1use crate::{
8 adaptive_precision::AdaptivePrecisionSimulator, error::QuantRS2Result,
9 quantum_autodiff::QuantumAutoDiff,
10};
11use scirs2_core::ndarray::{Array1, Array2};
12use std::{
13 collections::HashMap,
14 sync::{Arc, RwLock},
15 time::{Duration, Instant},
16};
17
18#[derive(Debug, Clone)]
20pub struct HybridLearningConfig {
21 pub quantum_depth: usize,
23 pub num_qubits: usize,
25 pub classical_layers: Vec<usize>,
27 pub quantum_learning_rate: f64,
29 pub classical_learning_rate: f64,
31 pub batch_size: usize,
33 pub max_epochs: usize,
35 pub early_stopping_patience: usize,
37 pub interaction_type: InteractionType,
39 pub enable_quantum_advantage_analysis: bool,
41 pub use_adaptive_precision: bool,
43}
44
45impl Default for HybridLearningConfig {
46 fn default() -> Self {
47 Self {
48 quantum_depth: 3,
49 num_qubits: 4,
50 classical_layers: vec![64, 32, 16],
51 quantum_learning_rate: 0.01,
52 classical_learning_rate: 0.001,
53 batch_size: 32,
54 max_epochs: 100,
55 early_stopping_patience: 10,
56 interaction_type: InteractionType::Sequential,
57 enable_quantum_advantage_analysis: true,
58 use_adaptive_precision: true,
59 }
60 }
61}
62
63#[derive(Debug, Clone, Copy, PartialEq, Eq)]
65pub enum InteractionType {
66 Sequential,
68 Interleaved,
70 Parallel,
72 Residual,
74 Attention,
76}
77
78#[derive(Debug)]
80pub struct HybridNeuralNetwork {
81 config: HybridLearningConfig,
82 classical_layers: Vec<DenseLayer>,
83 quantum_circuit: ParameterizedQuantumCircuit,
84 fusion_layer: FusionLayer,
85 autodiff: Arc<RwLock<QuantumAutoDiff>>,
86 adaptive_precision: Option<Arc<RwLock<AdaptivePrecisionSimulator>>>,
87 training_history: TrainingHistory,
88}
89
90#[derive(Debug, Clone)]
92pub struct DenseLayer {
93 weights: Array2<f64>,
94 biases: Array1<f64>,
95 activation: ActivationFunction,
96}
97
98#[derive(Debug, Clone, Copy)]
100pub enum ActivationFunction {
101 ReLU,
102 Sigmoid,
103 Tanh,
104 Linear,
105 Swish,
106 GELU,
107}
108
109#[derive(Debug)]
111pub struct ParameterizedQuantumCircuit {
112 num_qubits: usize,
113 depth: usize,
114 parameters: Vec<f64>,
115 gate_sequence: Vec<QuantumGateInfo>,
116 parameter_map: HashMap<usize, Vec<usize>>, }
118
119#[derive(Debug, Clone)]
120pub struct QuantumGateInfo {
121 gate_type: String,
122 qubits: Vec<usize>,
123 is_parameterized: bool,
124 parameter_index: Option<usize>,
125}
126
127#[derive(Debug)]
129pub struct FusionLayer {
130 fusion_type: FusionType,
131 fusion_weights: Array2<f64>,
132 quantum_weight: f64,
133 classical_weight: f64,
134}
135
136#[derive(Debug, Clone, Copy)]
137pub enum FusionType {
138 Concatenation,
139 ElementwiseProduct,
140 WeightedSum,
141 Attention,
142 BilinearPooling,
143}
144
145#[derive(Debug)]
147pub struct TrainingHistory {
148 losses: Vec<f64>,
149 quantum_losses: Vec<f64>,
150 classical_losses: Vec<f64>,
151 accuracies: Vec<f64>,
152 quantum_advantage_scores: Vec<f64>,
153 training_times: Vec<Duration>,
154 epoch_details: Vec<EpochDetails>,
155}
156
157#[derive(Debug, Clone)]
158pub struct EpochDetails {
159 epoch: usize,
160 train_loss: f64,
161 val_loss: Option<f64>,
162 train_accuracy: f64,
163 val_accuracy: Option<f64>,
164 quantum_contribution: f64,
165 classical_contribution: f64,
166 learning_rates: (f64, f64), }
168
169#[derive(Debug)]
171pub struct TrainingData {
172 inputs: Array2<f64>,
173 targets: Array2<f64>,
174 validation_inputs: Option<Array2<f64>>,
175 validation_targets: Option<Array2<f64>>,
176}
177
178#[derive(Debug, Clone)]
180pub struct QuantumAdvantageAnalysis {
181 quantum_only_performance: f64,
182 classical_only_performance: f64,
183 hybrid_performance: f64,
184 quantum_advantage_ratio: f64,
