.decode(syndrome)
1740            } else {
1741                // Low-confidence: use conservative approach or no correction
1742                Ok(PauliString::new(vec![Pauli::I; syndrome.len()]))
1743            }
1744        }
1745    }
1746
1747    /// Parallel syndrome decoder for high-throughput error correction
1748    pub struct ParallelSyndromeDecoder {
1749        base_decoder: Arc<dyn SyndromeDecoder + Send + Sync>,
1750        worker_count: usize,
1751    }
1752
1753    impl ParallelSyndromeDecoder {
1754        pub fn new(
1755            base_decoder: Arc<dyn SyndromeDecoder + Send + Sync>,
1756            worker_count: usize,
1757        ) -> Self {
1758            Self {
1759                base_decoder,
1760                worker_count,
1761            }
1762        }
1763
1764        /// Decode multiple syndromes in parallel
1765        pub fn decode_batch(&self, syndromes: &[Vec<bool>]) -> QuantRS2Result<Vec<PauliString>> {
1766            let chunk_size = (syndromes.len() + self.worker_count - 1) / self.worker_count;
1767            let mut handles = Vec::new();
1768
1769            for chunk in syndromes.chunks(chunk_size) {
1770                let decoder = Arc::clone(&self.base_decoder);
1771                let chunk_data: Vec<Vec<bool>> = chunk.to_vec();
1772
1773                let handle = thread::spawn(move || {
1774                    let mut results = Vec::new();
1775                    for syndrome in chunk_data {
1776                        match decoder.decode(&syndrome) {
1777                            Ok(correction) => results.push(correction),
1778                            Err(_) => {
1779                                results.push(PauliString::new(vec![Pauli::I; syndrome.len()]))
1780                            }
1781                        }
1782                    }
1783                    results
1784                });
1785
1786                handles.push(handle);
1787            }
1788
1789            let mut all_results = Vec::new();
1790            for handle in handles {
1791                match handle.join() {
1792                    Ok(chunk_results) => all_results.extend(chunk_results),
1793                    Err(_) => {
1794                        return Err(QuantRS2Error::ComputationError(
1795                            "Parallel decoding failed".to_string(),
1796                        ))
1797                    }
1798                }
1799            }
1800
1801            Ok(all_results)
1802        }
1803    }
1804
1805    impl SyndromeDecoder for ParallelSyndromeDecoder {
1806        fn decode(&self, syndrome: &[bool]) -> QuantRS2Result<PauliString> {
1807            self.base_decoder.decode(syndrome)
1808        }
1809    }
1810
1811    /// Mock hardware interface for testing
1812    pub struct MockQuantumHardware {
1813        error_rate: f64,
1814        latency: Duration,
1815        syndrome_length: usize,
1816    }
1817
1818    impl MockQuantumHardware {
1819        pub fn new(error_rate: f64, latency: Duration, syndrome_length: usize) -> Self {
1820            Self {
1821                error_rate,
1822                latency,
1823                syndrome_length,
1824            }
1825        }
1826    }
1827
1828    impl QuantumHardwareInterface for MockQuantumHardware {
1829        fn measure_syndromes(&self) -> QuantRS2Result<Vec<bool>> {
1830            thread::sleep(self.latency);
1831
1832            // Simulate random syndrome measurements
1833            use scirs2_core::random::prelude::*;
1834            let mut rng = thread_rng();
1835            let mut syndrome = vec![false; self.syndrome_length];
1836            for i in 0..self.syndrome_length {
1837                if rng.gen::<f64>() < self.error_rate {
1838                    syndrome[i] = true;
1839                }
1840            }
1841
1842            Ok(syndrome)
1843        }
1844
1845        fn apply_correction(&self, _correction: &PauliString) -> QuantRS2Result<()> {
1846            thread::sleep(self.latency / 2);
1847            Ok(())
1848        }
1849
1850        fn get_error_characteristics(&self) -> QuantRS2Result<HardwareErrorCharacteristics> {
1851            Ok(HardwareErrorCharacteristics {
1852                single_qubit_error_rates: vec![self.error_rate; self.syndrome_length],
1853                two_qubit_error_rates: vec![self.error_rate * 10.0; self.syndrome_length / 2],
1854                measurement_error_rates: vec![self.error_rate * 0.1; self.syndrome_length],
1855                correlated_errors: Vec::new(),
1856                temporal_variation: 0.01,
1857            })
1858        }
1859
1860        fn is_ready(&self) -> bool {
1861            true
1862        }
1863
1864        fn get_latency_stats(&self) -> QuantRS2Result<LatencyStats> {
1865            Ok(LatencyStats {
1866                syndrome_measurement_time: self.latency,
1867                decoding_time: Duration::from_micros(10),
1868                correction_application_time: self.latency / 2,
1869                total_cycle_time: self.latency + Duration::from_micros(10) + self.latency / 2,
1870                throughput_hz: 1.0 / (self.latency.as_secs_f64() * 1.5 + 10e-6),
1871            })
1872        }
1873    }
1874}
1875
1876/// Logical gate synthesis for fault-tolerant computing
1877/// This module provides the ability to implement logical operations on encoded quantum states
1878/// without decoding them first, which is essential for fault-tolerant quantum computation.
1879pub mod logical_gates {
1880    use super::*;
1881
1882    /// Logical gate operation that can be applied to encoded quantum states
1883    #[derive(Debug, Clone)]
1884    pub struct LogicalGateOp {
1885        /// The stabilizer code this logical gate operates on
1886        pub code: StabilizerCode,
1887        /// Physical gate operations that implement the logical gate
1888        pub physical_operations: Vec<PhysicalGateSequence>,
1889        /// Which logical qubit(s) this gate acts on
1890        pub logical_qubits: Vec<usize>,
1891        /// Error propagation analysis
1892        pub error_propagation: ErrorPropagationAnalysis,
1893    }
1894
1895    /// Sequence of physical gates that implement part of a logical gate
1896    #[derive(Debug, Clone)]
1897    pub struct PhysicalGateSequence {
1898        /// Target physical qubits
1899        pub target_qubits: Vec<usize>,
1900        /// Pauli operators to apply
1901        pub pauli_sequence: Vec<PauliString>,
1902        /// Timing constraints (if any)
1903        pub timing_constraints: Option<TimingConstraints>,
1904        /// Error correction rounds needed
1905        pub error_correction_rounds: usize,
1906    }
1907
1908    /// Analysis of how errors propagate through logical gates
1909    #[derive(Debug, Clone)]
1910    pub struct ErrorPropagationAnalysis {
1911        /// How single-qubit errors propagate
1912        pub single_qubit_propagation: Vec<ErrorPropagationPath>,
1913        /// How two-qubit errors propagate
1914        pub two_qubit_propagation: Vec<ErrorPropagationPath>,
1915        /// Maximum error weight after gate application
1916        pub max_error_weight: usize,
1917        /// Fault-tolerance threshold
1918        pub fault_tolerance_threshold: f64,
1919    }
1920
1921    /// Path of error propagation through a logical gate
1922    #[derive(Debug, Clone)]
1923    pub struct ErrorPropagationPath {
1924        /// Initial error location
1925        pub initial_error: PauliString,
1926        /// Final error after gate application
1927        pub final_error: PauliString,
1928        /// Probability of this propagation path
1929        pub probability: f64,
1930        /// Whether this path can be corrected
1931        pub correctable: bool,
1932    }
1933
1934    /// Timing constraints for fault-tolerant gate implementation
1935    #[derive(Debug, Clone)]
1936    pub struct TimingConstraints {
1937        /// Maximum time between operations
1938        pub max_operation_time: std::time::Duration,
1939        /// Required synchronization points
1940        pub sync_points: Vec<usize>,
1941        /// Parallel operation groups
1942        pub parallel_groups: Vec<Vec<usize>>,
1943    }
1944
1945    /// Logical gate synthesis engine
1946    pub struct LogicalGateSynthesizer {
1947        /// Available error correction codes
1948        codes: Vec<StabilizerCode>,
1949        /// Synthesis strategies
1950        strategies: Vec<SynthesisStrategy>,
1951        /// Error threshold for fault tolerance
1952        error_threshold: f64,
1953    }
1954
1955    /// Strategy for synthesizing logical gates
1956    #[derive(Debug, Clone)]
1957    pub enum SynthesisStrategy {
1958        /// Transversal gates (apply same gate to all qubits)
1959        Transversal,
1960        /// Magic state distillation and injection
1961        MagicStateDistillation,
1962        /// Lattice surgery operations
1963        LatticeSurgery,
1964        /// Code deformation
1965        CodeDeformation,
1966        /// Braiding operations (for topological codes)
1967        Braiding,
1968    }
1969
1970    impl LogicalGateSynthesizer {
1971        /// Create a new logical gate synthesizer
1972        pub fn new(error_threshold: f64) -> Self {
1973            Self {
1974                codes: Vec::new(),
1975                strategies: vec![
1976                    SynthesisStrategy::Transversal,
1977                    SynthesisStrategy::MagicStateDistillation,
1978                    SynthesisStrategy::LatticeSurgery,
1979                ],
1980                error_threshold,
1981            }
1982        }
1983
1984        /// Add an error correction code to the synthesizer
1985        pub fn add_code(&mut self, code: StabilizerCode) {
1986            self.codes.push(code);
1987        }
1988
1989        /// Synthesize a logical Pauli-X gate
1990        pub fn synthesize_logical_x(
1991            &self,
1992            code: &StabilizerCode,
1993            logical_qubit: usize,
1994        ) -> QuantRS2Result<LogicalGateOp> {
1995            if logical_qubit >= code.k {
1996                return Err(QuantRS2Error::InvalidInput(format!(
1997                    "Logical qubit {} exceeds code dimension {}",
1998                    logical_qubit, code.k
1999                )));
2000            }
2001
2002            // For most stabilizer codes, logical X can be implemented transversally
2003            let logical_x_operator = &code.logical_x[logical_qubit];
2004
2005            let physical_ops = vec![PhysicalGateSequence {
2006                target_qubits: (0..code.n).collect(),
2007                pauli_sequence: vec![logical_x_operator.clone()],
2008                timing_constraints: None,
2009                error_correction_rounds: 1,
2010            }];
2011
2012            let error_analysis = self.analyze_error_propagation(code, &physical_ops)?;
2013
2014            Ok(LogicalGateOp {
2015                code: code.clone(),
2016                physical_operations: physical_ops,
2017                logical_qubits: vec![logical_qubit],
2018                error_propagation: error_analysis,
2019            })
2020        }
2021
2022        /// Synthesize a logical Pauli-Z gate
2023        pub fn synthesize_logical_z(
2024            &self,
2025            code: &StabilizerCode,
2026            logical_qubit: usize,
2027        ) -> QuantRS2Result<LogicalGateOp> {
2028            if logical_qubit >= code.k {
2029                return Err(QuantRS2Error::InvalidInput(format!(
2030                    "Logical qubit {} exceeds code dimension {}",
2031                    logical_qubit, code.k
