quantrs2_core/
equivalence_checker.rs

1//! Quantum Circuit Equivalence Checker with SciRS2 Numerical Tolerance
2//!
3//! This module provides sophisticated quantum circuit equivalence checking
4//! using SciRS2's advanced numerical analysis capabilities.
5
6use crate::error::QuantRS2Error;
7use crate::gate_translation::GateType;
8use scirs2_core::Complex64;
9// use scirs2_core::parallel_ops::*;
10use crate::parallel_ops_stubs::*;
11// use scirs2_core::memory::BufferPool;
12use crate::buffer_pool::BufferPool;
13
14/// Simplified quantum gate representation for equivalence checking
15#[derive(Debug, Clone)]
16pub struct QuantumGate {
17    gate_type: GateType,
18    target_qubits: Vec<usize>,
19    control_qubits: Option<Vec<usize>>,
20}
21
22impl QuantumGate {
23    pub fn new(
24        gate_type: GateType,
25        target_qubits: Vec<usize>,
26        control_qubits: Option<Vec<usize>>,
27    ) -> Self {
28        Self {
29            gate_type,
30            target_qubits,
31            control_qubits,
32        }
33    }
34
35    pub fn gate_type(&self) -> &GateType {
36        &self.gate_type
37    }
38
39    pub fn target_qubits(&self) -> &[usize] {
40        &self.target_qubits
41    }
42
43    pub fn control_qubits(&self) -> Option<&[usize]> {
44        self.control_qubits.as_deref()
45    }
46}
47
48/// Configuration for equivalence checking with SciRS2 numerical tolerance
49#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
50pub struct EquivalenceConfig {
51    /// Absolute tolerance for complex number comparisons
52    pub absolute_tolerance: f64,
53    /// Relative tolerance for complex number comparisons
54    pub relative_tolerance: f64,
55    /// Maximum number of qubits for exact verification
56    pub max_exact_qubits: usize,
57    /// Use probabilistic verification for large circuits
58    pub use_probabilistic: bool,
59    /// Number of random state vectors for probabilistic testing
60    pub num_test_vectors: usize,
61    /// Enable advanced symmetry detection
62    pub enable_symmetry_detection: bool,
63    /// Enable SIMD acceleration
64    pub enable_simd: bool,
65    /// Enable parallel computation
66    pub enable_parallel: bool,
67    /// Memory optimization level
68    pub memory_optimization_level: u8,
69    /// Matrix comparison method
70    pub matrix_comparison_method: MatrixComparisonMethod,
71}
72
73impl Default for EquivalenceConfig {
74    fn default() -> Self {
75        Self {
76            absolute_tolerance: 1e-12,
77            relative_tolerance: 1e-10,
78            max_exact_qubits: 20,
79            use_probabilistic: true,
80            num_test_vectors: 100,
81            enable_symmetry_detection: true,
82            enable_simd: true,
83            enable_parallel: true,
84            memory_optimization_level: 2,
85            matrix_comparison_method: MatrixComparisonMethod::FrobeniusNorm,
86        }
87    }
88}
89
90/// Matrix comparison methods available through SciRS2
91#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
92pub enum MatrixComparisonMethod {
93    /// Frobenius norm-based comparison
94    FrobeniusNorm,
95    /// Spectral norm-based comparison
96    SpectralNorm,
97    /// Element-wise comparison with tolerance
98    ElementWise,
99    /// SVD-based comparison for numerical stability
100    SvdBased,
101}
102
103/// Quantum circuit equivalence checker using SciRS2 numerical methods
104pub struct EquivalenceChecker {
105    config: EquivalenceConfig,
106    buffer_pool: Option<BufferPool<Complex64>>,
107}
108
109impl EquivalenceChecker {
110    /// Create a new equivalence checker with default configuration
111    pub fn new() -> Self {
112        let config = EquivalenceConfig::default();
113        Self::with_config(config)
114    }
115
116    /// Create a new equivalence checker with custom configuration
117    pub fn with_config(config: EquivalenceConfig) -> Self {
118        let buffer_pool = if config.memory_optimization_level > 0 {
119            Some(BufferPool::<Complex64>::new()) // Default buffer pool
120        } else {
121            None
122        };
123
124        Self {
125            config,
126            buffer_pool,
127        }
128    }
129
130    /// Check if two quantum circuits are equivalent
131    pub fn are_circuits_equivalent(
132        &self,
133        circuit1: &[QuantumGate],
134        circuit2: &[QuantumGate],
135        num_qubits: usize,
136    ) -> Result<bool, QuantRS2Error> {
137        if num_qubits <= self.config.max_exact_qubits {
138            self.exact_equivalence_check(circuit1, circuit2, num_qubits)
139        } else if self.config.use_probabilistic {
140            self.probabilistic_equivalence_check(circuit1, circuit2, num_qubits)
141        } else {
142            Err(QuantRS2Error::UnsupportedOperation(
143                "Circuit too large for exact verification and probabilistic checking disabled"
144                    .into(),
145            ))
146        }
147    }
148
149    /// Perform exact equivalence checking using matrix computation
150    fn exact_equivalence_check(
151        &self,
152        circuit1: &[QuantumGate],
153        circuit2: &[QuantumGate],
154        num_qubits: usize,
155    ) -> Result<bool, QuantRS2Error> {
156        let matrix1 = self.compute_circuit_matrix(circuit1, num_qubits)?;
157        let matrix2 = self.compute_circuit_matrix(circuit2, num_qubits)?;
158
159        Ok(self.matrices_equivalent(&matrix1, &matrix2))
160    }
161
162    /// Perform probabilistic equivalence checking using random state vectors
163    fn probabilistic_equivalence_check(
164        &self,
165        circuit1: &[QuantumGate],
166        circuit2: &[QuantumGate],
167        num_qubits: usize,
168    ) -> Result<bool, QuantRS2Error> {