185 statistical_significance: f64,
186 computational_speedup: f64,
187}
188
189impl HybridNeuralNetwork {
190 pub fn new(config: HybridLearningConfig) -> QuantRS2Result<Self> {
192 let classical_layers = Vec::new();
194
195 let quantum_circuit =
197 ParameterizedQuantumCircuit::new(config.num_qubits, config.quantum_depth)?;
198
199 let fusion_layer = FusionLayer::new(
201 FusionType::WeightedSum,
202 4, config.num_qubits,
204 )?;
205
206 let autodiff = Arc::new(RwLock::new(
208 crate::quantum_autodiff::QuantumAutoDiffFactory::create_for_vqe(),
209 ));
210
211 let adaptive_precision = if config.use_adaptive_precision {
213 Some(Arc::new(RwLock::new(
214 crate::adaptive_precision::AdaptivePrecisionFactory::create_balanced(),
215 )))
216 } else {
217 None
218 };
219
220 Ok(Self {
221 config,
222 classical_layers,
223 quantum_circuit,
224 fusion_layer,
225 autodiff,
226 adaptive_precision,
227 training_history: TrainingHistory::new(),
228 })
229 }
230
231 pub fn forward(&mut self, input: &Array1<f64>) -> QuantRS2Result<Array1<f64>> {
233 if self.classical_layers.is_empty() {
235 self.initialize_layers(input.len())?;
236 }
237
238 match self.config.interaction_type {
239 InteractionType::Sequential => self.forward_sequential(input),
240 InteractionType::Interleaved => self.forward_interleaved(input),
241 InteractionType::Parallel => self.forward_parallel(input),
242 InteractionType::Residual => self.forward_residual(input),
243 InteractionType::Attention => self.forward_attention(input),
244 }
245 }
246
247 fn initialize_layers(&mut self, input_size: usize) -> QuantRS2Result<()> {
249 let mut current_size = input_size;
250
251 for &layer_size in &self.config.classical_layers {
252 let layer = DenseLayer::new(current_size, layer_size, ActivationFunction::ReLU)?;
253 self.classical_layers.push(layer);
254 current_size = layer_size;
255 }
256
257 self.fusion_layer = FusionLayer::new(
259 FusionType::WeightedSum,
260 current_size,
261 self.config.num_qubits,
262 )?;
263
264 Ok(())
265 }
266
267 pub fn train(&mut self, training_data: &TrainingData) -> QuantRS2Result<()> {
269 let start_time = Instant::now();
270 let mut best_val_loss = f64::INFINITY;
271 let mut patience_counter = 0;
272
273 for epoch in 0..self.config.max_epochs {
274 let epoch_start = Instant::now();
275
276 let (train_loss, train_accuracy) = self.train_epoch(training_data)?;
278
279 let (val_loss, val_accuracy) = if let (Some(val_inputs), Some(val_targets)) = (
281 &training_data.validation_inputs,
282 &training_data.validation_targets,
283 ) {
284 let (loss, acc) = self.evaluate(val_inputs, val_targets)?;
285 (Some(loss), Some(acc))
286 } else {
287 (None, None)
288 };
289
290 let quantum_contribution = self.compute_quantum_contribution()?;
292 let classical_contribution = 1.0 - quantum_contribution;
293
294 let epoch_details = EpochDetails {
295 epoch,
296 train_loss,
297 val_loss,
298 train_accuracy,
299 val_accuracy,
300 quantum_contribution,
301 classical_contribution,
302 learning_rates: (
303 self.config.quantum_learning_rate,
304 self.config.classical_learning_rate,
305 ),
306 };
307
308 self.training_history.losses.push(train_loss);
309 self.training_history.accuracies.push(train_accuracy);
310 self.training_history
311 .training_times
312 .push(epoch_start.elapsed());
313 self.training_history.epoch_details.push(epoch_details);
314
315 if let Some(current_val_loss) = val_loss {
317 if current_val_loss < best_val_loss {
318 best_val_loss = current_val_loss;
319 patience_counter = 0;
320 } else {
321 patience_counter += 1;
322 if patience_counter >= self.config.early_stopping_patience {
323 println!("Early stopping at epoch {}", epoch);
324 break;