2032                )));
2033            }
2034
2035            let logical_z_operator = &code.logical_z[logical_qubit];
2036
2037            let physical_ops = vec![PhysicalGateSequence {
2038                target_qubits: (0..code.n).collect(),
2039                pauli_sequence: vec![logical_z_operator.clone()],
2040                timing_constraints: None,
2041                error_correction_rounds: 1,
2042            }];
2043
2044            let error_analysis = self.analyze_error_propagation(code, &physical_ops)?;
2045
2046            Ok(LogicalGateOp {
2047                code: code.clone(),
2048                physical_operations: physical_ops,
2049                logical_qubits: vec![logical_qubit],
2050                error_propagation: error_analysis,
2051            })
2052        }
2053
2054        /// Synthesize a logical Hadamard gate
2055        pub fn synthesize_logical_h(
2056            &self,
2057            code: &StabilizerCode,
2058            logical_qubit: usize,
2059        ) -> QuantRS2Result<LogicalGateOp> {
2060            if logical_qubit >= code.k {
2061                return Err(QuantRS2Error::InvalidInput(format!(
2062                    "Logical qubit {} exceeds code dimension {}",
2063                    logical_qubit, code.k
2064                )));
2065            }
2066
2067            // Hadamard can often be implemented transversally
2068            // H|x⟩ = |+⟩ if x=0, |-⟩ if x=1, and H swaps X and Z operators
2069            let physical_ops = vec![PhysicalGateSequence {
2070                target_qubits: (0..code.n).collect(),
2071                pauli_sequence: self.generate_hadamard_sequence(code, logical_qubit)?,
2072                timing_constraints: Some(TimingConstraints {
2073                    max_operation_time: std::time::Duration::from_micros(100),
2074                    sync_points: vec![code.n / 2],
2075                    parallel_groups: vec![(0..code.n).collect()],
2076                }),
2077                error_correction_rounds: 2, // Need more rounds for non-Pauli gates
2078            }];
2079
2080            let error_analysis = self.analyze_error_propagation(code, &physical_ops)?;
2081
2082            Ok(LogicalGateOp {
2083                code: code.clone(),
2084                physical_operations: physical_ops,
2085                logical_qubits: vec![logical_qubit],
2086                error_propagation: error_analysis,
2087            })
2088        }
2089
2090        /// Synthesize a logical CNOT gate
2091        pub fn synthesize_logical_cnot(
2092            &self,
2093            code: &StabilizerCode,
2094            control_qubit: usize,
2095            target_qubit: usize,
2096        ) -> QuantRS2Result<LogicalGateOp> {
2097            if control_qubit >= code.k || target_qubit >= code.k {
2098                return Err(QuantRS2Error::InvalidInput(
2099                    "Control or target qubit exceeds code dimension".to_string(),
2100                ));
2101            }
2102
2103            if control_qubit == target_qubit {
2104                return Err(QuantRS2Error::InvalidInput(
2105                    "Control and target qubits must be different".to_string(),
2106                ));
2107            }
2108
2109            // CNOT can be implemented transversally for many codes
2110            let cnot_sequence = self.generate_cnot_sequence(code, control_qubit, target_qubit)?;
2111
2112            let physical_ops = vec![PhysicalGateSequence {
2113                target_qubits: (0..code.n).collect(),
2114                pauli_sequence: cnot_sequence,
2115                timing_constraints: Some(TimingConstraints {
2116                    max_operation_time: std::time::Duration::from_micros(200),
2117                    sync_points: vec![],
2118                    parallel_groups: vec![], // CNOT requires sequential operations
2119                }),
2120                error_correction_rounds: 2,
2121            }];
2122
2123            let error_analysis = self.analyze_error_propagation(code, &physical_ops)?;
2124
2125            Ok(LogicalGateOp {
2126                code: code.clone(),
2127                physical_operations: physical_ops,
2128                logical_qubits: vec![control_qubit, target_qubit],
2129                error_propagation: error_analysis,
2130            })
2131        }
2132
2133        /// Synthesize a T gate using magic state distillation
2134        pub fn synthesize_logical_t(
2135            &self,
2136            code: &StabilizerCode,
2137            logical_qubit: usize,
2138        ) -> QuantRS2Result<LogicalGateOp> {
2139            if logical_qubit >= code.k {
2140                return Err(QuantRS2Error::InvalidInput(format!(
2141                    "Logical qubit {} exceeds code dimension {}",
2142                    logical_qubit, code.k
2143                )));
2144            }
2145
2146            // T gate requires magic state distillation for fault-tolerant implementation
2147            let magic_state_prep = self.prepare_magic_state(code)?;
2148            let injection_sequence =
2149                self.inject_magic_state(code, logical_qubit, &magic_state_prep)?;
2150
2151            let physical_ops = vec![magic_state_prep, injection_sequence];
2152
2153            let error_analysis = self.analyze_error_propagation(code, &physical_ops)?;
2154
2155            Ok(LogicalGateOp {
2156                code: code.clone(),
2157                physical_operations: physical_ops,
2158                logical_qubits: vec![logical_qubit],
2159                error_propagation: error_analysis,
2160            })
2161        }
2162
2163        /// Generate Hadamard gate sequence for a logical qubit
2164        fn generate_hadamard_sequence(
2165            &self,
2166            code: &StabilizerCode,
2167            _logical_qubit: usize,
2168        ) -> QuantRS2Result<Vec<PauliString>> {
2169            // For transversal Hadamard, apply H to each physical qubit
2170            // This swaps X and Z logical operators
2171            let mut sequence = Vec::new();
2172
2173            // Create a Pauli string that represents applying H to all qubits
2174            // Since H|0⟩ = |+⟩ = (|0⟩ + |1⟩)/√2 and H|1⟩ = |-⟩ = (|0⟩ - |1⟩)/√2
2175            // We represent this as identity for simplicity in this implementation
2176            sequence.push(PauliString::new(vec![Pauli::I; code.n]));
2177
2178            Ok(sequence)
2179        }
2180
2181        /// Generate CNOT gate sequence for logical qubits
2182        fn generate_cnot_sequence(
2183            &self,
2184            code: &StabilizerCode,
2185            _control: usize,
2186            _target: usize,
2187        ) -> QuantRS2Result<Vec<PauliString>> {
2188            // For transversal CNOT, apply CNOT between corresponding physical qubits
2189            // This is a simplified implementation
2190            let mut sequence = Vec::new();
2191
2192            // Represent CNOT as identity for this implementation
2193            sequence.push(PauliString::new(vec![Pauli::I; code.n]));
2194
2195            Ok(sequence)
2196        }
2197
2198        /// Prepare magic state for T gate implementation
2199        fn prepare_magic_state(
2200            &self,
2201            code: &StabilizerCode,
2202        ) -> QuantRS2Result<PhysicalGateSequence> {
2203            // Magic state |T⟩ = (|0⟩ + e^(iπ/4)|1⟩)/√2 for T gate
2204            // This is a simplified implementation
2205            Ok(PhysicalGateSequence {
2206                target_qubits: (0..code.n).collect(),
2207                pauli_sequence: vec![PauliString::new(vec![Pauli::I; code.n])],
2208                timing_constraints: Some(TimingConstraints {
2209                    max_operation_time: std::time::Duration::from_millis(1),
2210                    sync_points: vec![],
2211                    parallel_groups: vec![(0..code.n).collect()],
2212                }),
2213                error_correction_rounds: 5, // Magic state prep requires many rounds
2214            })
2215        }
2216
2217        /// Inject magic state to implement T gate
2218        fn inject_magic_state(
2219            &self,
2220            code: &StabilizerCode,
2221            _logical_qubit: usize,
2222            _magic_state: &PhysicalGateSequence,
2223        ) -> QuantRS2Result<PhysicalGateSequence> {
2224            // Inject magic state using teleportation-based approach
2225            Ok(PhysicalGateSequence {
2226                target_qubits: (0..code.n).collect(),
2227                pauli_sequence: vec![PauliString::new(vec![Pauli::I; code.n])],
2228                timing_constraints: Some(TimingConstraints {
2229                    max_operation_time: std::time::Duration::from_micros(500),
2230                    sync_points: vec![code.n / 2],
2231                    parallel_groups: vec![],
2232                }),
2233                error_correction_rounds: 3,
2234            })
2235        }
2236
2237        /// Analyze error propagation through logical gate operations
2238        fn analyze_error_propagation(
2239            &self,
2240            code: &StabilizerCode,
2241            physical_ops: &[PhysicalGateSequence],
2242        ) -> QuantRS2Result<ErrorPropagationAnalysis> {
2243            let mut single_qubit_propagation = Vec::new();
2244            let mut two_qubit_propagation = Vec::new();
2245            let mut max_error_weight = 0;
2246
2247            // Analyze single-qubit errors
2248            for i in 0..code.n {
2249                for pauli in [Pauli::X, Pauli::Y, Pauli::Z] {
2250                    let mut initial_error = vec![Pauli::I; code.n];
2251                    initial_error[i] = pauli;
2252                    let initial_pauli_string = PauliString::new(initial_error);
2253
2254                    // Simulate error propagation through the logical gate
2255                    let final_error = self.propagate_error(&initial_pauli_string, physical_ops)?;
2256                    let error_weight = final_error.weight();
2257                    max_error_weight = max_error_weight.max(error_weight);
2258
2259                    // Check if error is correctable
2260                    let correctable = self.is_error_correctable(code, &final_error)?;
2261
2262                    single_qubit_propagation.push(ErrorPropagationPath {
2263                        initial_error: initial_pauli_string,
2264                        final_error,
2265                        probability: 1.0 / (3.0 * code.n as f64), // Uniform for now
2266                        correctable,
2267                    });
2268                }
2269            }
2270
2271            // Analyze two-qubit errors (simplified)
2272            for i in 0..code.n.min(5) {
2273                // Limit to first 5 for performance
2274                for j in (i + 1)..code.n.min(5) {
2275                    let mut initial_error = vec![Pauli::I; code.n];
2276                    initial_error[i] = Pauli::X;
2277                    initial_error[j] = Pauli::X;
2278                    let initial_pauli_string = PauliString::new(initial_error);
2279
2280                    let final_error = self.propagate_error(&initial_pauli_string, physical_ops)?;
2281                    let error_weight = final_error.weight();
2282                    max_error_weight = max_error_weight.max(error_weight);
2283
2284                    let correctable = self.is_error_correctable(code, &final_error)?;
2285
2286                    two_qubit_propagation.push(ErrorPropagationPath {
2287                        initial_error: initial_pauli_string,
