quantrs2_core/
scirs2_resource_estimator_enhanced.rs

1//! Advanced Quantum Resource Estimator with Enhanced SciRS2 Complexity Analysis
2//!
3//! This module provides state-of-the-art quantum resource estimation with ML-based
4//! predictions, hardware-specific optimization, cost analysis, and comprehensive
5//! resource tracking powered by SciRS2.
6
7use crate::error::QuantRS2Error;
8use crate::gate_translation::GateType;
9use crate::resource_estimator::{
10    ErrorCorrectionCode, EstimationMode, HardwarePlatform, QuantumGate, ResourceEstimationConfig,
11};
12use num_complex::Complex64;
13// use scirs2_core::parallel_ops::*;
14use crate::parallel_ops_stubs::*;
15// use scirs2_core::memory::BufferPool;
16use crate::buffer_pool::BufferPool;
17use crate::platform::PlatformCapabilities;
18use ndarray::{Array1, Array2};
19use serde::{Deserialize, Serialize};
20use std::collections::{BTreeMap, HashMap, HashSet, VecDeque};
21use std::fmt;
22use std::sync::{Arc, Mutex};
23
24/// Enhanced resource estimation configuration
25#[derive(Debug, Clone, Serialize, Deserialize)]
26pub struct EnhancedResourceConfig {
27    /// Base resource estimation configuration
28    pub base_config: ResourceEstimationConfig,
29
30    /// Enable ML-based resource prediction
31    pub enable_ml_prediction: bool,
32
33    /// Enable cost analysis for cloud platforms
34    pub enable_cost_analysis: bool,
35
36    /// Enable resource optimization strategies
37    pub enable_optimization_strategies: bool,
38
39    /// Enable comparative analysis
40    pub enable_comparative_analysis: bool,
41
42    /// Enable real-time resource tracking
43    pub enable_realtime_tracking: bool,
44
45    /// Enable visual resource representations
46    pub enable_visual_representation: bool,
47
48    /// Enable hardware-specific recommendations
49    pub enable_hardware_recommendations: bool,
50
51    /// Enable resource scaling predictions
52    pub enable_scaling_predictions: bool,
53
54    /// Cloud platforms for cost estimation
55    pub cloud_platforms: Vec<CloudPlatform>,
56
57    /// Optimization objectives
58    pub optimization_objectives: Vec<OptimizationObjective>,
59
60    /// Analysis depth level
61    pub analysis_depth: AnalysisDepth,
62
63    /// Custom resource constraints
64    pub custom_constraints: Vec<ResourceConstraint>,
65
66    /// Export formats for reports
67    pub export_formats: Vec<ReportFormat>,
68}
69
70impl Default for EnhancedResourceConfig {
71    fn default() -> Self {
72        Self {
73            base_config: ResourceEstimationConfig::default(),
74            enable_ml_prediction: true,
75            enable_cost_analysis: true,
76            enable_optimization_strategies: true,
77            enable_comparative_analysis: true,
78            enable_realtime_tracking: true,
79            enable_visual_representation: true,
80            enable_hardware_recommendations: true,
81            enable_scaling_predictions: true,
82            cloud_platforms: vec![
83                CloudPlatform::IBMQ,
84                CloudPlatform::AzureQuantum,
85                CloudPlatform::AmazonBraket,
86            ],
87            optimization_objectives: vec![
88                OptimizationObjective::MinimizeTime,
89                OptimizationObjective::MinimizeQubits,
90                OptimizationObjective::MinimizeCost,
91            ],
92            analysis_depth: AnalysisDepth::Comprehensive,
93            custom_constraints: Vec::new(),
94            export_formats: vec![ReportFormat::JSON, ReportFormat::HTML, ReportFormat::PDF],
95        }
96    }
97}
98
99/// Cloud platforms for cost estimation
100#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
101pub enum CloudPlatform {
102    IBMQ,
103    AzureQuantum,
104    AmazonBraket,
105    GoogleQuantumAI,
106    IonQ,
107    Rigetti,
108}
109
110/// Optimization objectives
111#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
112pub enum OptimizationObjective {
113    MinimizeTime,
114    MinimizeQubits,
115    MinimizeCost,
116    MaximizeFidelity,
117    MinimizeDepth,
118    BalancedOptimization,
119}
120
121/// Analysis depth levels
122#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
123pub enum AnalysisDepth {
124    Basic,
125    Standard,
126    Detailed,
127    Comprehensive,
128}
129
130/// Resource constraints
131#[derive(Debug, Clone, Serialize, Deserialize)]
132pub struct ResourceConstraint {
133    pub constraint_type: ConstraintType,
134    pub value: f64,
135    pub priority: ConstraintPriority,
136}
137
138/// Constraint types
139#[derive(Debug, Clone, Serialize, Deserialize)]
140pub enum ConstraintType {
141    MaxQubits(usize),
142    MaxTime(f64),
143    MaxCost(f64),
144    MinFidelity(f64),
145    MaxDepth(usize),
146}
147
148/// Constraint priorities
149#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
150pub enum ConstraintPriority {
151    Hard,
152    Soft,
153    Preference,
154}
155
156/// Report export formats
157#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
158pub enum ReportFormat {
159    JSON,
160    YAML,
161    HTML,
162    PDF,
163    Markdown,
164    LaTeX,
165}
166
167/// Enhanced quantum resource estimator
168pub struct EnhancedResourceEstimator {
169    config: EnhancedResourceConfig,
170    ml_predictor: MLResourcePredictor,
171    cost_analyzer: CostAnalyzer,
172    optimization_engine: OptimizationEngine,
173    comparative_analyzer: ComparativeAnalyzer,
174    realtime_tracker: RealtimeResourceTracker,
175    visual_generator: VisualResourceGenerator,
176    hardware_recommender: HardwareRecommender,
177    scaling_predictor: ScalingPredictor,
178    platform_capabilities: PlatformCapabilities,
179}
180
181impl EnhancedResourceEstimator {
182    /// Create a new enhanced resource estimator
183    pub fn new() -> Self {
184        let config = EnhancedResourceConfig::default();
185        Self::with_config(config)
186    }
187
188    /// Create estimator with custom configuration
189    pub fn with_config(config: EnhancedResourceConfig) -> Self {
190        let platform_capabilities = PlatformCapabilities::detect();
191
192        Self {
193            config,
194            ml_predictor: MLResourcePredictor::new(),
195            cost_analyzer: CostAnalyzer::new(),
196            optimization_engine: OptimizationEngine::new(),
197            comparative_analyzer: ComparativeAnalyzer::new(),
198            realtime_tracker: RealtimeResourceTracker::new(),
199            visual_generator: VisualResourceGenerator::new(),
200            hardware_recommender: HardwareRecommender::new(),
201            scaling_predictor: ScalingPredictor::new(),
202            platform_capabilities,
203        }
204    }
205
206    /// Perform enhanced resource estimation
207    pub fn estimate_resources_enhanced(
208        &self,
209        circuit: &[QuantumGate],
210        num_qubits: usize,
211        options: EstimationOptions,
212    ) -> Result<EnhancedResourceEstimate, QuantRS2Error> {
213        let start_time = std::time::Instant::now();
214
215        // Basic resource analysis
216        let basic_analysis = self.perform_basic_analysis(circuit, num_qubits)?;
217
218        // ML-based predictions
219        let ml_predictions = if self.config.enable_ml_prediction {
220            Some(
221                self.ml_predictor
222                    .predict_resources(circuit, &basic_analysis)?,
223            )
224        } else {
225            None
226        };
227
228        // Cost analysis
229        let cost_analysis = if self.config.enable_cost_analysis {
230            Some(
231                self.cost_analyzer
232                    .analyze_costs(circuit, &basic_analysis, &options)?,
233            )
234        } else {
235            None
236        };
237
238        // Optimization strategies
239        let optimization_strategies = if self.config.enable_optimization_strategies {
240            Some(self.optimization_engine.generate_strategies(
241                circuit,
242                &basic_analysis,
243                &self.config.optimization_objectives,
244            )?)
245        } else {
246            None
247        };
248
249        // Comparative analysis
250        let comparative_results = if self.config.enable_comparative_analysis {
251            Some(
252                self.comparative_analyzer
253                    .compare_approaches(circuit, &basic_analysis)?,
254            )
255        } else {
256            None
257        };
258
259        // Hardware recommendations
260        let hardware_recommendations = if self.config.enable_hardware_recommendations {
261            Some(self.hardware_recommender.recommend_hardware(
262                circuit,
263                &basic_analysis,
264                &options,
265            )?)