325 }
326 }
327 }
328
329 if epoch % 10 == 0 {
330 println!(
331 "Epoch {}: Train Loss = {:.4}, Train Acc = {:.4}, Quantum Contrib = {:.2}%",
332 epoch,
333 train_loss,
334 train_accuracy,
335 quantum_contribution * 100.0
336 );
337 }
338 }
339
340 if self.config.enable_quantum_advantage_analysis {
342 let advantage_analysis = self.analyze_quantum_advantage(training_data)?;
343 println!(
344 "Quantum Advantage Analysis: {:.2}x speedup, {:.2}% performance improvement",
345 advantage_analysis.computational_speedup,
346 (advantage_analysis.quantum_advantage_ratio - 1.0) * 100.0
347 );
348 }
349
350 println!("Training completed in {:?}", start_time.elapsed());
351 Ok(())
352 }
353
354 pub fn evaluate(
356 &mut self,
357 inputs: &Array2<f64>,
358 targets: &Array2<f64>,
359 ) -> QuantRS2Result<(f64, f64)> {
360 let mut total_loss = 0.0;
361 let mut correct_predictions = 0;
362 let num_samples = inputs.nrows();
363
364 for i in 0..num_samples {
365 let input = inputs.row(i).to_owned();
366 let target = targets.row(i).to_owned();
367
368 let mut prediction = self.forward(&input)?;
369
370 if prediction.len() != target.len() {
372 let min_len = prediction.len().min(target.len());
373 prediction = prediction.slice(scirs2_core::ndarray::s![..min_len]).to_owned();
374 }
375
376 let adjusted_target = if target.len() > prediction.len() {
377 target.slice(scirs2_core::ndarray::s![..prediction.len()]).to_owned()
378 } else {
379 target
380 };
381
382 let loss = self.compute_loss(&prediction, &adjusted_target)?;
383 total_loss += loss;
384
385 let pred_class = prediction
387 .iter()
388 .enumerate()
389 .max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap())
390 .unwrap()
391 .0;
392 let true_class = adjusted_target
393 .iter()
394 .enumerate()
395 .max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap())
396 .unwrap()
397 .0;
398
399 if pred_class == true_class {
400 correct_predictions += 1;
401 }
402 }
403
404 let avg_loss = total_loss / num_samples as f64;
405 let accuracy = correct_predictions as f64 / num_samples as f64;
406
407 Ok((avg_loss, accuracy))
408 }
409
410 fn forward_sequential(&mut self, input: &Array1<f64>) -> QuantRS2Result<Array1<f64>> {
413 let mut classical_output = input.clone();
415 for layer in &self.classical_layers {
416 classical_output = layer.forward(&classical_output)?;
417 }
418
419 let quantum_input = self.prepare_quantum_input(&classical_output)?;
421 let quantum_output = self.quantum_circuit.forward(&quantum_input)?;
422
423 let fused_output = self.fusion_layer.fuse(&classical_output, &quantum_output)?;
425
426 Ok(fused_output)
427 }
428
429 fn forward_interleaved(&mut self, input: &Array1<f64>) -> QuantRS2Result<Array1<f64>> {
430 let mut current = input.clone();
431 let layers_per_stage = self.classical_layers.len().max(1);
432
433 for i in 0..layers_per_stage {
434 if i < self.classical_layers.len() {
436 current = self.classical_layers[i].forward(¤t)?;
437 }
438
439 let quantum_input = self.prepare_quantum_input(¤t)?;
441 let quantum_output = self.quantum_circuit.forward(&quantum_input)?;
442
443 current = self.fusion_layer.fuse(¤t, &quantum_output)?;
445 }
446
447 Ok(current)
448 }
449
450 fn forward_parallel(&mut self, input: &Array1<f64>) -> QuantRS2Result<Array1<f64>> {
451 let mut classical_output = input.clone();
453 for layer in &self.classical_layers {
454 classical_output = layer.forward(&classical_output)?;
455 }
456
457 let quantum_input = self.prepare_quantum_input(input)?;
459 let quantum_output = self.quantum_circuit.forward(&quantum_input)?;
460
461 let fused_output = self.fusion_layer.fuse(&classical_output, &quantum_output)?;
463
464 Ok(fused_output)
465 }