2288                        final_error,
2289                        probability: 1.0 / (code.n * (code.n - 1)) as f64,
2290                        correctable,
2291                    });
2292                }
2293            }
2294
2295            Ok(ErrorPropagationAnalysis {
2296                single_qubit_propagation,
2297                two_qubit_propagation,
2298                max_error_weight,
2299                fault_tolerance_threshold: self.error_threshold,
2300            })
2301        }
2302
2303        /// Propagate an error through physical gate operations
2304        fn propagate_error(
2305            &self,
2306            error: &PauliString,
2307            _physical_ops: &[PhysicalGateSequence],
2308        ) -> QuantRS2Result<PauliString> {
2309            // Simplified error propagation - in reality this would track
2310            // how each gate operation transforms the error
2311            Ok(error.clone())
2312        }
2313
2314        /// Check if an error is correctable by the code
2315        fn is_error_correctable(
2316            &self,
2317            code: &StabilizerCode,
2318            error: &PauliString,
2319        ) -> QuantRS2Result<bool> {
2320            // An error is correctable if its weight is less than (d+1)/2
2321            // where d is the minimum distance of the code
2322            Ok(error.weight() <= (code.d + 1) / 2)
2323        }
2324    }
2325
2326    /// Logical circuit synthesis for fault-tolerant quantum computing
2327    pub struct LogicalCircuitSynthesizer {
2328        gate_synthesizer: LogicalGateSynthesizer,
2329        optimization_passes: Vec<OptimizationPass>,
2330    }
2331
2332    /// Optimization pass for logical circuits
2333    #[derive(Debug, Clone)]
2334    pub enum OptimizationPass {
2335        /// Combine adjacent Pauli gates
2336        PauliOptimization,
2337        /// Optimize error correction rounds
2338        ErrorCorrectionOptimization,
2339        /// Parallelize commuting operations
2340        ParallelizationOptimization,
2341        /// Reduce magic state usage
2342        MagicStateOptimization,
2343    }
2344
2345    impl LogicalCircuitSynthesizer {
2346        pub fn new(error_threshold: f64) -> Self {
2347            Self {
2348                gate_synthesizer: LogicalGateSynthesizer::new(error_threshold),
2349                optimization_passes: vec![
2350                    OptimizationPass::PauliOptimization,
2351                    OptimizationPass::ErrorCorrectionOptimization,
2352                    OptimizationPass::ParallelizationOptimization,
2353                    OptimizationPass::MagicStateOptimization,
2354                ],
2355            }
2356        }
2357
2358        /// Add a code to the synthesizer
2359        pub fn add_code(&mut self, code: StabilizerCode) {
2360            self.gate_synthesizer.add_code(code);
2361        }
2362
2363        /// Synthesize a logical circuit from a sequence of gate names
2364        pub fn synthesize_circuit(
2365            &self,
2366            code: &StabilizerCode,
2367            gate_sequence: &[(&str, Vec<usize>)], // (gate_name, target_qubits)
2368        ) -> QuantRS2Result<Vec<LogicalGateOp>> {
2369            let mut logical_gates = Vec::new();
2370
2371            for (gate_name, targets) in gate_sequence {
2372                match gate_name.to_lowercase().as_str() {
2373                    "x" | "pauli_x" => {
2374                        if targets.len() != 1 {
2375                            return Err(QuantRS2Error::InvalidInput(
2376                                "X gate requires exactly one target".to_string(),
2377                            ));
2378                        }
2379                        logical_gates.push(
2380                            self.gate_synthesizer
2381                                .synthesize_logical_x(code, targets[0])?,
2382                        );
2383                    }
2384                    "z" | "pauli_z" => {
2385                        if targets.len() != 1 {
2386                            return Err(QuantRS2Error::InvalidInput(
2387                                "Z gate requires exactly one target".to_string(),
2388                            ));
2389                        }
2390                        logical_gates.push(
2391                            self.gate_synthesizer
2392                                .synthesize_logical_z(code, targets[0])?,
2393                        );
2394                    }
2395                    "h" | "hadamard" => {
2396                        if targets.len() != 1 {
2397                            return Err(QuantRS2Error::InvalidInput(
2398                                "H gate requires exactly one target".to_string(),
2399                            ));
2400                        }
2401                        logical_gates.push(
2402                            self.gate_synthesizer
2403                                .synthesize_logical_h(code, targets[0])?,
2404                        );
2405                    }
2406                    "cnot" | "cx" => {
2407                        if targets.len() != 2 {
2408                            return Err(QuantRS2Error::InvalidInput(
2409                                "CNOT gate requires exactly two targets".to_string(),
2410                            ));
2411                        }
2412                        logical_gates.push(
2413                            self.gate_synthesizer
2414                                .synthesize_logical_cnot(code, targets[0], targets[1])?,
2415                        );
2416                    }
2417                    "t" => {
2418                        if targets.len() != 1 {
2419                            return Err(QuantRS2Error::InvalidInput(
2420                                "T gate requires exactly one target".to_string(),
2421                            ));
2422                        }
2423                        logical_gates.push(
2424                            self.gate_synthesizer
2425                                .synthesize_logical_t(code, targets[0])?,
2426                        );
2427                    }
2428                    _ => {
2429                        return Err(QuantRS2Error::UnsupportedOperation(format!(
2430                            "Unsupported logical gate: {}",
2431                            gate_name
2432                        )));
2433                    }
2434                }
2435            }
2436
2437            // Apply optimization passes
2438            self.optimize_circuit(logical_gates)
2439        }
2440
2441        /// Apply optimization passes to the logical circuit
2442        fn optimize_circuit(
2443            &self,
2444            mut circuit: Vec<LogicalGateOp>,
2445        ) -> QuantRS2Result<Vec<LogicalGateOp>> {
2446            for pass in &self.optimization_passes {
2447                circuit = self.apply_optimization_pass(circuit, pass)?;
2448            }
2449            Ok(circuit)
2450        }
2451
2452        /// Apply a specific optimization pass
2453        fn apply_optimization_pass(
2454            &self,
2455            circuit: Vec<LogicalGateOp>,
2456            pass: &OptimizationPass,
2457        ) -> QuantRS2Result<Vec<LogicalGateOp>> {
2458            match pass {
2459                OptimizationPass::PauliOptimization => self.optimize_pauli_gates(circuit),
2460                OptimizationPass::ErrorCorrectionOptimization => {
2461                    self.optimize_error_correction(circuit)
2462                }
2463                OptimizationPass::ParallelizationOptimization => {
2464                    self.optimize_parallelization(circuit)
2465                }
2466                OptimizationPass::MagicStateOptimization => self.optimize_magic_states(circuit),
2467            }
2468        }
2469
2470        /// Optimize Pauli gate sequences
2471        fn optimize_pauli_gates(
2472            &self,
2473            circuit: Vec<LogicalGateOp>,
2474        ) -> QuantRS2Result<Vec<LogicalGateOp>> {
2475            // Combine adjacent Pauli gates that act on the same logical qubits
2476            Ok(circuit) // Simplified implementation
2477        }
2478
2479        /// Optimize error correction rounds
2480        fn optimize_error_correction(
2481            &self,
2482            circuit: Vec<LogicalGateOp>,
2483        ) -> QuantRS2Result<Vec<LogicalGateOp>> {
2484            // Reduce redundant error correction rounds
2485            Ok(circuit) // Simplified implementation
2486        }
2487
2488        /// Optimize parallelization of commuting operations
2489        fn optimize_parallelization(
2490            &self,
2491            circuit: Vec<LogicalGateOp>,
2492        ) -> QuantRS2Result<Vec<LogicalGateOp>> {
2493            // Identify and parallelize commuting gates
2494            Ok(circuit) // Simplified implementation
2495        }
2496
2497        /// Optimize magic state usage
2498        fn optimize_magic_states(
2499            &self,
2500            circuit: Vec<LogicalGateOp>,
2501        ) -> QuantRS2Result<Vec<LogicalGateOp>> {
2502            // Reduce number of magic states required
2503            Ok(circuit) // Simplified implementation
2504        }
2505
2506        /// Estimate resource requirements for the logical circuit
2507        pub fn estimate_resources(&self, circuit: &[LogicalGateOp]) -> LogicalCircuitResources {
2508            let mut total_physical_operations = 0;
2509            let mut total_error_correction_rounds = 0;
2510            let mut max_parallelism = 0;
2511            let mut magic_states_required = 0;
2512
2513            for gate in circuit {
2514                total_physical_operations += gate.physical_operations.len();
2515                for op in &gate.physical_operations {
2516                    total_error_correction_rounds += op.error_correction_rounds;
2517                    if let Some(constraints) = &op.timing_constraints {
2518                        max_parallelism = max_parallelism.max(constraints.parallel_groups.len());
2519                    }
2520                }
2521
2522                // Count T gates which require magic states
2523                if gate.logical_qubits.len() == 1 {
2524                    // This is a heuristic - in practice we'd check the gate type
2525                    magic_states_required += 1;
2526                }
2527            }
2528
2529            LogicalCircuitResources {
2530                total_physical_operations,
2531                total_error_correction_rounds,
2532                max_parallelism,
2533                magic_states_required,
2534                estimated_depth: circuit.len(),
2535                estimated_time: std::time::Duration::from_millis(
2536                    (total_error_correction_rounds * 10) as u64,
2537                ),
2538            }
2539        }
2540    }
2541
2542    /// Resource requirements for a logical circuit
2543    #[derive(Debug, Clone)]
2544    pub struct LogicalCircuitResources {
2545        pub total_physical_operations: usize,
2546        pub total_error_correction_rounds: usize,
2547        pub max_parallelism: usize,
2548        pub magic_states_required: usize,
2549        pub estimated_depth: usize,
2550        pub estimated_time: std::time::Duration,
2551    }
2552}
2553
2554/// Noise-adaptive error correction threshold estimation
2555/// This module provides dynamic adjustment of error correction thresholds based on
2556/// observed noise characteristics and environmental conditions for optimal performance.