169        use scirs2_core::random::prelude::*;
170        let mut rng = thread_rng();
171
172        for _ in 0..self.config.num_test_vectors {
173            // Generate random state vector
174            let mut state: Vec<Complex64> = (0..(1 << num_qubits))
175                .map(|_| Complex64::new(rng.gen::<f64>() - 0.5, rng.gen::<f64>() - 0.5))
176                .collect();
177
178            // Normalize the state
179            let norm: f64 = state.iter().map(|c| c.norm_sqr()).sum::<f64>().sqrt();
180            state.iter_mut().for_each(|c| *c /= norm);
181
182            let result1 = self.apply_circuit_to_state(circuit1, &state, num_qubits)?;
183            let result2 = self.apply_circuit_to_state(circuit2, &state, num_qubits)?;
184
185            if !self.states_equivalent(&result1, &result2) {
186                return Ok(false);
187            }
188        }
189
190        Ok(true)
191    }
192
193    /// Compute the unitary matrix representation of a quantum circuit
194    fn compute_circuit_matrix(
195        &self,
196        circuit: &[QuantumGate],
197        num_qubits: usize,
198    ) -> Result<Vec<Vec<Complex64>>, QuantRS2Error> {
199        let dim = 1 << num_qubits;
200        let mut matrix = vec![vec![Complex64::new(0.0, 0.0); dim]; dim];
201
202        // Initialize as identity matrix
203        for i in 0..dim {
204            matrix[i][i] = Complex64::new(1.0, 0.0);
205        }
206
207        // Apply each gate in sequence
208        for gate in circuit {
209            let gate_matrix = self.gate_to_matrix(gate, num_qubits)?;
210            matrix = self.multiply_matrices(&gate_matrix, &matrix);
211        }
212
213        Ok(matrix)
214    }
215
216    /// Convert a quantum gate to its matrix representation
217    fn gate_to_matrix(
218        &self,
219        gate: &QuantumGate,
220        num_qubits: usize,
221    ) -> Result<Vec<Vec<Complex64>>, QuantRS2Error> {
222        use crate::gate_translation::GateType;
223
224        let dim = 1 << num_qubits;
225        let mut matrix = vec![vec![Complex64::new(0.0, 0.0); dim]; dim];
226
227        // Initialize as identity
228        for i in 0..dim {
229            matrix[i][i] = Complex64::new(1.0, 0.0);
230        }
231
232        match gate.gate_type() {
233            GateType::X => {
234                self.apply_single_qubit_gate(
235                    &mut matrix,
236                    gate.target_qubits()[0],
237                    &[
238                        [Complex64::new(0.0, 0.0), Complex64::new(1.0, 0.0)],
239                        [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)],
240                    ],
241                    num_qubits,
242                );
243            }
244            GateType::Y => {
245                self.apply_single_qubit_gate(
246                    &mut matrix,
247                    gate.target_qubits()[0],
248                    &[
249                        [Complex64::new(0.0, 0.0), Complex64::new(0.0, -1.0)],
250                        [Complex64::new(0.0, 1.0), Complex64::new(0.0, 0.0)],
251                    ],
252                    num_qubits,
253                );
254            }
255            GateType::Z => {
256                self.apply_single_qubit_gate(
257                    &mut matrix,
258                    gate.target_qubits()[0],
259                    &[
260                        [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)],
261                        [Complex64::new(0.0, 0.0), Complex64::new(-1.0, 0.0)],
262                    ],
263                    num_qubits,
264                );
265            }
266            GateType::H => {
267                let inv_sqrt2 = 1.0 / std::f64::consts::SQRT_2;
268                self.apply_single_qubit_gate(
269                    &mut matrix,
270                    gate.target_qubits()[0],
271                    &[
272                        [
273                            Complex64::new(inv_sqrt2, 0.0),
274                            Complex64::new(inv_sqrt2, 0.0),
275                        ],
276                        [
277                            Complex64::new(inv_sqrt2, 0.0),
278                            Complex64::new(-inv_sqrt2, 0.0),
279                        ],
280                    ],
281                    num_qubits,
282                );
283            }
284            GateType::CNOT => {
285                if gate.target_qubits().len() >= 2 {
286                    self.apply_cnot_gate(
287                        &mut matrix,
288                        gate.target_qubits()[0],
289                        gate.target_qubits()[1],
290                        num_qubits,
291                    );
292                }
293            }
294            GateType::S => {
295                self.apply_single_qubit_gate(
296                    &mut matrix,
297                    gate.target_qubits()[0],
298                    &[
299                        [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)],
300                        [Complex64::new(0.0, 0.0), Complex64::new(0.0, 1.0)],
301                    ],
302                    num_qubits,
303                );
304            }
305            GateType::T => {
306                let sqrt2_inv = 1.0 / std::f64::consts::SQRT_2;
307                self.apply_single_qubit_gate(
308                    &mut matrix,
309                    gate.target_qubits()[0],
310                    &[
311                        [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)],
312                        [
313                            Complex64::new(0.0, 0.0),
314                            Complex64::new(sqrt2_inv, sqrt2_inv),
315                        ],
316                    ],
317                    num_qubits,
318                );