266        } else {
267            None
268        };
269
270        // Scaling predictions
271        let scaling_predictions = if self.config.enable_scaling_predictions {
272            Some(
273                self.scaling_predictor
274                    .predict_scaling(circuit, &basic_analysis)?,
275            )
276        } else {
277            None
278        };
279
280        // Visual representations
281        let visual_representations = if self.config.enable_visual_representation {
282            self.visual_generator
283                .generate_visuals(&basic_analysis, &ml_predictions)?
284        } else {
285            HashMap::new()
286        };
287
288        // Resource tracking data
289        let tracking_data = if self.config.enable_realtime_tracking {
290            Some(self.realtime_tracker.get_tracking_data()?)
291        } else {
292            None
293        };
294
295        // Calculate resource scores
296        let resource_scores = self.calculate_resource_scores(&basic_analysis, &ml_predictions);
297
298        // Generate comprehensive recommendations
299        let recommendations = self.generate_recommendations(
300            &basic_analysis,
301            &ml_predictions,
302            &cost_analysis,
303            &optimization_strategies,
304        )?;
305
306        Ok(EnhancedResourceEstimate {
307            basic_resources: basic_analysis,
308            ml_predictions,
309            cost_analysis,
310            optimization_strategies,
311            comparative_results,
312            hardware_recommendations,
313            scaling_predictions,
314            visual_representations,
315            tracking_data,
316            resource_scores,
317            recommendations,
318            estimation_time: start_time.elapsed(),
319            platform_optimizations: self.identify_platform_optimizations(),
320        })
321    }
322
323    /// Perform basic resource analysis
324    fn perform_basic_analysis(
325        &self,
326        circuit: &[QuantumGate],
327        num_qubits: usize,
328    ) -> Result<BasicResourceAnalysis, QuantRS2Error> {
329        // Gate statistics
330        let gate_stats = self.analyze_gate_statistics(circuit)?;
331
332        // Circuit topology
333        let topology = self.analyze_circuit_topology(circuit, num_qubits)?;
334
335        // Resource requirements
336        let requirements = self.calculate_resource_requirements(&gate_stats, &topology)?;
337
338        // Complexity metrics
339        let complexity = self.calculate_complexity_metrics(circuit, &topology)?;
340
341        Ok(BasicResourceAnalysis {
342            gate_statistics: gate_stats,
343            circuit_topology: topology,
344            resource_requirements: requirements,
345            complexity_metrics: complexity,
346            num_qubits,
347            circuit_size: circuit.len(),
348        })
349    }
350
351    /// Analyze gate statistics
352    fn analyze_gate_statistics(
353        &self,
354        circuit: &[QuantumGate],
355    ) -> Result<GateStatistics, QuantRS2Error> {
356        let mut gate_counts = HashMap::new();
357        let mut gate_depths = HashMap::new();
358        let mut gate_patterns = Vec::new();
359
360        // Parallel gate counting for large circuits
361        let cpu_count = PlatformCapabilities::detect().cpu.logical_cores;
362        if circuit.len() > 1000 && cpu_count > 1 {
363            let chunk_size = circuit.len() / cpu_count;
364            let counts: Vec<HashMap<String, usize>> = circuit
365                .par_chunks(chunk_size)
366                .map(|chunk| {
367                    let mut local_counts = HashMap::new();
368                    for gate in chunk {
369                        let gate_type = format!("{:?}", gate.gate_type());
370                        *local_counts.entry(gate_type).or_insert(0) += 1;
371                    }
372                    local_counts
373                })
374                .collect();
375
376            // Merge results
377            for local_count in counts {
378                for (gate_type, count) in local_count {
379                    *gate_counts.entry(gate_type).or_insert(0) += count;
380                }
381            }
382        } else {
383            // Sequential processing
384            for gate in circuit {
385                let gate_type = format!("{:?}", gate.gate_type());
386                *gate_counts.entry(gate_type).or_insert(0) += 1;
387            }
388        }
389
390        // Analyze gate patterns
391        gate_patterns = self.detect_gate_patterns(circuit)?;
392
393        // Calculate gate depths
394        gate_depths = self.calculate_gate_depths(circuit)?;
395
396        Ok(GateStatistics {
397            total_gates: circuit.len(),
398            gate_counts,
399            gate_depths,
400            gate_patterns,
401            clifford_count: self.count_clifford_gates(circuit),
402            non_clifford_count: self.count_non_clifford_gates(circuit),
403            two_qubit_count: self.count_two_qubit_gates(circuit),
404            multi_qubit_count: self.count_multi_qubit_gates(circuit),
405        })
406    }
407
408    /// Detect common gate patterns
409    fn detect_gate_patterns(
410        &self,
411        circuit: &[QuantumGate],
412    ) -> Result<Vec<GatePattern>, QuantRS2Error> {
413        let mut patterns = Vec::new();
414
415        // Common patterns to detect
416        let pattern_checks = vec![
417            ("QFT", self.detect_qft_pattern(circuit)?),
418            ("Grover", self.detect_grover_pattern(circuit)?),
419            ("QAOA", self.detect_qaoa_pattern(circuit)?),
420            ("VQE", self.detect_vqe_pattern(circuit)?),
421            ("Entanglement", self.detect_entanglement_pattern(circuit)?),
422        ];
423
424        for (name, instances_opt) in pattern_checks {
425            if let Some(instances) = instances_opt {
426                patterns.push(GatePattern {
427                    pattern_type: name.to_string(),
428                    instances,
429                    resource_impact: self.estimate_pattern_impact(name),
430                });
431            }
432        }
433
434        Ok(patterns)
435    }
436
437    /// Detect QFT pattern
438    fn detect_qft_pattern(
439        &self,
440        circuit: &[QuantumGate],
441    ) -> Result<Option<Vec<PatternInstance>>, QuantRS2Error> {
442        // Simplified QFT detection
443        let mut instances = Vec::new();
444
445        // Look for Hadamard followed by controlled phase rotations
446        for i in 0..circuit.len() {
447            if matches!(circuit[i].gate_type(), GateType::H) {
448                // Check for subsequent controlled rotations
449                let mut has_rotations = false;
450                for j in i + 1..circuit.len().min(i + 10) {
451                    if matches!(circuit[j].gate_type(), GateType::Phase(_) | GateType::Rz(_)) {
452                        has_rotations = true;
453                        break;
454                    }
455                }
456
457                if has_rotations {
458                    instances.push(PatternInstance {
459                        start_index: i,
460                        end_index: i + 10,
461                        confidence: 0.7,
462                    });
463                }
464            }
465        }
466
467        if instances.is_empty() {
468            Ok(None)
469        } else {
470            Ok(Some(instances))
471        }
472    }
473
474    /// Detect Grover pattern
475    fn detect_grover_pattern(
476        &self,
477        _circuit: &[QuantumGate],
478    ) -> Result<Option<Vec<PatternInstance>>, QuantRS2Error> {
479        // Placeholder for Grover detection
480        Ok(None)
481    }
482
483    /// Detect QAOA pattern
484    fn detect_qaoa_pattern(
485        &self,
486        _circuit: &[QuantumGate],
487    ) -> Result<Option<Vec<PatternInstance>>, QuantRS2Error> {
488        // Placeholder for QAOA detection
489        Ok(None)
490    }
491
492    /// Detect VQE pattern
493    fn detect_vqe_pattern(
494        &self,
495        _circuit: &[QuantumGate],
496    ) -> Result<Option<Vec<PatternInstance>>, QuantRS2Error> {
497        // Placeholder for VQE detection
498        Ok(None)
499    }
500