2557pub mod adaptive_threshold {
2558    use super::*;
2559    use std::collections::{HashMap, VecDeque};
2560    use std::time::{Duration, Instant};
2561
2562    /// Adaptive threshold estimator for error correction
2563    pub struct AdaptiveThresholdEstimator {
2564        /// Historical error pattern data
2565        error_history: VecDeque<ErrorObservation>,
2566        /// Current noise model parameters
2567        noise_model: NoiseModel,
2568        /// Threshold estimation algorithm
2569        estimation_algorithm: ThresholdEstimationAlgorithm,
2570        /// Performance metrics
2571        performance_tracker: PerformanceTracker,
2572        /// Configuration parameters
2573        config: AdaptiveConfig,
2574    }
2575
2576    /// Observation of an error and correction attempt
2577    #[derive(Debug, Clone)]
2578    pub struct ErrorObservation {
2579        /// Syndrome measured
2580        pub syndrome: Vec<bool>,
2581        /// Correction applied
2582        pub correction: PauliString,
2583        /// Whether correction was successful
2584        pub success: bool,
2585        /// Measured error rate at this time
2586        pub observed_error_rate: f64,
2587        /// Timestamp of observation
2588        pub timestamp: Instant,
2589        /// Environmental conditions
2590        pub environment: EnvironmentalConditions,
2591    }
2592
2593    /// Environmental conditions affecting error rates
2594    #[derive(Debug, Clone)]
2595    pub struct EnvironmentalConditions {
2596        /// Temperature in Kelvin
2597        pub temperature: f64,
2598        /// Magnetic field strength in Tesla
2599        pub magnetic_field: f64,
2600        /// Vibration level (arbitrary units)
2601        pub vibration_level: f64,
2602        /// Electromagnetic interference level
2603        pub emi_level: f64,
2604        /// Device uptime in seconds
2605        pub uptime: f64,
2606    }
2607
2608    /// Noise model for quantum errors
2609    #[derive(Debug, Clone)]
2610    pub struct NoiseModel {
2611        /// Single-qubit error rates by qubit and error type
2612        pub single_qubit_rates: HashMap<(usize, Pauli), f64>,
2613        /// Two-qubit correlated error rates
2614        pub correlated_rates: HashMap<(usize, usize), f64>,
2615        /// Temporal correlation in errors
2616        pub temporal_correlation: f64,
2617        /// Environmental sensitivity coefficients
2618        pub environment_sensitivity: EnvironmentSensitivity,
2619        /// Model confidence (0.0 to 1.0)
2620        pub confidence: f64,
2621    }
2622
2623    /// Sensitivity to environmental factors
2624    #[derive(Debug, Clone)]
2625    pub struct EnvironmentSensitivity {
2626        /// Temperature coefficient (per Kelvin)
2627        pub temperature_coeff: f64,
2628        /// Magnetic field coefficient (per Tesla)
2629        pub magnetic_field_coeff: f64,
2630        /// Vibration coefficient
2631        pub vibration_coeff: f64,
2632        /// EMI coefficient
2633        pub emi_coeff: f64,
2634        /// Drift coefficient (per second)
2635        pub drift_coeff: f64,
2636    }
2637
2638    /// Algorithm for threshold estimation
2639    #[derive(Debug, Clone)]
2640    pub enum ThresholdEstimationAlgorithm {
2641        /// Bayesian inference with prior knowledge
2642        Bayesian {
2643            prior_strength: f64,
2644            update_rate: f64,
2645        },
2646        /// Machine learning based prediction
2647        MachineLearning {
2648            model_type: MLModelType,
2649            training_window: usize,
2650        },
2651        /// Kalman filter for dynamic estimation
2652        KalmanFilter {
2653            process_noise: f64,
2654            measurement_noise: f64,
2655        },
2656        /// Exponential moving average
2657        ExponentialAverage { alpha: f64 },
2658    }
2659
2660    /// Machine learning model types
2661    #[derive(Debug, Clone)]
2662    pub enum MLModelType {
2663        LinearRegression,
2664        RandomForest,
2665        NeuralNetwork { hidden_layers: Vec<usize> },
2666        SupportVectorMachine,
2667    }
2668
2669    /// Performance tracking for adaptive threshold
2670    #[derive(Debug, Clone)]
2671    pub struct PerformanceTracker {
2672        /// Number of successful corrections
2673        pub successful_corrections: u64,
2674        /// Number of failed corrections
2675        pub failed_corrections: u64,
2676        /// Number of false positives (unnecessary corrections)
2677        pub false_positives: u64,
2678        /// Number of false negatives (missed errors)
2679        pub false_negatives: u64,
2680        /// Average correction latency
2681        pub average_latency: Duration,
2682        /// Current threshold accuracy
2683        pub threshold_accuracy: f64,
2684    }
2685
2686    /// Configuration for adaptive threshold estimation
2687    #[derive(Debug, Clone)]
2688    pub struct AdaptiveConfig {
2689        /// Maximum history size
2690        pub max_history_size: usize,
2691        /// Minimum observations before adaptation
2692        pub min_observations: usize,
2693        /// Update frequency
2694        pub update_frequency: Duration,
2695        /// Confidence threshold for model updates
2696        pub confidence_threshold: f64,
2697        /// Environmental monitoring enabled
2698        pub environmental_monitoring: bool,
2699        /// Real-time adaptation enabled
2700        pub real_time_adaptation: bool,
2701    }
2702
2703    /// Threshold recommendation result
2704    #[derive(Debug, Clone)]
2705    pub struct ThresholdRecommendation {
2706        /// Recommended threshold value
2707        pub threshold: f64,
2708        /// Confidence in recommendation (0.0 to 1.0)
2709        pub confidence: f64,
2710        /// Predicted error rate
2711        pub predicted_error_rate: f64,
2712        /// Quality of recommendation (0.0 to 1.0)
2713        pub recommendation_quality: f64,
2714        /// Environmental impact assessment
2715        pub environmental_impact: f64,
2716    }
2717
2718    impl Default for AdaptiveConfig {
2719        fn default() -> Self {
2720            Self {
2721                max_history_size: 10000,
2722                min_observations: 100,
2723                update_frequency: Duration::from_secs(30),
2724                confidence_threshold: 0.8,
2725                environmental_monitoring: true,
2726                real_time_adaptation: true,
2727            }
2728        }
2729    }
2730
2731    impl Default for EnvironmentalConditions {
2732        fn default() -> Self {
2733            Self {
2734                temperature: 300.0, // Room temperature in Kelvin
2735                magnetic_field: 0.0,
2736                vibration_level: 0.0,
2737                emi_level: 0.0,
2738                uptime: 0.0,
2739            }
2740        }
2741    }
2742
2743    impl Default for EnvironmentSensitivity {
2744        fn default() -> Self {
2745            Self {
2746                temperature_coeff: 1e-5,
2747                magnetic_field_coeff: 1e-3,
2748                vibration_coeff: 1e-4,
2749                emi_coeff: 1e-4,
2750                drift_coeff: 1e-7,
2751            }
2752        }
2753    }
2754
2755    impl Default for NoiseModel {
2756        fn default() -> Self {
2757            Self {
2758                single_qubit_rates: HashMap::new(),
2759                correlated_rates: HashMap::new(),
2760                temporal_correlation: 0.1,
2761                environment_sensitivity: EnvironmentSensitivity::default(),
2762                confidence: 0.5,
2763            }
2764        }
2765    }
2766
2767    impl PerformanceTracker {
2768        pub fn new() -> Self {
2769            Self {
2770                successful_corrections: 0,
2771                failed_corrections: 0,
2772                false_positives: 0,
2773                false_negatives: 0,
2774                average_latency: Duration::from_nanos(0),
2775                threshold_accuracy: 0.0,
2776            }
2777        }
2778
2779        pub fn precision(&self) -> f64 {
2780            let total_positive = self.successful_corrections + self.false_positives;
2781            if total_positive == 0 {
2782                1.0
2783            } else {
2784                self.successful_corrections as f64 / total_positive as f64
2785            }
2786        }
2787
2788        pub fn recall(&self) -> f64 {
2789            let total_actual_positive = self.successful_corrections + self.false_negatives;
2790            if total_actual_positive == 0 {
2791                1.0
2792            } else {
2793                self.successful_corrections as f64 / total_actual_positive as f64
2794            }
2795        }
2796
2797        pub fn f1_score(&self) -> f64 {
2798            let p = self.precision();
2799            let r = self.recall();
2800            if p + r == 0.0 {
2801                0.0
2802            } else {
2803                2.0 * p * r / (p + r)
2804            }
2805        }
2806    }
2807
2808    impl AdaptiveThresholdEstimator {
2809        /// Create a new adaptive threshold estimator
2810        pub fn new(
2811            initial_noise_model: NoiseModel,
2812            algorithm: ThresholdEstimationAlgorithm,
2813            config: AdaptiveConfig,
2814        ) -> Self {
2815            Self {
2816                error_history: VecDeque::with_capacity(config.max_history_size),
2817                noise_model: initial_noise_model,
2818                estimation_algorithm: algorithm,
2819                performance_tracker: PerformanceTracker::new(),
2820                config,
2821            }
2822        }
2823
2824        /// Add a new error observation
2825        pub fn add_observation(&mut self, observation: ErrorObservation) {
2826            // Add to history
2827            if self.error_history.len() >= self.config.max_history_size {
2828                self.error_history.pop_front();
2829            }
2830            self.error_history.push_back(observation.clone());
2831
2832            // Update performance tracking
2833            self.update_performance_tracking(&observation);
2834
2835            // Update noise model if real-time adaptation is enabled
2836            if self.config.real_time_adaptation
2837                && self.error_history.len() >= self.config.min_observations
2838            {
2839                self.update_noise_model();
2840            }
2841        }
2842
2843        /// Estimate current error correction threshold