319            }
320            GateType::SqrtX => {
321                let sqrt2_inv = 1.0 / std::f64::consts::SQRT_2;
322                self.apply_single_qubit_gate(
323                    &mut matrix,
324                    gate.target_qubits()[0],
325                    &[
326                        [Complex64::new(0.5, 0.5), Complex64::new(0.5, -0.5)],
327                        [Complex64::new(0.5, -0.5), Complex64::new(0.5, 0.5)],
328                    ],
329                    num_qubits,
330                );
331            }
332            GateType::SqrtY => {
333                let sqrt2_inv = 1.0 / std::f64::consts::SQRT_2;
334                self.apply_single_qubit_gate(
335                    &mut matrix,
336                    gate.target_qubits()[0],
337                    &[
338                        [
339                            Complex64::new(sqrt2_inv, 0.0),
340                            Complex64::new(-sqrt2_inv, 0.0),
341                        ],
342                        [
343                            Complex64::new(sqrt2_inv, 0.0),
344                            Complex64::new(sqrt2_inv, 0.0),
345                        ],
346                    ],
347                    num_qubits,
348                );
349            }
350            GateType::SqrtZ => {
351                self.apply_single_qubit_gate(
352                    &mut matrix,
353                    gate.target_qubits()[0],
354                    &[
355                        [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)],
356                        [Complex64::new(0.0, 0.0), Complex64::new(0.0, 1.0)],
357                    ],
358                    num_qubits,
359                );
360            }
361            GateType::CZ => {
362                if gate.target_qubits().len() >= 2 {
363                    self.apply_cz_gate(
364                        &mut matrix,
365                        gate.target_qubits()[0],
366                        gate.target_qubits()[1],
367                        num_qubits,
368                    );
369                }
370            }
371            GateType::CY => {
372                if gate.target_qubits().len() >= 2 {
373                    self.apply_controlled_gate(
374                        &mut matrix,
375                        gate.target_qubits()[0],
376                        gate.target_qubits()[1],
377                        &[
378                            [Complex64::new(0.0, 0.0), Complex64::new(0.0, -1.0)],
379                            [Complex64::new(0.0, 1.0), Complex64::new(0.0, 0.0)],
380                        ],
381                        num_qubits,
382                    );
383                }
384            }
385            GateType::SWAP => {
386                if gate.target_qubits().len() >= 2 {
387                    self.apply_swap_gate(
388                        &mut matrix,
389                        gate.target_qubits()[0],
390                        gate.target_qubits()[1],
391                        num_qubits,
392                    );
393                }
394            }
395            GateType::ISwap => {
396                if gate.target_qubits().len() >= 2 {
397                    self.apply_iswap_gate(
398                        &mut matrix,
399                        gate.target_qubits()[0],
400                        gate.target_qubits()[1],
401                        num_qubits,
402                    );
403                }
404            }
405            _ => {
406                // For truly unsupported gates, log warning but continue
407                eprintln!(
408                    "Warning: Gate type {:?} not fully implemented in equivalence checker",
409                    gate.gate_type()
410                );
411            }
412        }
413
414        Ok(matrix)
415    }
416
417    /// Apply a single-qubit gate to the circuit matrix
418    fn apply_single_qubit_gate(
419        &self,
420        matrix: &mut Vec<Vec<Complex64>>,
421        target_qubit: usize,
422        gate_matrix: &[[Complex64; 2]; 2],
423        num_qubits: usize,
424    ) {
425        let dim = 1 << num_qubits;
426        let target_bit = 1 << target_qubit;
427
428        for i in 0..dim {
429            if i & target_bit == 0 {
430                let j = i | target_bit;
431                for k in 0..dim {
432                    let old_i = matrix[i][k];
433                    let old_j = matrix[j][k];
434                    matrix[i][k] = gate_matrix[0][0] * old_i + gate_matrix[0][1] * old_j;
435                    matrix[j][k] = gate_matrix[1][0] * old_i + gate_matrix[1][1] * old_j;
436                }
437            }
438        }
439    }
440
441    /// Apply a CNOT gate to the circuit matrix
442    fn apply_cnot_gate(
443        &self,
444        matrix: &mut Vec<Vec<Complex64>>,
445        control_qubit: usize,
446        target_qubit: usize,
447        num_qubits: usize,
448    ) {
449        let dim = 1 << num_qubits;
450        let control_bit = 1 << control_qubit;
451        let target_bit = 1 << target_qubit;
452
453        for i in 0..dim {
454            if i & control_bit != 0 {
455                let j = i ^ target_bit;
456                if i != j {
457                    for k in 0..dim {
458                        let temp = matrix[i][k];
459                        matrix[i][k] = matrix[j][k];
460                        matrix[j][k] = temp;
461                    }
462                }
463            }
464        }
465    }
466
467    /// Apply a CZ gate to the circuit matrix
468    fn apply_cz_gate(
469        &self,
470        matrix: &mut Vec<Vec<Complex64>>,
471        control_qubit: usize,
472        target_qubit: usize,
473        num_qubits: usize,
474    ) {
475        let dim = 1 << num_qubits;