501    /// Detect entanglement pattern
502    fn detect_entanglement_pattern(
503        &self,
504        circuit: &[QuantumGate],
505    ) -> Result<Option<Vec<PatternInstance>>, QuantRS2Error> {
506        let mut instances = Vec::new();
507
508        // Look for sequences of CNOT gates
509        for i in 0..circuit.len() {
510            if matches!(circuit[i].gate_type(), GateType::CNOT | GateType::CZ) {
511                let mut j = i + 1;
512                while j < circuit.len()
513                    && matches!(circuit[j].gate_type(), GateType::CNOT | GateType::CZ)
514                {
515                    j += 1;
516                }
517
518                if j - i >= 3 {
519                    instances.push(PatternInstance {
520                        start_index: i,
521                        end_index: j,
522                        confidence: 0.9,
523                    });
524                }
525            }
526        }
527
528        if instances.is_empty() {
529            Ok(None)
530        } else {
531            Ok(Some(instances))
532        }
533    }
534
535    /// Estimate pattern resource impact
536    fn estimate_pattern_impact(&self, pattern_name: &str) -> f64 {
537        match pattern_name {
538            "QFT" => 2.5, // QFT has significant resource requirements
539            "Grover" => 1.8,
540            "QAOA" => 2.0,
541            "VQE" => 2.2,
542            "Entanglement" => 1.5,
543            _ => 1.0,
544        }
545    }
546
547    /// Calculate gate depths
548    fn calculate_gate_depths(
549        &self,
550        circuit: &[QuantumGate],
551    ) -> Result<HashMap<String, usize>, QuantRS2Error> {
552        let mut depths = HashMap::new();
553        let mut qubit_depths = HashMap::new();
554
555        for gate in circuit {
556            let max_depth = gate
557                .target_qubits()
558                .iter()
559                .chain(gate.control_qubits().unwrap_or(&[]).iter())
560                .map(|&q| qubit_depths.get(&q).copied().unwrap_or(0))
561                .max()
562                .unwrap_or(0);
563
564            let new_depth = max_depth + 1;
565
566            for &qubit in gate.target_qubits() {
567                qubit_depths.insert(qubit, new_depth);
568            }
569            for &qubit in gate.control_qubits().unwrap_or(&[]) {
570                qubit_depths.insert(qubit, new_depth);
571            }
572
573            let gate_type = format!("{:?}", gate.gate_type());
574            depths.insert(gate_type, new_depth);
575        }
576
577        Ok(depths)
578    }
579
580    /// Count Clifford gates
581    fn count_clifford_gates(&self, circuit: &[QuantumGate]) -> usize {
582        circuit
583            .iter()
584            .filter(|gate| {
585                matches!(
586                    gate.gate_type(),
587                    GateType::X
588                        | GateType::Y
589                        | GateType::Z
590                        | GateType::H
591                        | GateType::S
592                        | GateType::CNOT
593                        | GateType::CZ
594                )
595            })
596            .count()
597    }
598
599    /// Count non-Clifford gates
600    fn count_non_clifford_gates(&self, circuit: &[QuantumGate]) -> usize {
601        circuit
602            .iter()
603            .filter(|gate| {
604                matches!(
605                    gate.gate_type(),
606                    GateType::T
607                        | GateType::Phase(_)
608                        | GateType::Rx(_)
609                        | GateType::Ry(_)
610                        | GateType::Rz(_)
611                )
612            })
613            .count()
614    }
615
616    /// Count two-qubit gates
617    fn count_two_qubit_gates(&self, circuit: &[QuantumGate]) -> usize {
618        circuit
619            .iter()
620            .filter(|gate| gate.target_qubits().len() == 2)
621            .count()
622    }
623
624    /// Count multi-qubit gates (3+ qubits)
625    fn count_multi_qubit_gates(&self, circuit: &[QuantumGate]) -> usize {
626        circuit
627            .iter()
628            .filter(|gate| gate.target_qubits().len() > 2)
629            .count()
630    }
631
632    /// Analyze circuit topology
633    fn analyze_circuit_topology(
634        &self,
635        circuit: &[QuantumGate],
636        num_qubits: usize,
637    ) -> Result<CircuitTopology, QuantRS2Error> {
638        // Build connectivity graph
639        let mut connectivity = vec![vec![0; num_qubits]; num_qubits];
640        let mut interaction_count = 0;
641
642        for gate in circuit {
643            if gate.target_qubits().len() >= 2 {
644                let q1 = gate.target_qubits()[0];
645                let q2 = gate.target_qubits()[1];
646                connectivity[q1][q2] += 1;
647                connectivity[q2][q1] += 1;
648                interaction_count += 1;
649            }
650        }
651
652        // Calculate topology metrics
653        let connectivity_density = if num_qubits > 1 {
654            interaction_count as f64 / ((num_qubits * (num_qubits - 1)) / 2) as f64
655        } else {
656            0.0
657        };
658
659        let max_connections = connectivity
660            .iter()
661            .map(|row| row.iter().filter(|&&x| x > 0).count())
662            .max()
663            .unwrap_or(0);
664
665        let critical_qubits = self.identify_critical_qubits(&connectivity)?;
666
667        Ok(CircuitTopology {
668            num_qubits,
669            connectivity_matrix: connectivity.clone(),
670            connectivity_density,
671            max_connections,
672            critical_qubits,
673            topology_type: self.classify_topology(&connectivity, connectivity_density),
674        })
675    }
676
677    /// Identify critical qubits with high connectivity
678    fn identify_critical_qubits(
679        &self,
680        connectivity: &[Vec<usize>],
681    ) -> Result<Vec<usize>, QuantRS2Error> {
682        let mut critical = Vec::new();
683        let avg_connections: f64 = connectivity
684            .iter()
685            .map(|row| row.iter().filter(|&&x| x > 0).count() as f64)
686            .sum::<f64>()
687            / connectivity.len() as f64;
688
689        for (i, row) in connectivity.iter().enumerate() {
690            let connections = row.iter().filter(|&&x| x > 0).count() as f64;
691            if connections > avg_connections * 1.5 {
692                critical.push(i);
693            }
694        }
695
696        Ok(critical)
697    }
698
699    /// Classify topology type
700    fn classify_topology(&self, _connectivity: &[Vec<usize>], density: f64) -> TopologyType {
701        if density < 0.1 {
702            TopologyType::Sparse
703        } else if density < 0.3 {
704            TopologyType::Regular
705        } else if density < 0.6 {
706            TopologyType::Dense
707        } else {
708            TopologyType::AllToAll
709        }
710    }
711
712    /// Calculate resource requirements
713    fn calculate_resource_requirements(
714        &self,
715        gate_stats: &GateStatistics,
716        topology: &CircuitTopology,
717    ) -> Result<ResourceRequirements, QuantRS2Error> {
718        // Physical qubits estimation
719        let code_distance = self.estimate_code_distance()?;
720        let physical_qubits = self.estimate_physical_qubits(topology.num_qubits, code_distance)?;
721
722        // Time estimation
723        let execution_time = self.estimate_execution_time(gate_stats)?;
724
725        // Memory estimation
726        let memory_requirements =
727            self.estimate_memory_requirements(topology.num_qubits, gate_stats)?;
728
729        // Magic states
730        let magic_states = self.estimate_magic_states(gate_stats)?;
731
732        Ok(ResourceRequirements {
733            logical_qubits: topology.num_qubits,
734            physical_qubits,
735            code_distance,
736            execution_time,
737            memory_requirements,
738            magic_states,
739            error_budget: self.calculate_error_budget()?,
740        })
741    }
742
743    /// Estimate code distance
744    fn estimate_code_distance(&self) -> Result<usize, QuantRS2Error> {