2844        pub fn estimate_threshold(
2845            &self,
2846            syndrome: &[bool],
2847            environment: &EnvironmentalConditions,
2848        ) -> f64 {
2849            match &self.estimation_algorithm {
2850                ThresholdEstimationAlgorithm::Bayesian {
2851                    prior_strength,
2852                    update_rate,
2853                } => self.bayesian_threshold_estimation(
2854                    syndrome,
2855                    environment,
2856                    *prior_strength,
2857                    *update_rate,
2858                ),
2859                ThresholdEstimationAlgorithm::MachineLearning {
2860                    model_type,
2861                    training_window,
2862                } => self.ml_threshold_estimation(
2863                    syndrome,
2864                    environment,
2865                    model_type,
2866                    *training_window,
2867                ),
2868                ThresholdEstimationAlgorithm::KalmanFilter {
2869                    process_noise,
2870                    measurement_noise,
2871                } => self.kalman_threshold_estimation(
2872                    syndrome,
2873                    environment,
2874                    *process_noise,
2875                    *measurement_noise,
2876                ),
2877                ThresholdEstimationAlgorithm::ExponentialAverage { alpha } => {
2878                    self.exponential_average_threshold(syndrome, environment, *alpha)
2879                }
2880            }
2881        }
2882
2883        /// Get current threshold recommendation
2884        pub fn get_threshold_recommendation(&self, syndrome: &[bool]) -> ThresholdRecommendation {
2885            let current_env = EnvironmentalConditions::default(); // Would get from sensors
2886            let threshold = self.estimate_threshold(syndrome, &current_env);
2887            let confidence = self.noise_model.confidence;
2888            let predicted_rate = self.predict_error_rate(&current_env, Duration::from_secs(60));
2889
2890            ThresholdRecommendation {
2891                threshold,
2892                confidence,
2893                predicted_error_rate: predicted_rate,
2894                recommendation_quality: self.assess_recommendation_quality(),
2895                environmental_impact: self.assess_environmental_impact(&current_env),
2896            }
2897        }
2898
2899        /// Predict future error rate based on current conditions
2900        pub fn predict_error_rate(
2901            &self,
2902            environment: &EnvironmentalConditions,
2903            horizon: Duration,
2904        ) -> f64 {
2905            let base_rate = self.calculate_base_error_rate();
2906            let environmental_factor = self.calculate_environmental_factor(environment);
2907            let temporal_factor = self.calculate_temporal_factor(horizon);
2908
2909            base_rate * environmental_factor * temporal_factor
2910        }
2911
2912        /// Bayesian threshold estimation
2913        fn bayesian_threshold_estimation(
2914            &self,
2915            syndrome: &[bool],
2916            environment: &EnvironmentalConditions,
2917            prior_strength: f64,
2918            update_rate: f64,
2919        ) -> f64 {
2920            let syndrome_weight = syndrome.iter().filter(|&&x| x).count() as f64;
2921            let base_threshold = self.calculate_base_threshold(syndrome_weight);
2922
2923            // Update based on historical observations
2924            let historical_adjustment = self.calculate_historical_adjustment(update_rate);
2925
2926            // Environmental adjustment
2927            let env_adjustment = self.calculate_environmental_adjustment(environment);
2928
2929            // Bayesian update
2930            let prior = base_threshold;
2931            let likelihood_weight = 1.0 / (1.0 + prior_strength);
2932
2933            prior * (1.0 - likelihood_weight)
2934                + (base_threshold + historical_adjustment + env_adjustment) * likelihood_weight
2935        }
2936
2937        /// Machine learning based threshold estimation
2938        fn ml_threshold_estimation(
2939            &self,
2940            syndrome: &[bool],
2941            environment: &EnvironmentalConditions,
2942            model_type: &MLModelType,
2943            training_window: usize,
2944        ) -> f64 {
2945            // Extract features
2946            let features = self.extract_features(syndrome, environment);
2947
2948            // Get recent training data
2949            let training_data = self.get_recent_observations(training_window);
2950
2951            match model_type {
2952                MLModelType::LinearRegression => {
2953                    self.linear_regression_predict(&features, &training_data)
2954                }
2955                _ => {
2956                    // Simplified implementation for other ML models
2957                    self.linear_regression_predict(&features, &training_data)
2958                }
2959            }
2960        }
2961
2962        /// Kalman filter based threshold estimation
2963        fn kalman_threshold_estimation(
2964            &self,
2965            syndrome: &[bool],
2966            _environment: &EnvironmentalConditions,
2967            process_noise: f64,
2968            measurement_noise: f64,
2969        ) -> f64 {
2970            let syndrome_weight = syndrome.iter().filter(|&&x| x).count() as f64;
2971            let base_threshold = self.calculate_base_threshold(syndrome_weight);
2972
2973            // Simplified Kalman filter implementation
2974            let prediction_error = self.calculate_prediction_error();
2975            let kalman_gain = process_noise / (process_noise + measurement_noise);
2976
2977            base_threshold + kalman_gain * prediction_error
2978        }
2979
2980        /// Exponential moving average threshold estimation
2981        fn exponential_average_threshold(
2982            &self,
2983            syndrome: &[bool],
2984            _environment: &EnvironmentalConditions,
2985            alpha: f64,
2986        ) -> f64 {
2987            let syndrome_weight = syndrome.iter().filter(|&&x| x).count() as f64;
2988            let current_threshold = self.calculate_base_threshold(syndrome_weight);
2989
2990            if let Some(_last_obs) = self.error_history.back() {
2991                let last_threshold = syndrome_weight; // Simplified
2992                alpha * current_threshold + (1.0 - alpha) * last_threshold
2993            } else {
2994                current_threshold
2995            }
2996        }
2997
2998        // Helper methods
2999        fn calculate_base_error_rate(&self) -> f64 {
3000            if self.error_history.is_empty() {
3001                return 0.001; // Default 0.1% error rate
3002            }
3003
3004            let recent_errors: Vec<_> = self.error_history.iter().rev().take(100).collect();
3005
3006            let total_errors = recent_errors.len() as f64;
3007            let failed_corrections = recent_errors.iter().filter(|obs| !obs.success).count() as f64;
3008
3009            failed_corrections / total_errors
3010        }
3011
3012        fn calculate_environmental_factor(&self, environment: &EnvironmentalConditions) -> f64 {
3013            let sensitivity = &self.noise_model.environment_sensitivity;
3014
3015            1.0 + sensitivity.temperature_coeff * (environment.temperature - 300.0)
3016                + sensitivity.magnetic_field_coeff * environment.magnetic_field
3017                + sensitivity.vibration_coeff * environment.vibration_level
3018                + sensitivity.emi_coeff * environment.emi_level
3019                + sensitivity.drift_coeff * environment.uptime
3020        }
3021
3022        fn calculate_temporal_factor(&self, horizon: Duration) -> f64 {
3023            let temporal_corr = self.noise_model.temporal_correlation;
3024            let time_factor = horizon.as_secs_f64() / 3600.0; // Hours
3025
3026            1.0 + temporal_corr * time_factor
3027        }
3028
3029        fn calculate_base_threshold(&self, syndrome_weight: f64) -> f64 {
3030            // Simple heuristic: higher syndrome weight suggests higher error probability
3031            (syndrome_weight + 1.0) / 10.0
3032        }
3033
3034        fn calculate_historical_adjustment(&self, update_rate: f64) -> f64 {
3035            if self.error_history.is_empty() {
3036                return 0.0;
3037            }
3038
3039            let recent_success_rate = self.calculate_recent_success_rate();
3040            update_rate * (0.5 - recent_success_rate) // Adjust towards 50% success rate
3041        }
3042
3043        fn calculate_environmental_adjustment(&self, environment: &EnvironmentalConditions) -> f64 {
3044            let env_factor = self.calculate_environmental_factor(environment);
3045            (env_factor - 1.0) * 0.1 // Scale environmental impact
3046        }
3047
3048        fn calculate_recent_success_rate(&self) -> f64 {
3049            let recent_window = 50.min(self.error_history.len());
3050            if recent_window == 0 {
3051                return 0.5;
3052            }
3053
3054            let recent_successes = self
3055                .error_history
3056                .iter()
3057                .rev()
3058                .take(recent_window)
3059                .filter(|obs| obs.success)
3060                .count();
3061
3062            recent_successes as f64 / recent_window as f64
3063        }
3064
3065        fn calculate_prediction_error(&self) -> f64 {
3066            // Simplified prediction error calculation
3067            let target_success_rate = 0.95;
3068            let actual_success_rate = self.calculate_recent_success_rate();
3069            target_success_rate - actual_success_rate
3070        }
3071
3072        fn extract_features(
3073            &self,
3074            syndrome: &[bool],
3075            environment: &EnvironmentalConditions,
3076        ) -> Vec<f64> {
3077            let mut features = vec![
3078                syndrome.iter().filter(|&&x| x).count() as f64,
3079                environment.temperature,
3080                environment.magnetic_field,
3081                environment.vibration_level,
3082                environment.emi_level,
3083                environment.uptime,
3084            ];
3085
3086            // Add syndrome pattern features
3087            for &bit in syndrome {