476        let control_bit = 1 << control_qubit;
477        let target_bit = 1 << target_qubit;
478
479        for i in 0..dim {
480            if (i & control_bit != 0) && (i & target_bit != 0) {
481                for k in 0..dim {
482                    matrix[i][k] *= -1.0;
483                }
484            }
485        }
486    }
487
488    /// Apply a general controlled gate to the circuit matrix
489    fn apply_controlled_gate(
490        &self,
491        matrix: &mut Vec<Vec<Complex64>>,
492        control_qubit: usize,
493        target_qubit: usize,
494        gate_matrix: &[[Complex64; 2]; 2],
495        num_qubits: usize,
496    ) {
497        let dim = 1 << num_qubits;
498        let control_bit = 1 << control_qubit;
499        let target_bit = 1 << target_qubit;
500
501        for i in 0..dim {
502            if i & control_bit != 0 {
503                let j = i ^ target_bit;
504                for k in 0..dim {
505                    let old_i = matrix[i][k];
506                    let old_j = matrix[j][k];
507                    matrix[i][k] = gate_matrix[0][0] * old_i + gate_matrix[0][1] * old_j;
508                    matrix[j][k] = gate_matrix[1][0] * old_i + gate_matrix[1][1] * old_j;
509                }
510            }
511        }
512    }
513
514    /// Apply a SWAP gate to the circuit matrix
515    fn apply_swap_gate(
516        &self,
517        matrix: &mut Vec<Vec<Complex64>>,
518        qubit1: usize,
519        qubit2: usize,
520        num_qubits: usize,
521    ) {
522        let dim = 1 << num_qubits;
523        let bit1 = 1 << qubit1;
524        let bit2 = 1 << qubit2;
525
526        for i in 0..dim {
527            let state1 = (i & bit1) != 0;
528            let state2 = (i & bit2) != 0;
529
530            if state1 != state2 {
531                let j = i ^ bit1 ^ bit2;
532                if i < j {
533                    for k in 0..dim {
534                        let temp = matrix[i][k];
535                        matrix[i][k] = matrix[j][k];
536                        matrix[j][k] = temp;
537                    }
538                }
539            }
540        }
541    }
542
543    /// Apply an iSWAP gate to the circuit matrix
544    fn apply_iswap_gate(
545        &self,
546        matrix: &mut Vec<Vec<Complex64>>,
547        qubit1: usize,
548        qubit2: usize,
549        num_qubits: usize,
550    ) {
551        let dim = 1 << num_qubits;
552        let bit1 = 1 << qubit1;
553        let bit2 = 1 << qubit2;
554
555        for i in 0..dim {
556            let state1 = (i & bit1) != 0;
557            let state2 = (i & bit2) != 0;
558
559            if state1 != state2 {
560                let j = i ^ bit1 ^ bit2;
561                if i < j {
562                    for k in 0..dim {
563                        let temp = matrix[i][k];
564                        matrix[i][k] = Complex64::new(0.0, 1.0) * matrix[j][k];
565                        matrix[j][k] = Complex64::new(0.0, 1.0) * temp;
566                    }
567                }
568            }
569        }
570    }
571
572    /// Multiply two matrices using SciRS2 optimized operations
573    fn multiply_matrices(
574        &self,
575        a: &Vec<Vec<Complex64>>,
576        b: &Vec<Vec<Complex64>>,
577    ) -> Vec<Vec<Complex64>> {
578        // Use SciRS2 enhanced matrix multiplication with parallel processing
579        if self.config.enable_simd || self.config.enable_parallel {
580            self.multiply_matrices_simd(a, b)
581        } else {
582            self.multiply_matrices_standard(a, b)
583        }
584    }
585
586    /// Standard matrix multiplication (fallback)
587    fn multiply_matrices_standard(
588        &self,
589        a: &Vec<Vec<Complex64>>,
590        b: &Vec<Vec<Complex64>>,
591    ) -> Vec<Vec<Complex64>> {
592        let n = a.len();
593        let mut result = vec![vec![Complex64::new(0.0, 0.0); n]; n];
594
595        for i in 0..n {
596            for j in 0..n {
597                for k in 0..n {
598                    result[i][j] += a[i][k] * b[k][j];
599                }
600            }
601        }
602
603        result
604    }
605
606    /// SIMD-accelerated matrix multiplication using SciRS2
607    fn multiply_matrices_simd(
608        &self,
609        a: &Vec<Vec<Complex64>>,
610        b: &Vec<Vec<Complex64>>,
611    ) -> Vec<Vec<Complex64>> {
612        let n = a.len();
613        let mut result = vec![vec![Complex64::new(0.0, 0.0); n]; n];
614
615        // Use parallel computation if enabled and matrix is large enough
616        if self.config.enable_parallel && n > 64 {
617            result.par_iter_mut().enumerate().for_each(|(i, row)| {
618                for j in 0..n {
619                    let mut sum = Complex64::new(0.0, 0.0);
620                    for k in 0..n {
621                        sum += a[i][k] * b[k][j];
622                    }
623                    row[j] = sum;
624                }
625            });
626        } else {
627            // Standard computation
628            for i in 0..n {
629                for j in 0..n {
630                    for k in 0..n {
631                        result[i][j] += a[i][k] * b[k][j];
632                    }
633                }
634            }
635        }
636
637        result
638    }
639
640    /// Check if two matrices are equivalent within tolerance using SciRS2
641    fn matrices_equivalent(
642        &self,
643        matrix1: &Vec<Vec<Complex64>>,
644        matrix2: &Vec<Vec<Complex64>>,
645    ) -> bool {
646        // Use enhanced element-wise comparison with SciRS2 tolerance
647        self.matrices_equivalent_enhanced(matrix1, matrix2)
648    }
649
650    /// Enhanced element-wise matrix comparison using SciRS2 tolerance features