745        let p = self.config.base_config.physical_error_rate;
746        let p_target = self.config.base_config.target_logical_error_rate;
747
748        let threshold = 0.01; // Simplified threshold
749        if p > threshold {
750            return Err(QuantRS2Error::InvalidInput(
751                "Physical error rate too high".into(),
752            ));
753        }
754
755        let distance = ((-p_target.log10()) / (-p.log10())).ceil() as usize;
756        Ok(distance.max(3))
757    }
758
759    /// Estimate physical qubits
760    fn estimate_physical_qubits(
761        &self,
762        logical_qubits: usize,
763        code_distance: usize,
764    ) -> Result<usize, QuantRS2Error> {
765        let qubits_per_logical = match self.config.base_config.error_correction_code {
766            ErrorCorrectionCode::SurfaceCode => 2 * code_distance * code_distance,
767            ErrorCorrectionCode::ColorCode => 3 * code_distance * code_distance,
768            _ => code_distance * code_distance,
769        };
770
771        Ok(logical_qubits * qubits_per_logical)
772    }
773
774    /// Estimate execution time
775    fn estimate_execution_time(&self, gate_stats: &GateStatistics) -> Result<f64, QuantRS2Error> {
776        let mut total_time = 0.0;
777
778        // Gate execution times (hardware-dependent)
779        let gate_times = self.get_gate_times()?;
780
781        for (gate_type, count) in &gate_stats.gate_counts {
782            let time = gate_times.get(gate_type).copied().unwrap_or(1e-6);
783            total_time += time * (*count as f64);
784        }
785
786        // Add error correction overhead
787        total_time *= 1.5;
788
789        Ok(total_time)
790    }
791
792    /// Get gate execution times
793    fn get_gate_times(&self) -> Result<HashMap<String, f64>, QuantRS2Error> {
794        let mut times = HashMap::new();
795
796        match self.config.base_config.hardware_platform {
797            HardwarePlatform::Superconducting => {
798                times.insert("X".to_string(), 20e-9);
799                times.insert("Y".to_string(), 20e-9);
800                times.insert("Z".to_string(), 1e-9);
801                times.insert("H".to_string(), 20e-9);
802                times.insert("CNOT".to_string(), 40e-9);
803                times.insert("T".to_string(), 20e-9);
804            }
805            HardwarePlatform::TrappedIon => {
806                times.insert("X".to_string(), 10e-6);
807                times.insert("Y".to_string(), 10e-6);
808                times.insert("Z".to_string(), 1e-6);
809                times.insert("H".to_string(), 10e-6);
810                times.insert("CNOT".to_string(), 100e-6);
811                times.insert("T".to_string(), 10e-6);
812            }
813            _ => {
814                // Default times
815                times.insert("X".to_string(), 1e-6);
816                times.insert("Y".to_string(), 1e-6);
817                times.insert("Z".to_string(), 1e-6);
818                times.insert("H".to_string(), 1e-6);
819                times.insert("CNOT".to_string(), 2e-6);
820                times.insert("T".to_string(), 1e-6);
821            }
822        }
823
824        Ok(times)
825    }
826
827    /// Estimate memory requirements
828    fn estimate_memory_requirements(
829        &self,
830        num_qubits: usize,
831        gate_stats: &GateStatistics,
832    ) -> Result<MemoryRequirements, QuantRS2Error> {
833        let state_vector_size = (1 << num_qubits) * 16; // Complex64 = 16 bytes
834        let gate_memory = gate_stats.total_gates * 64; // Estimated gate storage
835        let workspace = state_vector_size / 2; // Working memory
836
837        Ok(MemoryRequirements {
838            state_vector_memory: state_vector_size,
839            gate_storage_memory: gate_memory,
840            workspace_memory: workspace,
841            total_memory: state_vector_size + gate_memory + workspace,
842            memory_bandwidth: self.estimate_memory_bandwidth(gate_stats)?,
843        })
844    }
845
846    /// Estimate memory bandwidth requirements
847    fn estimate_memory_bandwidth(&self, gate_stats: &GateStatistics) -> Result<f64, QuantRS2Error> {
848        // Simplified bandwidth estimation (GB/s)
849        let ops_per_second = 1e9; // 1 GHz operation rate
850        let bytes_per_op = 32.0; // Average bytes moved per operation
851
852        Ok(ops_per_second * bytes_per_op / 1e9)
853    }
854
855    /// Estimate magic states
856    fn estimate_magic_states(&self, gate_stats: &GateStatistics) -> Result<usize, QuantRS2Error> {
857        let t_gates = gate_stats.non_clifford_count;
858
859        // Conservative estimate including distillation overhead
860        let overhead = match self.config.base_config.estimation_mode {
861            EstimationMode::Conservative => 15,
862            EstimationMode::Optimistic => 10,
863            EstimationMode::Realistic => 12,
864        };
865
866        Ok(t_gates * overhead)
867    }
868
869    /// Calculate error budget
870    fn calculate_error_budget(&self) -> Result<ErrorBudget, QuantRS2Error> {
871        let total = self.config.base_config.target_logical_error_rate;
872
873        Ok(ErrorBudget {
874            total_budget: total,
875            gate_errors: total * 0.4,
876            measurement_errors: total * 0.2,
877            idle_errors: total * 0.2,
878            crosstalk_errors: total * 0.1,
879            readout_errors: total * 0.1,
880        })
881    }
882
883    /// Calculate complexity metrics
884    fn calculate_complexity_metrics(
885        &self,
886        circuit: &[QuantumGate],
887        topology: &CircuitTopology,
888    ) -> Result<ComplexityMetrics, QuantRS2Error> {
889        // T-complexity (number of T gates)
890        let t_complexity = circuit
891            .iter()
892            .filter(|g| matches!(g.gate_type(), GateType::T))
893            .count();
894
895        // T-depth (critical path of T gates)
896        let t_depth = self.calculate_t_depth(circuit)?;
897
898        // Circuit volume (qubits × depth)
899        let circuit_volume = topology.num_qubits * circuit.len();
900
901        // Communication complexity
902        let communication_complexity = topology.connectivity_density * topology.num_qubits as f64;
903
904        // Entanglement complexity
905        let entanglement_complexity = self.estimate_entanglement_complexity(circuit)?;
906
907        Ok(ComplexityMetrics {
908            t_complexity,
909            t_depth,
910            circuit_volume,
911            communication_complexity,
912            entanglement_complexity,
913            algorithmic_complexity: self.classify_algorithmic_complexity(circuit)?,
914        })
915    }
916
917    /// Calculate T-depth
918    fn calculate_t_depth(&self, circuit: &[QuantumGate]) -> Result<usize, QuantRS2Error> {
919        let mut qubit_t_depths = HashMap::new();
920        let mut max_t_depth = 0;
921
922        for gate in circuit {
923            if matches!(gate.gate_type(), GateType::T) {
924                let current_depth = gate
925                    .target_qubits()
926                    .iter()
927                    .map(|&q| qubit_t_depths.get(&q).copied().unwrap_or(0))
928                    .max()
929                    .unwrap_or(0);
930
931                let new_depth = current_depth + 1;
932                for &qubit in gate.target_qubits() {
933                    qubit_t_depths.insert(qubit, new_depth);
934                    max_t_depth = max_t_depth.max(new_depth);
935                }
936            }
937        }
938
939        Ok(max_t_depth)
940    }
941
942    /// Estimate entanglement complexity
943    fn estimate_entanglement_complexity(
944        &self,
945        circuit: &[QuantumGate],
946    ) -> Result<f64, QuantRS2Error> {
947        let entangling_gates = circuit
948            .iter()
949            .filter(|g| g.target_qubits().len() >= 2)
950            .count();
951
952        let total_gates = circuit.len().max(1);
953        Ok(entangling_gates as f64 / total_gates as f64)
954    }
955
956    /// Classify algorithmic complexity
957    fn classify_algorithmic_complexity(
958        &self,
959        circuit: &[QuantumGate],
960    ) -> Result<String, QuantRS2Error> {
961        let depth = circuit.len();
962        let two_qubit_ratio =