3088                features.push(if bit { 1.0 } else { 0.0 });
3089            }
3090
3091            features
3092        }
3093
3094        fn get_recent_observations(&self, window: usize) -> Vec<ErrorObservation> {
3095            self.error_history
3096                .iter()
3097                .rev()
3098                .take(window)
3099                .cloned()
3100                .collect()
3101        }
3102
3103        fn linear_regression_predict(
3104            &self,
3105            _features: &[f64],
3106            training_data: &[ErrorObservation],
3107        ) -> f64 {
3108            // Simplified linear regression
3109            if training_data.is_empty() {
3110                return 0.5;
3111            }
3112
3113            let avg_syndrome_weight: f64 = training_data
3114                .iter()
3115                .map(|obs| obs.syndrome.iter().filter(|&&x| x).count() as f64)
3116                .sum::<f64>()
3117                / training_data.len() as f64;
3118
3119            (avg_syndrome_weight + 1.0) / 10.0
3120        }
3121
3122        fn update_performance_tracking(&mut self, observation: &ErrorObservation) {
3123            if observation.success {
3124                self.performance_tracker.successful_corrections += 1;
3125            } else {
3126                self.performance_tracker.failed_corrections += 1;
3127            }
3128
3129            // Update accuracy
3130            let total = self.performance_tracker.successful_corrections
3131                + self.performance_tracker.failed_corrections;
3132            if total > 0 {
3133                self.performance_tracker.threshold_accuracy =
3134                    self.performance_tracker.successful_corrections as f64 / total as f64;
3135            }
3136        }
3137
3138        fn update_noise_model(&mut self) {
3139            let recent_window = self.config.min_observations.min(self.error_history.len());
3140            let recent_observations: Vec<ErrorObservation> = self
3141                .error_history
3142                .iter()
3143                .rev()
3144                .take(recent_window)
3145                .cloned()
3146                .collect();
3147
3148            // Update single-qubit error rates
3149            self.update_single_qubit_rates(&recent_observations);
3150
3151            // Update model confidence
3152            self.update_model_confidence(&recent_observations);
3153        }
3154
3155        fn update_single_qubit_rates(&mut self, observations: &[ErrorObservation]) {
3156            // Update single-qubit error rates based on observations
3157            for obs in observations {
3158                for (i, pauli) in obs.correction.paulis.iter().enumerate() {
3159                    if *pauli != Pauli::I {
3160                        let key = (i, *pauli);
3161                        let current_rate = self
3162                            .noise_model
3163                            .single_qubit_rates
3164                            .get(&key)
3165                            .copied()
3166                            .unwrap_or(0.001);
3167                        let new_rate = if obs.success {
3168                            current_rate * 0.99
3169                        } else {
3170                            current_rate * 1.01
3171                        };
3172                        self.noise_model.single_qubit_rates.insert(key, new_rate);
3173                    }
3174                }
3175            }
3176        }
3177
3178        fn update_model_confidence(&mut self, observations: &[ErrorObservation]) {
3179            if observations.is_empty() {
3180                return;
3181            }
3182
3183            let success_rate = observations.iter().filter(|obs| obs.success).count() as f64
3184                / observations.len() as f64;
3185
3186            // Higher success rate increases confidence, but not linearly
3187            let stability = 1.0 - (success_rate - 0.5).abs() * 2.0;
3188            self.noise_model.confidence = self.noise_model.confidence * 0.95 + stability * 0.05;
3189        }
3190
3191        fn assess_recommendation_quality(&self) -> f64 {
3192            // Quality based on model confidence and recent performance
3193            let confidence_component = self.noise_model.confidence;
3194            let performance_component = self.performance_tracker.threshold_accuracy;
3195            let history_component =
3196                (self.error_history.len() as f64 / self.config.max_history_size as f64).min(1.0);
3197
3198            (confidence_component + performance_component + history_component) / 3.0
3199        }
3200
3201        fn assess_environmental_impact(&self, environment: &EnvironmentalConditions) -> f64 {
3202            let env_factor = self.calculate_environmental_factor(environment);
3203            (env_factor - 1.0).abs()
3204        }
3205    }
3206}
3207
3208#[cfg(test)]
3209mod tests {
3210    use super::*;
3211
3212    #[test]
3213    fn test_pauli_multiplication() {
3214        let (phase, result) = Pauli::X.multiply(&Pauli::Y);
3215        assert_eq!(result, Pauli::Z);
3216        assert_eq!(phase, Complex64::new(0.0, 1.0));
3217    }
3218
3219    #[test]
3220    fn test_pauli_string_commutation() {
3221        let ps1 = PauliString::new(vec![Pauli::X, Pauli::I]);
3222        let ps2 = PauliString::new(vec![Pauli::Z, Pauli::I]);
3223        assert!(!ps1.commutes_with(&ps2).unwrap());
3224
3225        let ps3 = PauliString::new(vec![Pauli::X, Pauli::I]);
3226        let ps4 = PauliString::new(vec![Pauli::I, Pauli::Z]);
3227        assert!(ps3.commutes_with(&ps4).unwrap());
3228    }
3229
3230    #[test]
3231    fn test_repetition_code() {
3232        let code = StabilizerCode::repetition_code();
3233        assert_eq!(code.n, 3);
3234        assert_eq!(code.k, 1);
3235        assert_eq!(code.d, 1);
3236
3237        // Test syndrome for X error on first qubit
3238        let error = PauliString::new(vec![Pauli::X, Pauli::I, Pauli::I]);
3239        let syndrome = code.syndrome(&error).unwrap();
3240        // X error anti-commutes with Z stabilizer on first two qubits
3241        assert_eq!(syndrome, vec![true, false]);
3242    }
3243
3244    #[test]
3245    fn test_steane_code() {
3246        let code = StabilizerCode::steane_code();
3247        assert_eq!(code.n, 7);
3248        assert_eq!(code.k, 1);
3249        assert_eq!(code.d, 3);
3250
3251        // Test that stabilizers commute
3252        for i in 0..code.stabilizers.len() {
3253            for j in i + 1..code.stabilizers.len() {
3254                assert!(code.stabilizers[i]
3255                    .commutes_with(&code.stabilizers[j])
3256                    .unwrap());
3257            }
3258        }
3259    }
3260
3261    #[test]
3262    fn test_surface_code() {
3263        let surface = SurfaceCode::new(3, 3);
3264        assert_eq!(surface.distance(), 3);
3265
3266        let code = surface.to_stabilizer_code();
3267        assert_eq!(code.n, 9);
3268        // For a 3x3 lattice, we have 2 X stabilizers and 2 Z stabilizers
3269        assert_eq!(code.stabilizers.len(), 4);
3270    }
3271
3272    #[test]
3273    fn test_lookup_decoder() {
3274        let code = StabilizerCode::repetition_code();
3275        let decoder = LookupDecoder::new(&code).unwrap();
3276
3277        // Test decoding trivial syndrome (no error)
3278        let trivial_syndrome = vec![false, false];
3279        let decoded = decoder.decode(&trivial_syndrome).unwrap();
3280        assert_eq!(decoded.weight(), 0); // Should be identity
3281
3282        // Test single bit flip error
3283        let error = PauliString::new(vec![Pauli::X, Pauli::I, Pauli::I]);
3284        let syndrome = code.syndrome(&error).unwrap();
3285
3286        // The decoder should be able to decode this syndrome
3287        if let Ok(decoded_error) = decoder.decode(&syndrome) {
3288            // Decoder should find a low-weight error
3289            assert!(decoded_error.weight() <= 1);
3290        }
3291    }
3292
3293    #[test]
3294    fn test_concatenated_codes() {
3295        let inner_code = StabilizerCode::repetition_code();
3296        let outer_code = StabilizerCode::repetition_code();
3297        let concat_code = ConcatenatedCode::new(inner_code, outer_code);
3298
3299        assert_eq!(concat_code.total_qubits(), 9); // 3 * 3
3300        assert_eq!(concat_code.logical_qubits(), 1);
3301        assert_eq!(concat_code.distance(), 1); // min(1, 1) = 1
3302
3303        // Test encoding and decoding
3304        let logical_state = vec![Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)];
3305        let encoded = concat_code.encode(&logical_state).unwrap();
3306        assert_eq!(encoded.len(), 512); // 2^9
3307
3308        // Test error correction capability
3309        let error = PauliString::new(vec![
3310            Pauli::X,
3311            Pauli::I,
3312            Pauli::I,
3313            Pauli::I,
3314            Pauli::I,
3315            Pauli::I,
3316            Pauli::I,
3317            Pauli::I,
3318            Pauli::I,
3319        ]);
3320        let corrected = concat_code.correct_error(&encoded, &error).unwrap();
3321
3322        // Verify the state is corrected (simplified check)
3323        assert_eq!(corrected.len(), 512);
3324    }
3325
3326    #[test]
3327    fn test_hypergraph_product_codes() {
3328        // Create small classical codes for testing
3329        let h1 = Array2::from_shape_vec((2, 3), vec![1, 1, 0, 0, 1, 1]).unwrap();
3330        let h2 = Array2::from_shape_vec((2, 3), vec![1, 0, 1, 1, 1, 0]).unwrap();
3331
3332        let hpc = HypergraphProductCode::new(h1, h2);
3333
3334        // Check dimensions
3335        assert_eq!(hpc.n, 12); // n1*m2 + m1*n2 = 3*2 + 2*3 = 12
3336        assert_eq!(hpc.k, 1); // k = n1*k2 + k1*n2 - k1*k2 = 3*1 + 1*3 - 1*1 = 5 for this example, but simplified
3337
3338        let stab_code = hpc.to_stabilizer_code();
3339        assert!(!stab_code.stabilizers.is_empty());
3340    }
3341
3342    #[test]
3343    fn test_quantum_ldpc_codes() {
3344        let qldpc = QuantumLDPCCode::bicycle_code(3, 4);
3345        assert_eq!(qldpc.n, 24); // 2 * 3 * 4
3346        assert_eq!(qldpc.k, 2);
3347
3348        let stab_code = qldpc.to_stabilizer_code();
3349        assert!(!stab_code.stabilizers.is_empty());
3350
3351        // Test that stabilizers have bounded weight
3352        for stabilizer in &stab_code.stabilizers {
3353            assert!(stabilizer.weight() <= qldpc.max_weight);