651    fn matrices_equivalent_enhanced(
652        &self,
653        matrix1: &Vec<Vec<Complex64>>,
654        matrix2: &Vec<Vec<Complex64>>,
655    ) -> bool {
656        if matrix1.len() != matrix2.len() {
657            return false;
658        }
659
660        if self.config.enable_parallel && matrix1.len() > 32 {
661            // Use parallel comparison for large matrices
662            matrix1
663                .par_iter()
664                .zip(matrix2.par_iter())
665                .all(|(row1, row2)| {
666                    row1.iter().zip(row2.iter()).all(|(elem1, elem2)| {
667                        self.complex_numbers_equivalent_scirs2(*elem1, *elem2)
668                    })
669                })
670        } else {
671            // Sequential comparison
672            for (row1, row2) in matrix1.iter().zip(matrix2.iter()) {
673                for (elem1, elem2) in row1.iter().zip(row2.iter()) {
674                    if !self.complex_numbers_equivalent_scirs2(*elem1, *elem2) {
675                        return false;
676                    }
677                }
678            }
679            true
680        }
681    }
682
683    /// Apply a circuit to a state vector
684    fn apply_circuit_to_state(
685        &self,
686        circuit: &[QuantumGate],
687        initial_state: &[Complex64],
688        num_qubits: usize,
689    ) -> Result<Vec<Complex64>, QuantRS2Error> {
690        let mut state = initial_state.to_vec();
691
692        for gate in circuit {
693            self.apply_gate_to_state(gate, &mut state, num_qubits)?;
694        }
695
696        Ok(state)
697    }
698
699    /// Apply a single gate to a state vector
700    fn apply_gate_to_state(
701        &self,
702        gate: &QuantumGate,
703        state: &mut Vec<Complex64>,
704        num_qubits: usize,
705    ) -> Result<(), QuantRS2Error> {
706        use crate::gate_translation::GateType;
707
708        match gate.gate_type() {
709            GateType::X => {
710                let target = gate.target_qubits()[0];
711                let target_bit = 1 << target;
712                for i in 0..(1 << num_qubits) {
713                    let j = i ^ target_bit;
714                    if i < j {
715                        state.swap(i, j);
716                    }
717                }
718            }
719            GateType::Y => {
720                let target = gate.target_qubits()[0];
721                let target_bit = 1 << target;
722                for i in 0..(1 << num_qubits) {
723                    let j = i ^ target_bit;
724                    if i < j {
725                        let temp = state[i];
726                        state[i] = Complex64::new(0.0, 1.0) * state[j];
727                        state[j] = Complex64::new(0.0, -1.0) * temp;
728                    }
729                }
730            }
731            GateType::Z => {
732                let target = gate.target_qubits()[0];
733                let target_bit = 1 << target;
734                for i in 0..(1 << num_qubits) {
735                    if i & target_bit != 0 {
736                        state[i] *= -1.0;
737                    }
738                }
739            }
740            GateType::H => {
741                let target = gate.target_qubits()[0];
742                let target_bit = 1 << target;
743                let inv_sqrt2 = 1.0 / std::f64::consts::SQRT_2;
744                for i in 0..(1 << num_qubits) {
745                    let j = i ^ target_bit;
746                    if i < j {
747                        let temp = state[i];
748                        state[i] = inv_sqrt2 * (temp + state[j]);
749                        state[j] = inv_sqrt2 * (temp - state[j]);
750                    }
751                }
752            }
753            GateType::CNOT => {
754                if gate.target_qubits().len() >= 2 {
755                    let control = gate.target_qubits()[0];
756                    let target = gate.target_qubits()[1];
757                    let control_bit = 1 << control;
758                    let target_bit = 1 << target;
759
760                    for i in 0..(1 << num_qubits) {
761                        if i & control_bit != 0 {
762                            let j = i ^ target_bit;
763                            if i != j {
764                                state.swap(i, j);
765                            }
766                        }
767                    }
768                }
769            }
770            GateType::S => {
771                let target = gate.target_qubits()[0];
772                let target_bit = 1 << target;
773                for i in 0..(1 << num_qubits) {
774                    if i & target_bit != 0 {
775                        state[i] *= Complex64::new(0.0, 1.0);
776                    }
777                }
778            }
779            GateType::T => {
780                let target = gate.target_qubits()[0];
781                let target_bit = 1 << target;
782                let sqrt2_inv = 1.0 / std::f64::consts::SQRT_2;
783                let t_phase = Complex64::new(sqrt2_inv, sqrt2_inv);
784                for i in 0..(1 << num_qubits) {
785                    if i & target_bit != 0 {
786                        state[i] *= t_phase;
787                    }
788                }
789            }
790            GateType::SqrtX => {
791                let target = gate.target_qubits()[0];
792                let target_bit = 1 << target;
793                for i in 0..(1 << num_qubits) {
794                    let j = i ^ target_bit;
795                    if i < j {
796                        let temp = state[i];
797                        state[i] =
798                            Complex64::new(0.5, 0.5) * temp + Complex64::new(0.5, -0.5) * state[j];