963            self.count_two_qubit_gates(circuit) as f64 / circuit.len().max(1) as f64;
964
965        if depth < 100 && two_qubit_ratio < 0.2 {
966            Ok("Low (BQP-easy)".to_string())
967        } else if depth < 1000 && two_qubit_ratio < 0.5 {
968            Ok("Medium (BQP-intermediate)".to_string())
969        } else {
970            Ok("High (BQP-hard)".to_string())
971        }
972    }
973
974    /// Calculate resource scores
975    fn calculate_resource_scores(
976        &self,
977        basic: &BasicResourceAnalysis,
978        ml_predictions: &Option<MLPredictions>,
979    ) -> ResourceScores {
980        let efficiency_score = self.calculate_efficiency_score(basic);
981        let scalability_score = self.calculate_scalability_score(basic);
982        let feasibility_score = self.calculate_feasibility_score(basic, ml_predictions);
983        let optimization_potential = self.calculate_optimization_potential(basic);
984
985        ResourceScores {
986            overall_score: (efficiency_score + scalability_score + feasibility_score) / 3.0,
987            efficiency_score,
988            scalability_score,
989            feasibility_score,
990            optimization_potential,
991            readiness_level: self.determine_readiness_level(feasibility_score),
992        }
993    }
994
995    /// Calculate efficiency score
996    fn calculate_efficiency_score(&self, basic: &BasicResourceAnalysis) -> f64 {
997        let gate_efficiency = 1.0 / (1.0 + basic.gate_statistics.total_gates as f64 / 1000.0);
998        let depth_efficiency = 1.0 / (1.0 + basic.complexity_metrics.t_depth as f64 / 100.0);
999        let qubit_efficiency = 1.0 / (1.0 + basic.num_qubits as f64 / 50.0);
1000
1001        (gate_efficiency + depth_efficiency + qubit_efficiency) / 3.0
1002    }
1003
1004    /// Calculate scalability score
1005    fn calculate_scalability_score(&self, basic: &BasicResourceAnalysis) -> f64 {
1006        let connectivity_score = 1.0 - basic.circuit_topology.connectivity_density.min(1.0);
1007        let volume_score = 1.0 / (1.0 + (basic.complexity_metrics.circuit_volume as f64).log10());
1008
1009        (connectivity_score + volume_score) / 2.0
1010    }
1011
1012    /// Calculate feasibility score
1013    fn calculate_feasibility_score(
1014        &self,
1015        basic: &BasicResourceAnalysis,
1016        ml_predictions: &Option<MLPredictions>,
1017    ) -> f64 {
1018        let base_score = if basic.resource_requirements.physical_qubits < 1000 {
1019            0.9
1020        } else if basic.resource_requirements.physical_qubits < 10000 {
1021            0.6
1022        } else {
1023            0.3
1024        };
1025
1026        if let Some(predictions) = ml_predictions {
1027            (base_score + predictions.feasibility_confidence) / 2.0
1028        } else {
1029            base_score
1030        }
1031    }
1032
1033    /// Calculate optimization potential
1034    fn calculate_optimization_potential(&self, basic: &BasicResourceAnalysis) -> f64 {
1035        let pattern_potential = basic.gate_statistics.gate_patterns.len() as f64 * 0.1;
1036        let redundancy_potential = 0.2; // Placeholder
1037
1038        (pattern_potential + redundancy_potential).min(1.0)
1039    }
1040
1041    /// Determine readiness level
1042    fn determine_readiness_level(&self, feasibility_score: f64) -> ReadinessLevel {
1043        if feasibility_score > 0.8 {
1044            ReadinessLevel::ProductionReady
1045        } else if feasibility_score > 0.6 {
1046            ReadinessLevel::Experimental
1047        } else if feasibility_score > 0.4 {
1048            ReadinessLevel::Research
1049        } else {
1050            ReadinessLevel::Theoretical
1051        }
1052    }
1053
1054    /// Generate comprehensive recommendations
1055    fn generate_recommendations(
1056        &self,
1057        basic: &BasicResourceAnalysis,
1058        ml_predictions: &Option<MLPredictions>,
1059        cost_analysis: &Option<CostAnalysisResult>,
1060        optimization_strategies: &Option<Vec<OptimizationStrategy>>,
1061    ) -> Result<Vec<Recommendation>, QuantRS2Error> {
1062        let mut recommendations = Vec::new();
1063
1064        // Basic recommendations
1065        if basic.gate_statistics.non_clifford_count > 100 {
1066            recommendations.push(Recommendation {
1067                category: RecommendationCategory::Optimization,
1068                priority: Priority::High,
1069                title: "Reduce T-gate count".to_string(),
1070                description:
1071                    "High number of non-Clifford gates detected. Consider T-gate optimization."
1072                        .to_string(),
1073                expected_impact: Impact::Significant,
1074                implementation_effort: Effort::Medium,
1075            });
1076        }
1077
1078        // ML-based recommendations
1079        if let Some(predictions) = ml_predictions {
1080            for suggestion in &predictions.optimization_suggestions {
1081                recommendations.push(Recommendation {
1082                    category: RecommendationCategory::MLSuggestion,
1083                    priority: Priority::Medium,
1084                    title: suggestion.clone(),
1085                    description: "ML-based optimization suggestion".to_string(),
1086                    expected_impact: Impact::Moderate,
1087                    implementation_effort: Effort::Low,
1088                });
1089            }
1090        }
1091
1092        // Cost-based recommendations
1093        if let Some(costs) = cost_analysis {
1094            if costs.total_estimated_cost > 1000.0 {
1095                recommendations.push(Recommendation {
1096                    category: RecommendationCategory::Cost,
1097                    priority: Priority::High,
1098                    title: "Consider cost optimization".to_string(),
1099                    description: format!(
1100                        "Estimated cost ${:.2} is high. Consider circuit optimization.",
1101                        costs.total_estimated_cost
1102                    ),
1103                    expected_impact: Impact::Significant,
1104                    implementation_effort: Effort::High,
1105                });
1106            }
1107        }
1108
1109        // Strategy-based recommendations
1110        if let Some(strategies) = optimization_strategies {
1111            for strategy in strategies.iter().take(3) {
1112                recommendations.push(Recommendation {
1113                    category: RecommendationCategory::Strategy,
1114                    priority: Priority::Medium,
1115                    title: strategy.name.clone(),
1116                    description: strategy.description.clone(),
1117                    expected_impact: Impact::Moderate,
1118                    implementation_effort: Effort::Medium,
1119                });
1120            }
1121        }
1122
1123        Ok(recommendations)
1124    }
1125
1126    /// Identify platform-specific optimizations
1127    fn identify_platform_optimizations(&self) -> Vec<PlatformOptimization> {
1128        let mut optimizations = Vec::new();
1129
1130        if self.platform_capabilities.simd_available() {
1131            optimizations.push(PlatformOptimization {
1132                platform_feature: "SIMD".to_string(),
1133                optimization_type: "Vectorized state operations".to_string(),
1134                expected_speedup: 2.5,
1135                applicable: true,
1136            });
1137        }
1138
1139        let cpu_count = PlatformCapabilities::detect().cpu.logical_cores;
1140        if cpu_count > 4 {
1141            optimizations.push(PlatformOptimization {
1142                platform_feature: "Multi-core".to_string(),
1143                optimization_type: "Parallel gate execution".to_string(),
1144                expected_speedup: cpu_count as f64 * 0.7,
1145                applicable: true,
1146            });
1147        }
1148
1149        optimizations
1150    }
1151
1152    /// Monitor resources in real-time
1153    pub fn start_monitoring(&mut self) -> Result<(), QuantRS2Error> {
1154        self.realtime_tracker.start_monitoring()
1155    }
1156
1157    /// Stop resource monitoring
1158    pub fn stop_monitoring(&mut self) -> Result<MonitoringReport, QuantRS2Error> {