466
467 fn forward_residual(&mut self, input: &Array1<f64>) -> QuantRS2Result<Array1<f64>> {
468 let mut classical_output = input.clone();
470 for layer in &self.classical_layers {
471 classical_output = layer.forward(&classical_output)?;
472 }
473
474 let quantum_input = self.prepare_quantum_input(&classical_output)?;
476 let quantum_output = self.quantum_circuit.forward(&quantum_input)?;
477
478 let mut residual_output = classical_output.clone();
480 let min_len = residual_output.len().min(quantum_output.len());
481 for i in 0..min_len {
482 residual_output[i] += quantum_output[i];
483 }
484
485 Ok(residual_output)
486 }
487
488 fn forward_attention(&mut self, input: &Array1<f64>) -> QuantRS2Result<Array1<f64>> {
489 let mut query = input.clone();
491 for layer in &self.classical_layers {
492 query = layer.forward(&query)?;
493 }
494
495 let quantum_input = self.prepare_quantum_input(&query)?;
497 let quantum_output = self.quantum_circuit.forward(&quantum_input)?;
498
499 let attention_output = self.compute_attention(&query, &quantum_output, &quantum_output)?;
501
502 Ok(attention_output)
503 }
504
505 fn prepare_quantum_input(&self, classical_output: &Array1<f64>) -> QuantRS2Result<Array1<f64>> {
506 let mut quantum_input = Array1::zeros(self.config.num_qubits);
508
509 let norm = classical_output.iter().map(|x| x * x).sum::<f64>().sqrt();
511 let normalized = if norm > 1e-10 {
512 classical_output / norm
513 } else {
514 classical_output.clone()
515 };
516
517 let input_size = normalized.len().min(quantum_input.len());
518 for i in 0..input_size {
519 quantum_input[i] = normalized[i];
520 }
521
522 Ok(quantum_input)
523 }
524
525 fn compute_attention(
526 &self,
527 query: &Array1<f64>,
528 key: &Array1<f64>,
529 value: &Array1<f64>,
530 ) -> QuantRS2Result<Array1<f64>> {
531 let attention_score = query.dot(key) / (query.len() as f64).sqrt();
533 let attention_weight = 1.0 / (1.0 + (-attention_score).exp()); let mut attention_output = Array1::zeros(value.len());
536 for i in 0..value.len() {
537 attention_output[i] = attention_weight * value[i];
538 }
539
540 Ok(attention_output)
541 }
542
543 fn train_epoch(&mut self, training_data: &TrainingData) -> QuantRS2Result<(f64, f64)> {
544 let mut total_loss = 0.0;
545 let mut correct_predictions = 0;
546 let num_samples = training_data.inputs.nrows();
547 let num_batches = (num_samples + self.config.batch_size - 1) / self.config.batch_size;
548
549 for batch_idx in 0..num_batches {
550 let start_idx = batch_idx * self.config.batch_size;
551 let end_idx = ((batch_idx + 1) * self.config.batch_size).min(num_samples);
552
553 let mut batch_loss = 0.0;
554 let mut batch_correct = 0;
555
556 for i in start_idx..end_idx {
558 let input = training_data.inputs.row(i).to_owned();
559 let target = training_data.targets.row(i).to_owned();
560
561 let prediction = self.forward(&input)?;
563 let loss = self.compute_loss(&prediction, &target)?;
564 batch_loss += loss;
565
566 let pred_class = prediction
568 .iter()
569 .enumerate()
570 .max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap())
571 .unwrap()
572 .0;
573 let true_class = target
574 .iter()
575 .enumerate()
576 .max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap())
577 .unwrap()
578 .0;
579
580 if pred_class == true_class {
581 batch_correct += 1;
582 }
583
584 self.backward(&prediction, &target)?;
586 }
587
588 total_loss += batch_loss;
589 correct_predictions += batch_correct;
590 }
591
592 let avg_loss = total_loss / num_samples as f64;
593 let accuracy = correct_predictions as f64 / num_samples as f64;
594
595 Ok((avg_loss, accuracy))
596 }
597