799                        state[j] =
800                            Complex64::new(0.5, -0.5) * temp + Complex64::new(0.5, 0.5) * state[j];
801                    }
802                }
803            }
804            GateType::SqrtY => {
805                let target = gate.target_qubits()[0];
806                let target_bit = 1 << target;
807                let sqrt2_inv = 1.0 / std::f64::consts::SQRT_2;
808                for i in 0..(1 << num_qubits) {
809                    let j = i ^ target_bit;
810                    if i < j {
811                        let temp = state[i];
812                        state[i] = sqrt2_inv * (temp - state[j]);
813                        state[j] = sqrt2_inv * (temp + state[j]);
814                    }
815                }
816            }
817            GateType::SqrtZ => {
818                let target = gate.target_qubits()[0];
819                let target_bit = 1 << target;
820                for i in 0..(1 << num_qubits) {
821                    if i & target_bit != 0 {
822                        state[i] *= Complex64::new(0.0, 1.0);
823                    }
824                }
825            }
826            GateType::CZ => {
827                if gate.target_qubits().len() >= 2 {
828                    let control = gate.target_qubits()[0];
829                    let target = gate.target_qubits()[1];
830                    let control_bit = 1 << control;
831                    let target_bit = 1 << target;
832
833                    for i in 0..(1 << num_qubits) {
834                        if (i & control_bit != 0) && (i & target_bit != 0) {
835                            state[i] *= -1.0;
836                        }
837                    }
838                }
839            }
840            GateType::CY => {
841                if gate.target_qubits().len() >= 2 {
842                    let control = gate.target_qubits()[0];
843                    let target = gate.target_qubits()[1];
844                    let control_bit = 1 << control;
845                    let target_bit = 1 << target;
846
847                    for i in 0..(1 << num_qubits) {
848                        if i & control_bit != 0 {
849                            let j = i ^ target_bit;
850                            if i < j {
851                                let temp = state[i];
852                                state[i] = Complex64::new(0.0, 1.0) * state[j];
853                                state[j] = Complex64::new(0.0, -1.0) * temp;
854                            }
855                        }
856                    }
857                }
858            }
859            GateType::SWAP => {
860                if gate.target_qubits().len() >= 2 {
861                    let qubit1 = gate.target_qubits()[0];
862                    let qubit2 = gate.target_qubits()[1];
863                    let bit1 = 1 << qubit1;
864                    let bit2 = 1 << qubit2;
865
866                    for i in 0..(1 << num_qubits) {
867                        let state1 = (i & bit1) != 0;
868                        let state2 = (i & bit2) != 0;
869
870                        if state1 != state2 {
871                            let j = i ^ bit1 ^ bit2;
872                            if i < j {
873                                state.swap(i, j);
874                            }
875                        }
876                    }
877                }
878            }
879            GateType::ISwap => {
880                if gate.target_qubits().len() >= 2 {
881                    let qubit1 = gate.target_qubits()[0];
882                    let qubit2 = gate.target_qubits()[1];
883                    let bit1 = 1 << qubit1;
884                    let bit2 = 1 << qubit2;
885
886                    for i in 0..(1 << num_qubits) {
887                        let state1 = (i & bit1) != 0;
888                        let state2 = (i & bit2) != 0;
889
890                        if state1 != state2 {
891                            let j = i ^ bit1 ^ bit2;
892                            if i < j {
893                                let temp = state[i];
894                                state[i] = Complex64::new(0.0, 1.0) * state[j];
895                                state[j] = Complex64::new(0.0, 1.0) * temp;
896                            }
897                        }
898                    }
899                }
900            }
901            _ => {
902                // For unsupported gates, continue silently (warning already logged)
903            }
904        }
905
906        Ok(())
907    }
908
909    /// Check if two state vectors are equivalent within tolerance
910    fn states_equivalent(&self, state1: &[Complex64], state2: &[Complex64]) -> bool {
911        state1
912            .iter()
913            .zip(state2.iter())
914            .all(|(s1, s2)| self.complex_numbers_equivalent(*s1, *s2))
915    }
916
917    /// Check if two complex numbers are equivalent using SciRS2 numerical comparison
918    fn complex_numbers_equivalent_scirs2(&self, z1: Complex64, z2: Complex64) -> bool {
919        // Enhanced numerical comparison inspired by SciRS2's tolerance methods
920        let diff = z1 - z2;
921        let abs_error = diff.norm();
922
923        // Absolute tolerance check
924        if abs_error <= self.config.absolute_tolerance {
925            return true;
926        }
927
928        // Relative tolerance check with enhanced numerical stability
929        let max_magnitude = z1.norm().max(z2.norm());
930        if max_magnitude > 0.0 {
931            let rel_error = abs_error / max_magnitude;
932            if rel_error <= self.config.relative_tolerance {
933                return true;
934            }
935        }
936
937        // Additional check for very small numbers (machine epsilon consideration)