1159        self.realtime_tracker.stop_monitoring()
1160    }
1161
1162    /// Export estimation report
1163    pub fn export_report(
1164        &self,
1165        estimate: &EnhancedResourceEstimate,
1166        format: ReportFormat,
1167    ) -> Result<String, QuantRS2Error> {
1168        match format {
1169            ReportFormat::JSON => self.export_json_report(estimate),
1170            ReportFormat::HTML => self.export_html_report(estimate),
1171            ReportFormat::PDF => self.export_pdf_report(estimate),
1172            ReportFormat::Markdown => self.export_markdown_report(estimate),
1173            ReportFormat::LaTeX => self.export_latex_report(estimate),
1174            _ => Err(QuantRS2Error::UnsupportedOperation(
1175                "Format not supported".into(),
1176            )),
1177        }
1178    }
1179
1180    /// Export JSON report
1181    fn export_json_report(
1182        &self,
1183        estimate: &EnhancedResourceEstimate,
1184    ) -> Result<String, QuantRS2Error> {
1185        serde_json::to_string_pretty(estimate).map_err(|e| {
1186            QuantRS2Error::ComputationError(format!("JSON serialization failed: {}", e))
1187        })
1188    }
1189
1190    /// Export HTML report
1191    fn export_html_report(
1192        &self,
1193        estimate: &EnhancedResourceEstimate,
1194    ) -> Result<String, QuantRS2Error> {
1195        let mut html = String::new();
1196        html.push_str(
1197            "<!DOCTYPE html><html><head><title>Resource Estimation Report</title></head><body>",
1198        );
1199        html.push_str("<h1>Enhanced Resource Estimation Report</h1>");
1200        html.push_str(&format!(
1201            "<p>Estimation Time: {:?}</p>",
1202            estimate.estimation_time
1203        ));
1204        html.push_str(&format!(
1205            "<p>Overall Score: {:.2}</p>",
1206            estimate.resource_scores.overall_score
1207        ));
1208        html.push_str("</body></html>");
1209        Ok(html)
1210    }
1211
1212    /// Export PDF report
1213    fn export_pdf_report(
1214        &self,
1215        _estimate: &EnhancedResourceEstimate,
1216    ) -> Result<String, QuantRS2Error> {
1217        // Placeholder - would use a PDF library in production
1218        Ok("PDF export not implemented".to_string())
1219    }
1220
1221    /// Export Markdown report
1222    fn export_markdown_report(
1223        &self,
1224        estimate: &EnhancedResourceEstimate,
1225    ) -> Result<String, QuantRS2Error> {
1226        let mut md = String::new();
1227        md.push_str("# Enhanced Resource Estimation Report\n\n");
1228        md.push_str(&format!(
1229            "**Estimation Time**: {:?}\n\n",
1230            estimate.estimation_time
1231        ));
1232        md.push_str("## Resource Scores\n\n");
1233        md.push_str(&format!(
1234            "- Overall Score: {:.2}\n",
1235            estimate.resource_scores.overall_score
1236        ));
1237        md.push_str(&format!(
1238            "- Efficiency: {:.2}\n",
1239            estimate.resource_scores.efficiency_score
1240        ));
1241        md.push_str(&format!(
1242            "- Scalability: {:.2}\n",
1243            estimate.resource_scores.scalability_score
1244        ));
1245        md.push_str(&format!(
1246            "- Feasibility: {:.2}\n",
1247            estimate.resource_scores.feasibility_score
1248        ));
1249        Ok(md)
1250    }
1251
1252    /// Export LaTeX report
1253    fn export_latex_report(
1254        &self,
1255        _estimate: &EnhancedResourceEstimate,
1256    ) -> Result<String, QuantRS2Error> {
1257        Ok("\\documentclass{article}\n\\begin{document}\nResource Estimation Report\n\\end{document}".to_string())
1258    }
1259}
1260
1261/// Enhanced resource estimate result
1262#[derive(Debug, Clone, Serialize, Deserialize)]
1263pub struct EnhancedResourceEstimate {
1264    pub basic_resources: BasicResourceAnalysis,
1265    pub ml_predictions: Option<MLPredictions>,
1266    pub cost_analysis: Option<CostAnalysisResult>,
1267    pub optimization_strategies: Option<Vec<OptimizationStrategy>>,
1268    pub comparative_results: Option<ComparativeAnalysis>,
1269    pub hardware_recommendations: Option<Vec<HardwareRecommendation>>,
1270    pub scaling_predictions: Option<ScalingPredictions>,
1271    pub visual_representations: HashMap<String, VisualRepresentation>,
1272    pub tracking_data: Option<TrackingData>,
1273    pub resource_scores: ResourceScores,
1274    pub recommendations: Vec<Recommendation>,
1275    pub estimation_time: std::time::Duration,
1276    pub platform_optimizations: Vec<PlatformOptimization>,
1277}
1278
1279/// Estimation options
1280#[derive(Debug, Clone)]
1281pub struct EstimationOptions {
1282    pub target_platforms: Vec<CloudPlatform>,
1283    pub optimization_level: OptimizationLevel,
1284    pub include_alternatives: bool,
1285    pub max_alternatives: usize,
1286}
1287
1288/// Optimization levels
1289#[derive(Debug, Clone, Copy)]
1290pub enum OptimizationLevel {
1291    None,
1292    Basic,
1293    Aggressive,
1294    Maximum,
1295}
1296
1297/// Basic resource analysis
1298#[derive(Debug, Clone, Serialize, Deserialize)]
1299pub struct BasicResourceAnalysis {
1300    pub gate_statistics: GateStatistics,
1301    pub circuit_topology: CircuitTopology,
1302    pub resource_requirements: ResourceRequirements,
1303    pub complexity_metrics: ComplexityMetrics,
1304    pub num_qubits: usize,
1305    pub circuit_size: usize,
1306}
1307
1308/// Gate statistics
1309#[derive(Debug, Clone, Serialize, Deserialize)]
1310pub struct GateStatistics {
1311    pub total_gates: usize,
1312    pub gate_counts: HashMap<String, usize>,
1313    pub gate_depths: HashMap<String, usize>,
1314    pub gate_patterns: Vec<GatePattern>,
1315    pub clifford_count: usize,
1316    pub non_clifford_count: usize,
1317    pub two_qubit_count: usize,
1318    pub multi_qubit_count: usize,
1319}
1320
1321/// Gate pattern
1322#[derive(Debug, Clone, Serialize, Deserialize)]
1323pub struct GatePattern {
1324    pub pattern_type: String,
1325    pub instances: Vec<PatternInstance>,
1326    pub resource_impact: f64,
1327}
1328
1329/// Pattern instance
1330#[derive(Debug, Clone, Serialize, Deserialize)]
1331pub struct PatternInstance {
1332    pub start_index: usize,
1333    pub end_index: usize,
1334    pub confidence: f64,
1335}
1336
1337/// Circuit topology
1338#[derive(Debug, Clone, Serialize, Deserialize)]
1339pub struct CircuitTopology {
1340    pub num_qubits: usize,
1341    pub connectivity_matrix: Vec<Vec<usize>>,
1342    pub connectivity_density: f64,
1343    pub max_connections: usize,
1344    pub critical_qubits: Vec<usize>,
1345    pub topology_type: TopologyType,
1346}
1347
1348/// Topology types
1349#[derive(Debug, Clone, Serialize, Deserialize)]
1350pub enum TopologyType {
1351    Sparse,
1352    Regular,
1353    Dense,
1354    AllToAll,
1355}
1356
1357/// Resource requirements
1358#[derive(Debug, Clone, Serialize, Deserialize)]
1359pub struct ResourceRequirements {
1360    pub logical_qubits: usize,
1361    pub physical_qubits: usize,
1362    pub code_distance: usize,
1363    pub execution_time: f64,
1364    pub memory_requirements: MemoryRequirements,
1365    pub magic_states: usize,
1366    pub error_budget: ErrorBudget,
1367}
1368
1369/// Memory requirements
1370#[derive(Debug, Clone, Serialize, Deserialize)]
1371pub struct MemoryRequirements {
1372    pub state_vector_memory: usize,
1373    pub gate_storage_memory: usize,
1374    pub workspace_memory: usize,
1375    pub total_memory: usize,
1376    pub memory_bandwidth: f64,
1377}
1378
1379/// Error budget
1380#[derive(Debug, Clone, Serialize, Deserialize)]
1381pub struct ErrorBudget {
1382    pub total_budget: f64,
1383    pub gate_errors: f64,
1384    pub measurement_errors: f64,
1385    pub idle_errors: f64,
1386    pub crosstalk_errors: f64,
1387    pub readout_errors: f64,
1388}
1389
1390/// Complexity metrics
1391#[derive(Debug, Clone, Serialize, Deserialize)]
1392pub struct ComplexityMetrics {
1393    pub t_complexity: usize,
1394    pub t_depth: usize,
1395    pub circuit_volume: usize,
1396    pub communication_complexity: f64,
1397    pub entanglement_complexity: f64,
1398    pub algorithmic_complexity: String,
1399}
1400
1401/// ML predictions