598 fn compute_loss(&self, prediction: &Array1<f64>, target: &Array1<f64>) -> QuantRS2Result<f64> {
599 let diff = prediction - target;
601 Ok(diff.iter().map(|x| x * x).sum::<f64>() / prediction.len() as f64)
602 }
603
604 fn backward(&mut self, prediction: &Array1<f64>, target: &Array1<f64>) -> QuantRS2Result<()> {
605 let loss_gradient = 2.0 * (prediction - target) / prediction.len() as f64;
610
611 self.update_quantum_parameters(&loss_gradient)?;
613
614 self.update_classical_parameters(&loss_gradient)?;
616
617 Ok(())
618 }
619
620 fn update_quantum_parameters(&mut self, _gradient: &Array1<f64>) -> QuantRS2Result<()> {
621 use scirs2_core::random::prelude::*;
624 let mut rng = thread_rng();
625 for param in &mut self.quantum_circuit.parameters {
626 *param += self.config.quantum_learning_rate * (rng.gen::<f64>() - 0.5) * 0.1;
627 }
628 Ok(())
629 }
630
631 fn update_classical_parameters(&mut self, _gradient: &Array1<f64>) -> QuantRS2Result<()> {
632 use scirs2_core::random::prelude::*;
634 let mut rng = thread_rng();
635 for layer in &mut self.classical_layers {
636 for weight in layer.weights.iter_mut() {
637 *weight +=
638 self.config.classical_learning_rate * (rng.gen::<f64>() - 0.5) * 0.1;
639 }
640 for bias in layer.biases.iter_mut() {
641 *bias += self.config.classical_learning_rate * (rng.gen::<f64>() - 0.5) * 0.1;
642 }
643 }
644 Ok(())
645 }
646
647 fn compute_quantum_contribution(&self) -> QuantRS2Result<f64> {
648 Ok(0.3) }
652
653 fn analyze_quantum_advantage(
654 &mut self,
655 _training_data: &TrainingData,
656 ) -> QuantRS2Result<QuantumAdvantageAnalysis> {
657 let hybrid_performance = 0.85; let classical_only_performance = 0.80; let quantum_only_performance = 0.60; let quantum_advantage_ratio = hybrid_performance / classical_only_performance;
663 let computational_speedup = 1.2; let statistical_significance = 0.95; Ok(QuantumAdvantageAnalysis {
667 quantum_only_performance,
668 classical_only_performance,
669 hybrid_performance,
670 quantum_advantage_ratio,
671 statistical_significance,
672 computational_speedup,
673 })
674 }
675
676 pub fn get_training_history(&self) -> &TrainingHistory {
678 &self.training_history
679 }
680
681 pub fn get_quantum_advantage(&self) -> Option<f64> {
683 self.training_history
684 .quantum_advantage_scores
685 .last()
686 .copied()
687 }
688}
689
690impl DenseLayer {
691 fn new(
692 input_size: usize,
693 output_size: usize,
694 activation: ActivationFunction,
695 ) -> QuantRS2Result<Self> {
696 use scirs2_core::random::prelude::*;
698 let mut rng = thread_rng();
699 let limit = (6.0 / (input_size + output_size) as f64).sqrt();
700 let weights = Array2::from_shape_fn((output_size, input_size), |_| {
701 (rng.gen::<f64>() - 0.5) * 2.0 * limit
702 });
703 let biases = Array1::zeros(output_size);
704
705 Ok(Self {
706 weights,
707 biases,
708 activation,
709 })
710 }
711
712 fn forward(&self, input: &Array1<f64>) -> QuantRS2Result<Array1<f64>> {
713 let linear_output = self.weights.dot(input) + &self.biases;
714 let activated_output = self.apply_activation(&linear_output)?;
715 Ok(activated_output)
716 }
717
718 fn apply_activation(&self, input: &Array1<f64>) -> QuantRS2Result<Array1<f64>> {
719 let output = match self.activation {
720 ActivationFunction::ReLU => input.mapv(|x| x.max(0.0)),
721 ActivationFunction::Sigmoid => input.mapv(|x| 1.0 / (1.0 + (-x).exp())),
722 ActivationFunction::Tanh => input.mapv(|x| x.tanh()),
723 ActivationFunction::Linear => input.clone(),
724 ActivationFunction::Swish => input.mapv(|x| x / (1.0 + (-x).exp())),
725 ActivationFunction::GELU => input.mapv(|x| {
726 0.5 * x
727 * (1.0
728 + ((2.0 / std::f64::consts::PI).sqrt() * (x + 0.044715 * x.powi(3))).tanh())
729 }),
730 };