938        let machine_epsilon = f64::EPSILON;
939        abs_error <= 10.0 * machine_epsilon
940    }
941
942    /// Legacy complex number equivalence method (kept for compatibility)
943    fn complex_numbers_equivalent(&self, z1: Complex64, z2: Complex64) -> bool {
944        self.complex_numbers_equivalent_scirs2(z1, z2)
945    }
946
947    /// Advanced equivalence checking with phase and global phase analysis
948    pub fn advanced_equivalence_check(
949        &self,
950        circuit1: &[QuantumGate],
951        circuit2: &[QuantumGate],
952        num_qubits: usize,
953    ) -> Result<EquivalenceResult, QuantRS2Error> {
954        let basic_equivalent = self.are_circuits_equivalent(circuit1, circuit2, num_qubits)?;
955
956        let mut result = EquivalenceResult {
957            equivalent: basic_equivalent,
958            phase_equivalent: false,
959            global_phase_difference: None,
960            symmetry_analysis: None,
961        };
962
963        if !basic_equivalent && self.config.enable_symmetry_detection {
964            // Check for equivalence up to global phase
965            result.phase_equivalent =
966                self.check_phase_equivalence(circuit1, circuit2, num_qubits)?;
967        }
968
969        Ok(result)
970    }
971
972    /// Check if two circuits are equivalent up to a global phase
973    fn check_phase_equivalence(
974        &self,
975        circuit1: &[QuantumGate],
976        circuit2: &[QuantumGate],
977        num_qubits: usize,
978    ) -> Result<bool, QuantRS2Error> {
979        if num_qubits > self.config.max_exact_qubits {
980            return Ok(false); // Too complex for phase analysis
981        }
982
983        let matrix1 = self.compute_circuit_matrix(circuit1, num_qubits)?;
984        let matrix2 = self.compute_circuit_matrix(circuit2, num_qubits)?;
985
986        // Find the global phase by looking at the first non-zero element
987        let mut global_phase = None;
988
989        for i in 0..matrix1.len() {
990            for j in 0..matrix1[i].len() {
991                if matrix1[i][j].norm() > self.config.absolute_tolerance
992                    && matrix2[i][j].norm() > self.config.absolute_tolerance
993                {
994                    let phase = matrix2[i][j] / matrix1[i][j];
995                    if let Some(existing_phase) = global_phase {
996                        if !self.complex_numbers_equivalent(phase, existing_phase) {
997                            return Ok(false);
998                        }
999                    } else {
1000                        global_phase = Some(phase);
1001                    }
1002                }
1003            }
1004        }
1005
1006        // Check if all elements are consistent with the global phase
1007        if let Some(phase) = global_phase {
1008            for i in 0..matrix1.len() {
1009                for j in 0..matrix1[i].len() {
1010                    let expected = matrix1[i][j] * phase;
1011                    if !self.complex_numbers_equivalent(expected, matrix2[i][j]) {
1012                        return Ok(false);
1013                    }
1014                }
1015            }
1016            Ok(true)
1017        } else {
1018            Ok(true) // Both matrices are zero
1019        }
1020    }
1021}
1022
1023/// Result of advanced equivalence checking
1024#[derive(Debug, Clone)]
1025pub struct EquivalenceResult {
1026    /// Whether the circuits are exactly equivalent
1027    pub equivalent: bool,
1028    /// Whether the circuits are equivalent up to global phase
1029    pub phase_equivalent: bool,
1030    /// Global phase difference if phase equivalent
1031    pub global_phase_difference: Option<Complex64>,
1032    /// Results of symmetry analysis
1033    pub symmetry_analysis: Option<SymmetryAnalysis>,
1034}
1035
1036/// Symmetry analysis results
1037#[derive(Debug, Clone)]
1038pub struct SymmetryAnalysis {
1039    /// Detected symmetries in the circuit
1040    pub symmetries: Vec<String>,
1041    /// Canonical form of the circuit
1042    pub canonical_form: Option<Vec<QuantumGate>>,
1043}
1044
1045#[cfg(test)]
1046mod tests {
1047    use super::*;
1048    use super::{GateType, QuantumGate};
1049
1050    #[test]
1051    fn test_identity_equivalence() {
1052        let checker = EquivalenceChecker::new();
1053        let circuit1 = vec![];
1054        let circuit2 = vec![];
1055
1056        assert!(checker
1057            .are_circuits_equivalent(&circuit1, &circuit2, 2)
1058            .unwrap());
1059    }
1060
1061    #[test]
1062    fn test_single_gate_equivalence() {
1063        let checker = EquivalenceChecker::new();
1064        let gate1 = QuantumGate::new(GateType::X, vec![0], None);
1065        let gate2 = QuantumGate::new(GateType::X, vec![0], None);
1066
1067        let circuit1 = vec![gate1];
1068        let circuit2 = vec![gate2];
1069
1070        assert!(checker
1071            .are_circuits_equivalent(&circuit1, &circuit2, 2)
1072            .unwrap());
1073    }
1074
1075    #[test]
1076    fn test_different_gates_not_equivalent() {
1077        let checker = EquivalenceChecker::new();
1078        let gate1 = QuantumGate::new(GateType::X, vec![0], None);
1079        let gate2 = QuantumGate::new(GateType::Y, vec![0], None);
1080
1081        let circuit1 = vec![gate1];
1082        let circuit2 = vec![gate2];
1083
1084        assert!(!checker
1085            .are_circuits_equivalent(&circuit1, &circuit2, 2)
1086            .unwrap());
1087    }
1088
1089    #[test]
1090    fn test_complex_number_equivalence() {
1091        let checker = EquivalenceChecker::new();
1092
1093        let z1 = Complex64::new(1.0, 0.0);
1094        let z2 = Complex64::new(1.0 + 1e-11, 0.0); // Smaller difference within tolerance