1402#[derive(Debug, Clone, Serialize, Deserialize)]
1403pub struct MLPredictions {
1404    pub predicted_runtime: f64,
1405    pub predicted_success_rate: f64,
1406    pub resource_scaling: HashMap<String, f64>,
1407    pub optimization_suggestions: Vec<String>,
1408    pub anomaly_detection: Vec<ResourceAnomaly>,
1409    pub confidence_intervals: ConfidenceIntervals,
1410    pub feasibility_confidence: f64,
1411}
1412
1413/// Resource anomaly
1414#[derive(Debug, Clone, Serialize, Deserialize)]
1415pub struct ResourceAnomaly {
1416    pub anomaly_type: String,
1417    pub severity: AnomalySeverity,
1418    pub description: String,
1419    pub location: String,
1420}
1421
1422/// Anomaly severity
1423#[derive(Debug, Clone, Serialize, Deserialize)]
1424pub enum AnomalySeverity {
1425    Low,
1426    Medium,
1427    High,
1428    Critical,
1429}
1430
1431/// Confidence intervals
1432#[derive(Debug, Clone, Serialize, Deserialize)]
1433pub struct ConfidenceIntervals {
1434    pub runtime_ci: (f64, f64),
1435    pub success_rate_ci: (f64, f64),
1436    pub resource_ci: (f64, f64),
1437}
1438
1439/// Cost analysis result
1440#[derive(Debug, Clone, Serialize, Deserialize)]
1441pub struct CostAnalysisResult {
1442    pub platform_costs: HashMap<String, PlatformCost>,
1443    pub total_estimated_cost: f64,
1444    pub cost_breakdown: CostBreakdown,
1445    pub cost_optimization_opportunities: Vec<CostOptimization>,
1446}
1447
1448/// Platform cost
1449#[derive(Debug, Clone, Serialize, Deserialize)]
1450pub struct PlatformCost {
1451    pub platform: CloudPlatform,
1452    pub estimated_cost: f64,
1453    pub cost_per_shot: f64,
1454    pub setup_cost: f64,
1455    pub runtime_cost: f64,
1456}
1457
1458/// Cost breakdown
1459#[derive(Debug, Clone, Serialize, Deserialize)]
1460pub struct CostBreakdown {
1461    pub compute_cost: f64,
1462    pub storage_cost: f64,
1463    pub network_cost: f64,
1464    pub overhead_cost: f64,
1465}
1466
1467/// Cost optimization
1468#[derive(Debug, Clone, Serialize, Deserialize)]
1469pub struct CostOptimization {
1470    pub optimization_type: String,
1471    pub potential_savings: f64,
1472    pub implementation_effort: Effort,
1473}
1474
1475/// Optimization strategy
1476#[derive(Debug, Clone, Serialize, Deserialize)]
1477pub struct OptimizationStrategy {
1478    pub name: String,
1479    pub description: String,
1480    pub expected_improvement: ResourceImprovement,
1481    pub implementation_steps: Vec<String>,
1482    pub risk_assessment: RiskAssessment,
1483}
1484
1485/// Resource improvement
1486#[derive(Debug, Clone, Serialize, Deserialize)]
1487pub struct ResourceImprovement {
1488    pub qubit_reduction: f64,
1489    pub depth_reduction: f64,
1490    pub gate_reduction: f64,
1491    pub time_reduction: f64,
1492}
1493
1494/// Risk assessment
1495#[derive(Debug, Clone, Serialize, Deserialize)]
1496pub struct RiskAssessment {
1497    pub risk_level: RiskLevel,
1498    pub potential_issues: Vec<String>,
1499    pub mitigation_strategies: Vec<String>,
1500}
1501
1502/// Risk levels
1503#[derive(Debug, Clone, Serialize, Deserialize)]
1504pub enum RiskLevel {
1505    Low,
1506    Medium,
1507    High,
1508}
1509
1510/// Comparative analysis
1511#[derive(Debug, Clone, Serialize, Deserialize)]
1512pub struct ComparativeAnalysis {
1513    pub approach_comparisons: Vec<ApproachComparison>,
1514    pub best_approach: String,
1515    pub tradeoff_analysis: TradeoffAnalysis,
1516}
1517
1518/// Approach comparison
1519#[derive(Debug, Clone, Serialize, Deserialize)]
1520pub struct ApproachComparison {
1521    pub approach_name: String,
1522    pub resources: ResourceRequirements,
1523    pub advantages: Vec<String>,
1524    pub disadvantages: Vec<String>,
1525    pub suitability_score: f64,
1526}
1527
1528/// Tradeoff analysis
1529#[derive(Debug, Clone, Serialize, Deserialize)]
1530pub struct TradeoffAnalysis {
1531    pub pareto_optimal: Vec<String>,
1532    pub dominated_approaches: Vec<String>,
1533    pub tradeoff_recommendations: Vec<String>,
1534}
1535
1536/// Hardware recommendation
1537#[derive(Debug, Clone, Serialize, Deserialize)]
1538pub struct HardwareRecommendation {
1539    pub hardware_platform: HardwarePlatform,
1540    pub suitability_score: f64,
1541    pub pros: Vec<String>,
1542    pub cons: Vec<String>,
1543    pub specific_optimizations: Vec<String>,
1544}
1545
1546/// Scaling predictions
1547#[derive(Debug, Clone, Serialize, Deserialize)]
1548pub struct ScalingPredictions {
1549    pub qubit_scaling: Vec<ScalingPoint>,
1550    pub depth_scaling: Vec<ScalingPoint>,
1551    pub resource_scaling: Vec<ScalingPoint>,
1552    pub feasibility_threshold: FeasibilityThreshold,
1553}
1554
1555/// Scaling point
1556#[derive(Debug, Clone, Serialize, Deserialize)]
1557pub struct ScalingPoint {
1558    pub problem_size: usize,
1559    pub resource_value: f64,
1560    pub confidence: f64,
1561}
1562
1563/// Feasibility threshold
1564#[derive(Debug, Clone, Serialize, Deserialize)]
1565pub struct FeasibilityThreshold {
1566    pub current_tech_limit: usize,
1567    pub near_term_limit: usize,
1568    pub fault_tolerant_limit: usize,
1569}
1570
1571/// Visual representation
1572#[derive(Debug, Clone, Serialize, Deserialize)]
1573pub struct VisualRepresentation {
1574    pub format: String,
1575    pub content: String,
1576}
1577
1578/// Tracking data
1579#[derive(Debug, Clone, Serialize, Deserialize)]
1580pub struct TrackingData {
1581    pub resource_timeline: Vec<ResourceSnapshot>,
1582    pub peak_usage: PeakUsage,
1583    pub usage_patterns: Vec<UsagePattern>,
1584}
1585
1586/// Resource snapshot
1587#[derive(Debug, Clone, Serialize, Deserialize)]
1588pub struct ResourceSnapshot {
1589    pub timestamp: u64,
1590    pub memory_usage: usize,
1591    pub cpu_usage: f64,
1592    pub active_gates: usize,
1593}
1594
1595/// Peak usage
1596#[derive(Debug, Clone, Serialize, Deserialize)]
1597pub struct PeakUsage {
1598    pub peak_memory: usize,
1599    pub peak_cpu: f64,
1600    pub peak_timestamp: u64,
1601}
1602
1603/// Usage pattern
1604#[derive(Debug, Clone, Serialize, Deserialize)]
1605pub struct UsagePattern {
1606    pub pattern_type: String,
1607    pub frequency: usize,
1608    pub impact: String,
1609}
1610
1611/// Resource scores
1612#[derive(Debug, Clone, Serialize, Deserialize)]
1613pub struct ResourceScores {
1614    pub overall_score: f64,
1615    pub efficiency_score: f64,
1616    pub scalability_score: f64,
1617    pub feasibility_score: f64,
1618    pub optimization_potential: f64,
1619    pub readiness_level: ReadinessLevel,
1620}
1621
1622/// Readiness levels
1623#[derive(Debug, Clone, Serialize, Deserialize)]
1624pub enum ReadinessLevel {
1625    Theoretical,
1626    Research,
1627    Experimental,
1628    ProductionReady,
1629}
1630
1631/// Recommendation
1632#[derive(Debug, Clone, Serialize, Deserialize)]
1633pub struct Recommendation {
1634    pub category: RecommendationCategory,
1635    pub priority: Priority,
1636    pub title: String,
1637    pub description: String,
1638    pub expected_impact: Impact,
1639    pub implementation_effort: Effort,
1640}
1641
1642/// Recommendation categories
1643#[derive(Debug, Clone, Serialize, Deserialize)]
1644pub enum RecommendationCategory {
1645    Optimization,
1646    Cost,
1647    Hardware,
1648    Algorithm,
1649    MLSuggestion,
1650    Strategy,
1651}
1652
1653/// Priority levels
1654#[derive(Debug, Clone, Serialize, Deserialize)]
1655pub enum Priority {
1656    Low,
1657    Medium,
1658    High,
1659    Critical,
1660}
1661
1662/// Impact levels
1663#[derive(Debug, Clone, Serialize, Deserialize)]
1664pub enum Impact {
1665    Minor,
1666    Moderate,
1667    Significant,
1668    Transformative,
1669}
1670
1671/// Effort levels
1672#[derive(Debug, Clone, Serialize, Deserialize)]
1673pub enum Effort {
1674    Low,
1675    Medium,
1676    High,
1677    VeryHigh,
1678}
1679
1680/// Platform optimization
1681#[derive(Debug, Clone, Serialize, Deserialize)]
1682pub struct PlatformOptimization {
1683    pub platform_feature: String,
1684    pub optimization_type: String,
1685    pub expected_speedup: f64,
1686    pub applicable: bool,
1687}
1688
1689/// Monitoring report
1690#[derive(Debug, Clone)]
1691pub struct MonitoringReport {
1692    pub monitoring_duration: std::time::Duration,
1693    pub resource_usage: TrackingData,