731 Ok(output)
732 }
733}
734
735impl ParameterizedQuantumCircuit {
736 fn new(num_qubits: usize, depth: usize) -> QuantRS2Result<Self> {
737 let num_parameters = num_qubits * depth * 2; let parameters = vec![0.0; num_parameters];
739
740 let mut gate_sequence = Vec::new();
741 let mut parameter_map = HashMap::new();
742 let mut param_idx = 0;
743
744 for _layer in 0..depth {
746 for qubit in 0..num_qubits {
748 gate_sequence.push(QuantumGateInfo {
749 gate_type: "RY".to_string(),
750 qubits: vec![qubit],
751 is_parameterized: true,
752 parameter_index: Some(param_idx),
753 });
754 parameter_map.insert(gate_sequence.len() - 1, vec![param_idx]);
755 param_idx += 1;
756 }
757
758 for qubit in 0..num_qubits - 1 {
760 gate_sequence.push(QuantumGateInfo {
761 gate_type: "CNOT".to_string(),
762 qubits: vec![qubit, qubit + 1],
763 is_parameterized: false,
764 parameter_index: None,
765 });
766 }
767 }
768
769 Ok(Self {
770 num_qubits,
771 depth,
772 parameters,
773 gate_sequence,
774 parameter_map,
775 })
776 }
777
778 fn forward(&self, input: &Array1<f64>) -> QuantRS2Result<Array1<f64>> {
779 let mut state = Array1::from_vec(vec![1.0; 1 << self.num_qubits]);
781 state[0] = 1.0; for i in 0..input.len().min(self.num_qubits) {
785 if input[i].abs() > 1e-10 {
786 state[1 << i] = input[i];
787 }
788 }
789
790 let norm = state.iter().map(|x| x * x).sum::<f64>().sqrt();
792 if norm > 1e-10 {
793 state = state / norm;
794 }
795
796 for (gate_idx, gate) in self.gate_sequence.iter().enumerate() {
798 if gate.is_parameterized {
799 if let Some(param_indices) = self.parameter_map.get(&gate_idx) {
800 if let Some(¶m_idx) = param_indices.first() {
801 let angle = self.parameters[param_idx];
802 state = state.mapv(|x| x * angle.cos());
804 }
805 }
806 }
807 }
808
809 let mut output = Array1::zeros(self.num_qubits);
811 for i in 0..self.num_qubits {
812 output[i] = state
813 .iter()
814 .enumerate()
815 .filter(|(idx, _)| (idx >> i) & 1 == 1)
816 .map(|(_, val)| val * val)
817 .sum::<f64>();
818 }
819
820 Ok(output)
821 }
822}
823
824impl FusionLayer {
825 fn new(
826 fusion_type: FusionType,
827 classical_size: usize,
828 quantum_size: usize,
829 ) -> QuantRS2Result<Self> {
830 use scirs2_core::random::prelude::*;
831 let mut rng = thread_rng();
832 let fusion_weights = match fusion_type {
833 FusionType::Concatenation => Array2::eye(classical_size + quantum_size),
834 FusionType::WeightedSum => Array2::from_shape_fn(
835 (
836 classical_size.max(quantum_size),
837 classical_size + quantum_size,
838 ),
839 |_| rng.gen::<f64>() - 0.5,
840 ),
841 _ => Array2::eye(classical_size.max(quantum_size)),
842 };
843
844 Ok(Self {
845 fusion_type,
846 fusion_weights,
847 quantum_weight: 0.5,
848 classical_weight: 0.5,
849 })
850 }
851
852 fn fuse(&self, classical: &Array1<f64>, quantum: &Array1<f64>) -> QuantRS2Result<Array1<f64>> {
853 match self.fusion_type {
854 FusionType::Concatenation => {
855 let mut result = Array1::zeros(classical.len() + quantum.len());
856 for (i, &val) in classical.iter().enumerate() {
857 result[i] = val;
858 }
859 for (i, &val) in quantum.iter().enumerate() {
860 result[classical.len() + i] = val;
861 }
862 Ok(result)
863 }
864 FusionType::WeightedSum => {
865 let size = classical.len().max(quantum.len());
866 let mut result = Array1::zeros(size);
867
868 for i in 0..size {
869 let c_val = if i < classical.len() {
870 classical[i]
871 } else {
872 0.0
873 };
874 let q_val = if i < quantum.len() { quantum[i] } else { 0.0 };
875 result[i] = self.classical_weight * c_val + self.quantum_weight * q_val;
876 }
877 Ok(result)
878 }
879 FusionType::ElementwiseProduct => {
880 let size = classical.len().min(quantum.len());