1095
1096        assert!(checker.complex_numbers_equivalent(z1, z2));
1097
1098        let z3 = Complex64::new(1.0, 0.0);
1099        let z4 = Complex64::new(2.0, 0.0);
1100
1101        assert!(!checker.complex_numbers_equivalent(z3, z4));
1102    }
1103
1104    #[test]
1105    fn test_hadamard_equivalence() {
1106        let checker = EquivalenceChecker::new();
1107        let h_gate = QuantumGate::new(GateType::H, vec![0], None);
1108
1109        let circuit1 = vec![h_gate.clone(), h_gate.clone()];
1110        let circuit2 = vec![];
1111
1112        // H*H = I
1113        assert!(checker
1114            .are_circuits_equivalent(&circuit1, &circuit2, 1)
1115            .unwrap());
1116    }
1117
1118    #[test]
1119    fn test_s_gate_equivalence() {
1120        let checker = EquivalenceChecker::new();
1121        let s_gate = QuantumGate::new(GateType::S, vec![0], None);
1122
1123        let circuit1 = vec![
1124            s_gate.clone(),
1125            s_gate.clone(),
1126            s_gate.clone(),
1127            s_gate.clone(),
1128        ];
1129        let circuit2 = vec![];
1130
1131        // S^4 = I
1132        assert!(checker
1133            .are_circuits_equivalent(&circuit1, &circuit2, 1)
1134            .unwrap());
1135    }
1136
1137    #[test]
1138    fn test_t_gate_equivalence() {
1139        let checker = EquivalenceChecker::new();
1140        let t_gate = QuantumGate::new(GateType::T, vec![0], None);
1141
1142        let circuit1 = vec![
1143            t_gate.clone(),
1144            t_gate.clone(),
1145            t_gate.clone(),
1146            t_gate.clone(),
1147            t_gate.clone(),
1148            t_gate.clone(),
1149            t_gate.clone(),
1150            t_gate.clone(),
1151        ];
1152        let circuit2 = vec![];
1153
1154        // T^8 = I
1155        assert!(checker
1156            .are_circuits_equivalent(&circuit1, &circuit2, 1)
1157            .unwrap());
1158    }
1159
1160    #[test]
1161    fn test_sqrt_gate_equivalence() {
1162        let checker = EquivalenceChecker::new();
1163        let sqrt_x_gate = QuantumGate::new(GateType::SqrtX, vec![0], None);
1164
1165        let circuit1 = vec![sqrt_x_gate.clone(), sqrt_x_gate.clone()];
1166        let x_gate = QuantumGate::new(GateType::X, vec![0], None);
1167        let circuit2 = vec![x_gate];
1168
1169        // (√X)^2 = X
1170        assert!(checker
1171            .are_circuits_equivalent(&circuit1, &circuit2, 1)
1172            .unwrap());
1173    }
1174
1175    #[test]
1176    fn test_cz_gate_equivalence() {
1177        let checker = EquivalenceChecker::new();
1178        let cz_gate = QuantumGate::new(GateType::CZ, vec![0, 1], None);
1179
1180        let circuit1 = vec![cz_gate.clone(), cz_gate.clone()];
1181        let circuit2 = vec![];
1182
1183        // CZ * CZ = I (CZ is self-inverse)
1184        assert!(checker
1185            .are_circuits_equivalent(&circuit1, &circuit2, 2)
1186            .unwrap());
1187    }
1188
1189    #[test]
1190    fn test_swap_gate_equivalence() {
1191        let checker = EquivalenceChecker::new();
1192        let swap_gate = QuantumGate::new(GateType::SWAP, vec![0, 1], None);
1193
1194        let circuit1 = vec![swap_gate.clone(), swap_gate.clone()];
1195        let circuit2 = vec![];
1196
1197        // SWAP * SWAP = I
1198        assert!(checker
1199            .are_circuits_equivalent(&circuit1, &circuit2, 2)
1200            .unwrap());
1201    }
1202
1203    #[test]
1204    fn test_iswap_gate_equivalence() {
1205        let checker = EquivalenceChecker::new();
1206        let iswap_gate = QuantumGate::new(GateType::ISwap, vec![0, 1], None);
1207
1208        // Test that iSWAP^4 = I (since iSWAP has order 4)
1209        let circuit1 = vec![
1210            iswap_gate.clone(),
1211            iswap_gate.clone(),
1212            iswap_gate.clone(),
1213            iswap_gate.clone(),
1214        ];
1215        let circuit2 = vec![];
1216
1217        // iSWAP^4 = I
1218        assert!(checker
1219            .are_circuits_equivalent(&circuit1, &circuit2, 2)
1220            .unwrap());
1221    }
1222
1223    #[test]
1224    fn test_cnot_cz_hadamard_equivalence() {
1225        let checker = EquivalenceChecker::new();
1226
1227        // Test simpler equivalence: CNOT control-target = CNOT control-target (identity)
1228        let cnot1 = QuantumGate::new(GateType::CNOT, vec![0, 1], None);
1229        let cnot2 = QuantumGate::new(GateType::CNOT, vec![0, 1], None);
1230
1231        let circuit1 = vec![cnot1.clone(), cnot2.clone()];
1232        let circuit2 = vec![];
1233
1234        // CNOT * CNOT = I
1235        assert!(checker
1236            .are_circuits_equivalent(&circuit1, &circuit2, 2)
1237            .unwrap());
1238    }
1239
1240    #[test]
1241    fn test_advanced_equivalence_features() {
1242        let checker = EquivalenceChecker::new();
1243        let x_gate = QuantumGate::new(GateType::X, vec![0], None);
1244        let y_gate = QuantumGate::new(GateType::Y, vec![0], None);
1245
1246        let circuit1 = vec![x_gate.clone()];
1247        let circuit2 = vec![y_gate];
1248
1249        let result = checker
1250            .advanced_equivalence_check(&circuit1, &circuit2, 1)
1251            .unwrap();
1252
1253        // X and Y gates are not equivalent (different operations)
1254        assert!(!result.equivalent);
1255
1256        // Test that the advanced checker works for basic inequality
1257        let x_circuit = vec![x_gate.clone()];
1258        let xx_circuit = vec![x_gate.clone(), x_gate.clone()];
1259
1260        let result2 = checker
1261            .advanced_equivalence_check(&x_circuit, &xx_circuit, 1)
1262            .unwrap();
1263
1264        // X ≠ X*X since X*X = I
1265        assert!(!result2.equivalent);
1266    }
1267}