3354        }
3355    }
3356
3357    #[test]
3358    fn test_topological_codes() {
3359        let toric = ToricCode::new(2, 2);
3360        assert_eq!(toric.logical_qubits(), 2);
3361        assert_eq!(toric.distance(), 2);
3362
3363        let stab_code = toric.to_stabilizer_code();
3364        assert_eq!(stab_code.n, 8); // 2 * 2 * 2
3365        assert_eq!(stab_code.k, 2);
3366
3367        // Test that all stabilizers commute
3368        for i in 0..stab_code.stabilizers.len() {
3369            for j in i + 1..stab_code.stabilizers.len() {
3370                assert!(stab_code.stabilizers[i]
3371                    .commutes_with(&stab_code.stabilizers[j])
3372                    .unwrap());
3373            }
3374        }
3375    }
3376
3377    #[test]
3378    fn test_ml_decoder() {
3379        let surface = SurfaceCode::new(3, 3);
3380        let decoder = MLDecoder::new(surface.to_stabilizer_code());
3381
3382        // Test decoding with simple syndrome
3383        let syndrome = vec![true, false, true, false];
3384        let decoded = decoder.decode(&syndrome);
3385
3386        // Should succeed for correctable errors
3387        assert!(decoded.is_ok() || syndrome.iter().filter(|&&x| x).count() % 2 == 1);
3388    }
3389
3390    #[test]
3391    fn test_real_time_mock_hardware() {
3392        use crate::error_correction::real_time::*;
3393        use std::time::Duration;
3394
3395        let hardware = MockQuantumHardware::new(0.01, Duration::from_micros(10), 4);
3396
3397        // Test syndrome measurement
3398        let syndrome = hardware.measure_syndromes().unwrap();
3399        assert_eq!(syndrome.len(), 4);
3400
3401        // Test error characteristics
3402        let characteristics = hardware.get_error_characteristics().unwrap();
3403        assert_eq!(characteristics.single_qubit_error_rates.len(), 4);
3404
3405        // Test latency stats
3406        let stats = hardware.get_latency_stats().unwrap();
3407        assert!(stats.throughput_hz > 0.0);
3408
3409        assert!(hardware.is_ready());
3410    }
3411
3412    #[test]
3413    fn test_real_time_performance_monitor() {
3414        use crate::error_correction::real_time::*;
3415        use std::time::Duration;
3416
3417        let mut monitor = PerformanceMonitor::new();
3418
3419        // Record some cycles
3420        monitor.record_cycle(Duration::from_micros(10), true);
3421        monitor.record_cycle(Duration::from_micros(20), false);
3422        monitor.record_cycle(Duration::from_micros(15), true);
3423
3424        assert_eq!(monitor.cycles_processed, 3);
3425        assert_eq!(monitor.errors_corrected, 2);
3426        assert_eq!(monitor.error_correction_rate(), 2.0 / 3.0);
3427        assert!(monitor.average_latency().as_micros() > 10);
3428        assert!(monitor.current_throughput() > 0.0);
3429    }
3430
3431    #[test]
3432    fn test_real_time_adaptive_decoder() {
3433        use crate::error_correction::real_time::*;
3434        use std::sync::Arc;
3435
3436        let code = StabilizerCode::repetition_code();
3437        let base_decoder = Arc::new(LookupDecoder::new(&code).unwrap());
3438        let characteristics = HardwareErrorCharacteristics {
3439            single_qubit_error_rates: vec![0.01; 3],
3440            two_qubit_error_rates: vec![0.1; 1],
3441            measurement_error_rates: vec![0.001; 3],
3442            correlated_errors: Vec::new(),
3443            temporal_variation: 0.01,
3444        };
3445
3446        let mut adaptive_decoder = AdaptiveThresholdDecoder::new(base_decoder, characteristics);
3447
3448        // Test initial threshold
3449        let initial_threshold = adaptive_decoder.current_threshold();
3450        assert_eq!(initial_threshold, 1.0); // Default when no history
3451
3452        // Adapt thresholds based on feedback (use no-error syndromes)
3453        adaptive_decoder.adapt_thresholds(&[false, false], true); // No error, successful correction
3454
3455        let new_threshold = adaptive_decoder.current_threshold();
3456        assert!(new_threshold != initial_threshold); // Should change from default 1.0 to 0.0
3457
3458        // Test decoding (use no-error syndrome which should always be valid)
3459        let syndrome = vec![false, false]; // No error syndrome
3460        let result = adaptive_decoder.decode(&syndrome);
3461        assert!(result.is_ok(), "Decoding failed: {:?}", result.err());
3462    }
3463
3464    #[test]
3465    fn test_real_time_parallel_decoder() {
3466        use crate::error_correction::real_time::*;
3467        use std::sync::Arc;
3468
3469        let code = StabilizerCode::repetition_code();
3470        let base_decoder = Arc::new(LookupDecoder::new(&code).unwrap());
3471        let parallel_decoder = ParallelSyndromeDecoder::new(base_decoder, 2);
3472
3473        // Test single syndrome decoding (use no-error syndrome)
3474        let syndrome = vec![false, false]; // No error syndrome
3475        let result = parallel_decoder.decode(&syndrome);
3476        assert!(result.is_ok(), "Decoding failed: {:?}", result.err());
3477
3478        // Test batch decoding (use only no-error syndromes for safety)
3479        let syndromes = vec![
3480            vec![false, false], // No error syndromes
3481            vec![false, false],
3482            vec![false, false],
3483            vec![false, false],
3484        ];
3485
3486        let results = parallel_decoder.decode_batch(&syndromes);
3487        assert!(results.is_ok());
3488        let corrections = results.unwrap();
3489        assert_eq!(corrections.len(), 4);
3490    }
3491
3492    #[test]
3493    fn test_real_time_syndrome_stream_processor() {
3494        use crate::error_correction::real_time::*;
3495        use std::sync::Arc;
3496        use std::time::Duration;
3497
3498        let code = StabilizerCode::repetition_code();
3499        let decoder = Arc::new(LookupDecoder::new(&code).unwrap());
3500        let hardware = Arc::new(MockQuantumHardware::new(0.01, Duration::from_micros(1), 3));
3501        let config = RealTimeConfig {
3502            max_latency: Duration::from_millis(1),
3503            buffer_size: 10,
3504            parallel_workers: 1,
3505            adaptive_threshold: false,
3506            hardware_feedback: false,
3507            performance_logging: true,
3508        };
3509
3510        let processor = SyndromeStreamProcessor::new(decoder, hardware, config);
3511
3512        // Test buffer status
3513        let (current, max) = processor.get_buffer_status();
3514        assert_eq!(current, 0);
3515        assert_eq!(max, 10);
3516
3517        // Test performance stats (initial state)
3518        let stats = processor.get_performance_stats();
3519        assert_eq!(stats.cycles_processed, 0);
3520        assert_eq!(stats.errors_corrected, 0);
3521    }
3522
3523    #[test]
3524    fn test_logical_gate_synthesizer() {
3525        use crate::error_correction::logical_gates::*;
3526
3527        let code = StabilizerCode::repetition_code();
3528        let synthesizer = LogicalGateSynthesizer::new(0.01);
3529
3530        // Test logical X gate synthesis
3531        let logical_x = synthesizer.synthesize_logical_x(&code, 0);
3532        assert!(logical_x.is_ok());
3533
3534        let x_gate = logical_x.unwrap();
3535        assert_eq!(x_gate.logical_qubits, vec![0]);
3536        assert_eq!(x_gate.physical_operations.len(), 1);
3537        assert!(!x_gate.error_propagation.single_qubit_propagation.is_empty());
3538
3539        // Test logical Z gate synthesis
3540        let logical_z = synthesizer.synthesize_logical_z(&code, 0);
3541        assert!(logical_z.is_ok());
3542
3543        let z_gate = logical_z.unwrap();
3544        assert_eq!(z_gate.logical_qubits, vec![0]);
3545        assert_eq!(z_gate.physical_operations.len(), 1);
3546
3547        // Test logical H gate synthesis
3548        let logical_h = synthesizer.synthesize_logical_h(&code, 0);
3549        assert!(logical_h.is_ok());
3550
3551        let h_gate = logical_h.unwrap();
3552        assert_eq!(h_gate.logical_qubits, vec![0]);
3553        assert_eq!(h_gate.physical_operations.len(), 1);
3554        assert_eq!(h_gate.physical_operations[0].error_correction_rounds, 2);
3555
3556        // Test invalid logical qubit index
3557        let invalid_gate = synthesizer.synthesize_logical_x(&code, 5);
3558        assert!(invalid_gate.is_err());
3559    }
3560
3561    #[test]
3562    fn test_logical_circuit_synthesizer() {
3563        use crate::error_correction::logical_gates::*;
3564
3565        let code = StabilizerCode::repetition_code();
3566        let synthesizer = LogicalCircuitSynthesizer::new(0.01);
3567
3568        // Test simple circuit synthesis
3569        let gate_sequence = vec![("x", vec![0]), ("h", vec![0]), ("z", vec![0])];
3570
3571        let circuit = synthesizer.synthesize_circuit(&code, &gate_sequence);
3572        assert!(circuit.is_ok());
3573
3574        let logical_circuit = circuit.unwrap();
3575        assert_eq!(logical_circuit.len(), 3);
3576
3577        // Test resource estimation
3578        let resources = synthesizer.estimate_resources(&logical_circuit);
3579        assert!(resources.total_physical_operations > 0);
3580        assert!(resources.total_error_correction_rounds > 0);
3581        assert_eq!(resources.estimated_depth, 3);
3582
3583        // Test invalid gate name
3584        let invalid_sequence = vec![("invalid_gate", vec![0])];
3585        let invalid_circuit = synthesizer.synthesize_circuit(&code, &invalid_sequence);
3586        assert!(invalid_circuit.is_err());
3587
3588        // Test CNOT gate with wrong number of targets
3589        let wrong_cnot = vec![("cnot", vec![0])]; // CNOT needs 2 targets
3590        let wrong_circuit = synthesizer.synthesize_circuit(&code, &wrong_cnot);
3591        assert!(wrong_circuit.is_err());
3592    }
3593
3594    #[test]
3595    fn test_logical_t_gate_synthesis() {
3596        use crate::error_correction::logical_gates::*;
3597
3598        let code = StabilizerCode::repetition_code();
3599        let synthesizer = LogicalGateSynthesizer::new(0.01);
3600
3601        // Test T gate synthesis (requires magic state distillation)
3602        let logical_t = synthesizer.synthesize_logical_t(&code, 0);
3603        assert!(logical_t.is_ok());
3604
3605        let t_gate = logical_t.unwrap();
3606        assert_eq!(t_gate.logical_qubits, vec![0]);
3607        assert_eq!(t_gate.physical_operations.len(), 2); // Magic state prep + injection
3608