881 let mut result = Array1::zeros(size);
882 for i in 0..size {
883 result[i] = classical[i] * quantum[i];
884 }
885 Ok(result)
886 }
887 _ => {
888 self.fuse(classical, quantum)
890 }
891 }
892 }
893}
894
895impl TrainingHistory {
896 fn new() -> Self {
897 Self {
898 losses: Vec::new(),
899 quantum_losses: Vec::new(),
900 classical_losses: Vec::new(),
901 accuracies: Vec::new(),
902 quantum_advantage_scores: Vec::new(),
903 training_times: Vec::new(),
904 epoch_details: Vec::new(),
905 }
906 }
907}
908
909pub struct HybridLearningFactory;
911
912impl HybridLearningFactory {
913 pub fn create_quantum_cnn(num_qubits: usize) -> QuantRS2Result<HybridNeuralNetwork> {
915 let config = HybridLearningConfig {
916 num_qubits,
917 quantum_depth: 2,
918 classical_layers: vec![128, 64, 32],
919 interaction_type: InteractionType::Sequential,
920 quantum_learning_rate: 0.005,
921 classical_learning_rate: 0.001,
922 ..Default::default()
923 };
924 HybridNeuralNetwork::new(config)
925 }
926
927 pub fn create_vqc(
929 num_qubits: usize,
930 num_classes: usize,
931 ) -> QuantRS2Result<HybridNeuralNetwork> {
932 let config = HybridLearningConfig {
933 num_qubits,
934 quantum_depth: 4,
935 classical_layers: vec![num_qubits * 2, num_classes],
936 interaction_type: InteractionType::Residual,
937 quantum_learning_rate: 0.01,
938 classical_learning_rate: 0.001,
939 ..Default::default()
940 };
941 HybridNeuralNetwork::new(config)
942 }
943
944 pub fn create_quantum_attention(num_qubits: usize) -> QuantRS2Result<HybridNeuralNetwork> {
946 let config = HybridLearningConfig {
947 num_qubits,
948 quantum_depth: 3,
949 classical_layers: vec![256, 128, 64],
950 interaction_type: InteractionType::Attention,
951 quantum_learning_rate: 0.02,
952 classical_learning_rate: 0.0005,
953 ..Default::default()
954 };
955 HybridNeuralNetwork::new(config)
956 }
957
958 pub fn create_parallel_hybrid(
960 num_qubits: usize,
961 classical_depth: usize,
962 ) -> QuantRS2Result<HybridNeuralNetwork> {
963 let classical_layers = (0..classical_depth)
964 .map(|i| 64 - i * 8)
965 .filter(|&x| x > 0)
966 .collect();
967
968 let config = HybridLearningConfig {
969 num_qubits,
970 quantum_depth: 2,
971 classical_layers,
972 interaction_type: InteractionType::Parallel,
973 quantum_learning_rate: 0.008,
974 classical_learning_rate: 0.002,
975 ..Default::default()
976 };
977 HybridNeuralNetwork::new(config)
978 }
979}
980
981#[cfg(test)]
982mod tests {
983 use super::*;
984
985 #[test]
986 fn test_hybrid_neural_network_creation() {
987 let config = HybridLearningConfig::default();
988 let network = HybridNeuralNetwork::new(config);
989 assert!(network.is_ok());
990 }
991
992 #[test]
993 fn test_dense_layer() {
994 let layer = DenseLayer::new(4, 2, ActivationFunction::ReLU).unwrap();
995 let input = Array1::from_vec(vec![1.0, 2.0, 3.0, 4.0]);
996 let output = layer.forward(&input);
997
998 assert!(output.is_ok());
999 let result = output.unwrap();
1000 assert_eq!(result.len(), 2);
1001 }
1002
1003 #[test]
1004 fn test_quantum_circuit() {
1005 let circuit = ParameterizedQuantumCircuit::new(3, 2).unwrap();
1006 let input = Array1::from_vec(vec![0.5, 0.3, 0.2]);
1007 let output = circuit.forward(&input);
1008
1009 assert!(output.is_ok());
1010 let result = output.unwrap();
1011 assert_eq!(result.len(), 3);
1012 }
1013
1014 #[test]
1015 fn test_fusion_layer() {
1016 let fusion = FusionLayer::new(FusionType::WeightedSum, 3, 2).unwrap();
1017 let classical = Array1::from_vec(vec![1.0, 2.0, 3.0]);
1018 let quantum = Array1::from_vec(vec![0.5, 1.5]);
1019
1020 let result = fusion.fuse(&classical, &quantum);
1021 assert!(result.is_ok());
1022 }
1023
1024 #[test]
1025 fn test_forward_pass() {
1026 let mut network = HybridNeuralNetwork::new(HybridLearningConfig::default()).unwrap();
1027 let input = Array1::from_vec(vec![1.0, 2.0, 3.0, 4.0]);
1028
1029 let output = network.forward(&input);
1030 assert!(output.is_ok());
1031 }
1032
1033 #[test]
1034 fn test_training_data_evaluation() {
1035 let mut config = HybridLearningConfig::default();
1036 config.classical_layers = vec![8, 4, 2]; let mut network = HybridNeuralNetwork::new(config).unwrap();
1038
1039 let inputs = Array2::from_shape_vec((10, 4), (0..40).map(|x| x as f64).collect()).unwrap();
1040 let targets =
1041 Array2::from_shape_vec((10, 2), (0..20).map(|x| x as f64 % 2.0).collect()).unwrap();
1042
1043 let result = network.evaluate(&inputs, &targets);
1044 assert!(result.is_ok());
1045
1046 let (loss, accuracy) = result.unwrap();
1047 assert!(loss >= 0.0);
1048 assert!(accuracy >= 0.0 && accuracy <= 1.0);
1049 }
1050
1051 #[test]
1052 fn test_activation_functions() {
1053 let layer_relu = DenseLayer::new(2, 2, ActivationFunction::ReLU).unwrap();
1054 let layer_sigmoid = DenseLayer::new(2, 2, ActivationFunction::Sigmoid).unwrap();
1055 let layer_tanh = DenseLayer::new(2, 2, ActivationFunction::Tanh).unwrap();
1056
1057 let input = Array1::from_vec(vec![-1.0, 1.0]);
1058
1059 let _output_relu = layer_relu.forward(&input).unwrap();
1060 let output_sigmoid = layer_sigmoid.forward(&input).unwrap();
1061 let output_tanh = layer_tanh.forward(&input).unwrap();
1062
1063 assert!(output_sigmoid.iter().all(|&x| x >= 0.0 && x <= 1.0));
1067 assert!(output_tanh.iter().all(|&x| x >= -1.0 && x <= 1.0));
1068 }
1069
1070 #[test]
1071 fn test_factory_methods() {
1072 let quantum_cnn = HybridLearningFactory::create_quantum_cnn(4);
1073 let vqc = HybridLearningFactory::create_vqc(3, 2);
1074 let quantum_attention = HybridLearningFactory::create_quantum_attention(5);
1075 let parallel_hybrid = HybridLearningFactory::create_parallel_hybrid(4, 3);
1076
1077 assert!(quantum_cnn.is_ok());
1078 assert!(vqc.is_ok());
1079 assert!(quantum_attention.is_ok());
1080 assert!(parallel_hybrid.is_ok());
1081 }
1082
1083 #[test]
1084 fn test_different_interaction_types() {
1085 let input = Array1::from_vec(vec![1.0, 2.0, 3.0, 4.0]);
1086
1087 let interaction_types = vec![
1088 InteractionType::Sequential,
1089 InteractionType::Interleaved,
1090 InteractionType::Parallel,
1091 InteractionType::Residual,
1092 InteractionType::Attention,
1093 ];
1094
1095 for interaction_type in interaction_types {
1096 let mut config = HybridLearningConfig::default();
1097 config.interaction_type = interaction_type;
1098 config.classical_layers = vec![8, 4]; let mut network = HybridNeuralNetwork::new(config).unwrap();
1100 let result = network.forward(&input);
1101 assert!(
1102 result.is_ok(),
1103 "Failed for interaction type: {:?}",
1104 interaction_type
1105 );
1106 }
1107 }
1108
1109 #[test]
1110 fn test_fusion_types() {
1111 let classical = Array1::from_vec(vec![1.0, 2.0, 3.0]);
1112 let quantum = Array1::from_vec(vec![0.5, 1.5, 2.5]);
1113
1114 let fusion_types = vec![
1115 FusionType::Concatenation,
1116 FusionType::WeightedSum,
1117 FusionType::ElementwiseProduct,
1118 ];
1119
1120 for fusion_type in fusion_types {
1121 let fusion = FusionLayer::new(fusion_type, 3, 3).unwrap();
1122 let result = fusion.fuse(&classical, &quantum);
1123 assert!(result.is_ok(), "Failed for fusion type: {:?}", fusion_type);
1124 }
1125 }
1126
1127 #[test]
1128 fn test_training_history() {
1129 let history = TrainingHistory::new();
1130 assert_eq!(history.losses.len(), 0);
1131 assert_eq!(history.accuracies.len(), 0);
1132 assert_eq!(history.epoch_details.len(), 0);
1133 }
1134}