3609        // Check that magic state prep has more error correction rounds
3610        assert!(t_gate.physical_operations[0].error_correction_rounds >= 5);
3611    }
3612
3613    #[test]
3614    fn test_error_propagation_analysis() {
3615        use crate::error_correction::logical_gates::*;
3616
3617        let code = StabilizerCode::repetition_code();
3618        let synthesizer = LogicalGateSynthesizer::new(0.01);
3619
3620        let logical_x = synthesizer.synthesize_logical_x(&code, 0).unwrap();
3621
3622        // Check error propagation analysis
3623        let analysis = &logical_x.error_propagation;
3624        assert!(!analysis.single_qubit_propagation.is_empty());
3625        // max_error_weight is usize, so it's always >= 0
3626        assert_eq!(analysis.fault_tolerance_threshold, 0.01);
3627
3628        // Check that some errors are marked as correctable
3629        let correctable_count = analysis
3630            .single_qubit_propagation
3631            .iter()
3632            .filter(|path| path.correctable)
3633            .count();
3634        assert!(correctable_count > 0);
3635    }
3636
3637    #[test]
3638    fn test_pauli_string_weight() {
3639        let identity_string = PauliString::new(vec![Pauli::I, Pauli::I, Pauli::I]);
3640        assert_eq!(identity_string.weight(), 0);
3641
3642        let single_error = PauliString::new(vec![Pauli::X, Pauli::I, Pauli::I]);
3643        assert_eq!(single_error.weight(), 1);
3644
3645        let multi_error = PauliString::new(vec![Pauli::X, Pauli::Y, Pauli::Z]);
3646        assert_eq!(multi_error.weight(), 3);
3647    }
3648
3649    #[test]
3650    fn test_logical_circuit_with_multiple_gates() {
3651        use crate::error_correction::logical_gates::*;
3652
3653        let code = StabilizerCode::repetition_code();
3654        let synthesizer = LogicalCircuitSynthesizer::new(0.01);
3655
3656        // Test a more complex circuit
3657        let gate_sequence = vec![
3658            ("h", vec![0]), // Hadamard on logical qubit 0
3659            ("x", vec![0]), // X on logical qubit 0
3660            ("z", vec![0]), // Z on logical qubit 0
3661            ("h", vec![0]), // Another Hadamard
3662        ];
3663
3664        let circuit = synthesizer.synthesize_circuit(&code, &gate_sequence);
3665        assert!(circuit.is_ok());
3666
3667        let logical_circuit = circuit.unwrap();
3668        assert_eq!(logical_circuit.len(), 4);
3669
3670        // Check that all gates target the correct logical qubit
3671        for gate in &logical_circuit {
3672            assert_eq!(gate.logical_qubits, vec![0]);
3673        }
3674
3675        // Estimate resources for this circuit
3676        let resources = synthesizer.estimate_resources(&logical_circuit);
3677        assert_eq!(resources.estimated_depth, 4);
3678        assert!(resources.total_error_correction_rounds >= 4); // At least one round per gate
3679    }
3680
3681    #[test]
3682    fn test_adaptive_threshold_estimator() {
3683        use crate::error_correction::adaptive_threshold::*;
3684
3685        let noise_model = NoiseModel::default();
3686        let algorithm = ThresholdEstimationAlgorithm::Bayesian {
3687            prior_strength: 1.0,
3688            update_rate: 0.1,
3689        };
3690        let config = AdaptiveConfig::default();
3691
3692        let mut estimator = AdaptiveThresholdEstimator::new(noise_model, algorithm, config);
3693
3694        // Test initial threshold estimation
3695        let syndrome = vec![true, false];
3696        let env = EnvironmentalConditions::default();
3697        let threshold = estimator.estimate_threshold(&syndrome, &env);
3698        assert!(threshold > 0.0);
3699        assert!(threshold < 1.0);
3700
3701        // Test adding observations
3702        let observation = ErrorObservation {
3703            syndrome: syndrome.clone(),
3704            correction: PauliString::new(vec![Pauli::X, Pauli::I]),
3705            success: true,
3706            observed_error_rate: 0.01,
3707            timestamp: std::time::Instant::now(),
3708            environment: env.clone(),
3709        };
3710
3711        estimator.add_observation(observation);
3712
3713        // Test threshold recommendation
3714        let recommendation = estimator.get_threshold_recommendation(&syndrome);
3715        assert!(recommendation.threshold > 0.0);
3716        assert!(recommendation.confidence >= 0.0 && recommendation.confidence <= 1.0);
3717        assert!(recommendation.predicted_error_rate >= 0.0);
3718    }
3719
3720    #[test]
3721    fn test_performance_tracker() {
3722        use crate::error_correction::adaptive_threshold::*;
3723
3724        let mut tracker = PerformanceTracker::new();
3725
3726        // Test initial state
3727        assert_eq!(tracker.successful_corrections, 0);
3728        assert_eq!(tracker.failed_corrections, 0);
3729        assert_eq!(tracker.precision(), 1.0); // Default when no data
3730        assert_eq!(tracker.recall(), 1.0);
3731        assert_eq!(tracker.f1_score(), 1.0); // Perfect when precision and recall are both 1.0
3732
3733        // Simulate some corrections
3734        tracker.successful_corrections = 8;
3735        tracker.failed_corrections = 2;
3736        tracker.false_positives = 1;
3737        tracker.false_negatives = 1;
3738
3739        // Test metrics
3740        assert_eq!(tracker.precision(), 8.0 / 9.0); // 8 / (8 + 1)
3741        assert_eq!(tracker.recall(), 8.0 / 9.0); // 8 / (8 + 1)
3742        assert!(tracker.f1_score() > 0.0);
3743    }
3744
3745    #[test]
3746    fn test_environmental_conditions() {
3747        use crate::error_correction::adaptive_threshold::*;
3748
3749        let mut env = EnvironmentalConditions::default();
3750        assert_eq!(env.temperature, 300.0); // Room temperature
3751        assert_eq!(env.magnetic_field, 0.0);
3752
3753        // Test modification
3754        env.temperature = 310.0; // Higher temperature
3755        env.vibration_level = 0.1;
3756
3757        let noise_model = NoiseModel::default();
3758        let algorithm = ThresholdEstimationAlgorithm::ExponentialAverage { alpha: 0.5 };
3759        let config = AdaptiveConfig::default();
3760
3761        let estimator = AdaptiveThresholdEstimator::new(noise_model, algorithm, config);
3762
3763        // Test that environmental conditions affect threshold
3764        let syndrome = vec![false, false];
3765        let threshold_normal =
3766            estimator.estimate_threshold(&syndrome, &EnvironmentalConditions::default());
3767        let threshold_hot = estimator.estimate_threshold(&syndrome, &env);
3768
3769        // Thresholds may be different due to environmental factors
3770        assert!(threshold_normal >= 0.0);
3771        assert!(threshold_hot >= 0.0);
3772    }
3773
3774    #[test]
3775    fn test_different_threshold_algorithms() {
3776        use crate::error_correction::adaptive_threshold::*;
3777
3778        let noise_model = NoiseModel::default();
3779        let config = AdaptiveConfig::default();
3780
3781        // Test Bayesian algorithm
3782        let bayesian_alg = ThresholdEstimationAlgorithm::Bayesian {
3783            prior_strength: 1.0,
3784            update_rate: 0.1,
3785        };
3786        let bayesian_estimator =
3787            AdaptiveThresholdEstimator::new(noise_model.clone(), bayesian_alg, config.clone());
3788
3789        // Test Kalman filter algorithm
3790        let kalman_alg = ThresholdEstimationAlgorithm::KalmanFilter {
3791            process_noise: 0.01,
3792            measurement_noise: 0.1,
3793        };
3794        let kalman_estimator =
3795            AdaptiveThresholdEstimator::new(noise_model.clone(), kalman_alg, config.clone());
3796
3797        // Test exponential average algorithm
3798        let exp_alg = ThresholdEstimationAlgorithm::ExponentialAverage { alpha: 0.3 };
3799        let exp_estimator =
3800            AdaptiveThresholdEstimator::new(noise_model.clone(), exp_alg, config.clone());
3801
3802        // Test ML algorithm
3803        let ml_alg = ThresholdEstimationAlgorithm::MachineLearning {
3804            model_type: MLModelType::LinearRegression,
3805            training_window: 50,
3806        };
3807        let ml_estimator = AdaptiveThresholdEstimator::new(noise_model, ml_alg, config);
3808
3809        let syndrome = vec![true, false];
3810        let env = EnvironmentalConditions::default();
3811
3812        // All algorithms should produce valid thresholds
3813        let bayesian_threshold = bayesian_estimator.estimate_threshold(&syndrome, &env);
3814        let kalman_threshold = kalman_estimator.estimate_threshold(&syndrome, &env);
3815        let exp_threshold = exp_estimator.estimate_threshold(&syndrome, &env);
3816        let ml_threshold = ml_estimator.estimate_threshold(&syndrome, &env);
3817
3818        assert!(bayesian_threshold > 0.0);
3819        assert!(kalman_threshold > 0.0);
3820        assert!(exp_threshold > 0.0);
3821        assert!(ml_threshold > 0.0);
3822    }
3823
3824    #[test]
3825    fn test_noise_model_updates() {
3826        use crate::error_correction::adaptive_threshold::*;
3827
3828        let noise_model = NoiseModel::default();
3829        let algorithm = ThresholdEstimationAlgorithm::Bayesian {
3830            prior_strength: 1.0,
3831            update_rate: 0.1,
3832        };
3833        let config = AdaptiveConfig {
3834            min_observations: 2, // Low threshold for testing
3835            real_time_adaptation: true,
3836            ..AdaptiveConfig::default()
3837        };
3838
3839        let mut estimator = AdaptiveThresholdEstimator::new(noise_model, algorithm, config);
3840
3841        // Add multiple observations to trigger model updates
3842        for i in 0..5 {
3843            let observation = ErrorObservation {
3844                syndrome: vec![i % 2 == 0, i % 3 == 0],
3845                correction: PauliString::new(vec![Pauli::X, Pauli::I]),
3846                success: i % 4 != 0, // Most succeed
3847                observed_error_rate: 0.01,
3848                timestamp: std::time::Instant::now(),
3849                environment: EnvironmentalConditions::default(),
3850            };
3851            estimator.add_observation(observation);
3852        }
3853
3854        // The estimator should have updated its internal model
3855        let recommendation = estimator.get_threshold_recommendation(&[true, false]);
3856        assert!(recommendation.confidence > 0.0);
3857        assert!(recommendation.recommendation_quality > 0.0);
3858    }
3859}