1694    pub anomalies_detected: Vec<ResourceAnomaly>,
1695    pub optimization_opportunities: Vec<String>,
1696}
1697
1698// Placeholder implementations for supporting modules
1699
1700#[derive(Debug)]
1701pub struct MLResourcePredictor {}
1702
1703impl MLResourcePredictor {
1704    pub fn new() -> Self {
1705        Self {}
1706    }
1707
1708    pub fn predict_resources(
1709        &self,
1710        _circuit: &[QuantumGate],
1711        basic: &BasicResourceAnalysis,
1712    ) -> Result<MLPredictions, QuantRS2Error> {
1713        Ok(MLPredictions {
1714            predicted_runtime: basic.resource_requirements.execution_time * 1.1,
1715            predicted_success_rate: 0.95,
1716            resource_scaling: HashMap::new(),
1717            optimization_suggestions: vec!["Consider gate fusion".to_string()],
1718            anomaly_detection: Vec::new(),
1719            confidence_intervals: ConfidenceIntervals {
1720                runtime_ci: (
1721                    basic.resource_requirements.execution_time * 0.9,
1722                    basic.resource_requirements.execution_time * 1.2,
1723                ),
1724                success_rate_ci: (0.92, 0.98),
1725                resource_ci: (0.8, 1.2),
1726            },
1727            feasibility_confidence: 0.85,
1728        })
1729    }
1730}
1731
1732#[derive(Debug)]
1733pub struct CostAnalyzer {}
1734
1735impl CostAnalyzer {
1736    pub fn new() -> Self {
1737        Self {}
1738    }
1739
1740    pub fn analyze_costs(
1741        &self,
1742        _circuit: &[QuantumGate],
1743        basic: &BasicResourceAnalysis,
1744        options: &EstimationOptions,
1745    ) -> Result<CostAnalysisResult, QuantRS2Error> {
1746        let mut platform_costs = HashMap::new();
1747
1748        for platform in &options.target_platforms {
1749            let cost = match platform {
1750                CloudPlatform::IBMQ => basic.resource_requirements.execution_time * 0.05,
1751                CloudPlatform::AzureQuantum => basic.resource_requirements.execution_time * 0.08,
1752                CloudPlatform::AmazonBraket => basic.resource_requirements.execution_time * 0.06,
1753                _ => basic.resource_requirements.execution_time * 0.07,
1754            };
1755
1756            platform_costs.insert(
1757                format!("{:?}", platform),
1758                PlatformCost {
1759                    platform: *platform,
1760                    estimated_cost: cost * 1000.0, // Convert to reasonable dollar amount
1761                    cost_per_shot: cost,
1762                    setup_cost: 10.0,
1763                    runtime_cost: cost * 990.0,
1764                },
1765            );
1766        }
1767
1768        Ok(CostAnalysisResult {
1769            platform_costs,
1770            total_estimated_cost: 500.0,
1771            cost_breakdown: CostBreakdown {
1772                compute_cost: 400.0,
1773                storage_cost: 50.0,
1774                network_cost: 30.0,
1775                overhead_cost: 20.0,
1776            },
1777            cost_optimization_opportunities: vec![CostOptimization {
1778                optimization_type: "Reduce circuit depth".to_string(),
1779                potential_savings: 100.0,
1780                implementation_effort: Effort::Medium,
1781            }],
1782        })
1783    }
1784}
1785
1786#[derive(Debug)]
1787pub struct OptimizationEngine {}
1788
1789impl OptimizationEngine {
1790    pub fn new() -> Self {
1791        Self {}
1792    }
1793
1794    pub fn generate_strategies(
1795        &self,
1796        _circuit: &[QuantumGate],
1797        _basic: &BasicResourceAnalysis,
1798        objectives: &[OptimizationObjective],
1799    ) -> Result<Vec<OptimizationStrategy>, QuantRS2Error> {
1800        let mut strategies = Vec::new();
1801
1802        for objective in objectives {
1803            strategies.push(OptimizationStrategy {
1804                name: format!("Strategy for {:?}", objective),
1805                description: "Optimization strategy based on objective".to_string(),
1806                expected_improvement: ResourceImprovement {
1807                    qubit_reduction: 0.1,
1808                    depth_reduction: 0.2,
1809                    gate_reduction: 0.15,
1810                    time_reduction: 0.25,
1811                },
1812                implementation_steps: vec!["Step 1".to_string(), "Step 2".to_string()],
1813                risk_assessment: RiskAssessment {
1814                    risk_level: RiskLevel::Low,
1815                    potential_issues: Vec::new(),
1816                    mitigation_strategies: Vec::new(),
1817                },
1818            });
1819        }
1820
1821        Ok(strategies)
1822    }
1823}
1824
1825#[derive(Debug)]
1826pub struct ComparativeAnalyzer {}
1827
1828impl ComparativeAnalyzer {
1829    pub fn new() -> Self {
1830        Self {}
1831    }
1832
1833    pub fn compare_approaches(
1834        &self,
1835        _circuit: &[QuantumGate],
1836        basic: &BasicResourceAnalysis,
1837    ) -> Result<ComparativeAnalysis, QuantRS2Error> {
1838        Ok(ComparativeAnalysis {
1839            approach_comparisons: vec![ApproachComparison {
1840                approach_name: "Current approach".to_string(),
1841                resources: basic.resource_requirements.clone(),
1842                advantages: vec!["Straightforward".to_string()],
1843                disadvantages: vec!["Resource intensive".to_string()],
1844                suitability_score: 0.7,
1845            }],
1846            best_approach: "Current approach".to_string(),
1847            tradeoff_analysis: TradeoffAnalysis {
1848                pareto_optimal: vec!["Current approach".to_string()],
1849                dominated_approaches: Vec::new(),
1850                tradeoff_recommendations: vec!["Consider optimization".to_string()],
1851            },
1852        })
1853    }
1854}
1855
1856#[derive(Debug)]
1857pub struct RealtimeResourceTracker {}
1858
1859impl RealtimeResourceTracker {
1860    pub fn new() -> Self {
1861        Self {}
1862    }
1863
1864    pub fn start_monitoring(&mut self) -> Result<(), QuantRS2Error> {
1865        Ok(())
1866    }
1867
1868    pub fn stop_monitoring(&mut self) -> Result<MonitoringReport, QuantRS2Error> {
1869        Ok(MonitoringReport {
1870            monitoring_duration: std::time::Duration::from_secs(60),
1871            resource_usage: TrackingData {
1872                resource_timeline: Vec::new(),
1873                peak_usage: PeakUsage {
1874                    peak_memory: 1024 * 1024,
1875                    peak_cpu: 0.8,
1876                    peak_timestamp: 0,
1877                },
1878                usage_patterns: Vec::new(),
1879            },
1880            anomalies_detected: Vec::new(),
1881            optimization_opportunities: Vec::new(),
1882        })
1883    }
1884
1885    pub fn get_tracking_data(&self) -> Result<TrackingData, QuantRS2Error> {
1886        Ok(TrackingData {
1887            resource_timeline: Vec::new(),
1888            peak_usage: PeakUsage {
1889                peak_memory: 1024 * 1024,
1890                peak_cpu: 0.8,
1891                peak_timestamp: 0,
1892            },
1893            usage_patterns: Vec::new(),
1894        })
1895    }
1896}
1897
1898#[derive(Debug)]
1899pub struct VisualResourceGenerator {}
1900
1901impl VisualResourceGenerator {
1902    pub fn new() -> Self {
1903        Self {}
1904    }
1905
1906    pub fn generate_visuals(
1907        &self,
1908        _basic: &BasicResourceAnalysis,
1909        _ml_predictions: &Option<MLPredictions>,
1910    ) -> Result<HashMap<String, VisualRepresentation>, QuantRS2Error> {
1911        let mut visuals = HashMap::new();
1912
1913        visuals.insert(
1914            "resource_chart".to_string(),
1915            VisualRepresentation {
1916                format: "ASCII".to_string(),
1917                content: "Resource Usage Chart\n[████████████████████]".to_string(),
1918            },
1919        );
1920
1921        Ok(visuals)
1922    }
1923}
1924
1925#[derive(Debug)]
1926pub struct HardwareRecommender {}
1927
1928impl HardwareRecommender {
1929    pub fn new() -> Self {
1930        Self {}
1931    }
1932
1933    pub fn recommend_hardware(
1934        &self,
1935        _circuit: &[QuantumGate],
1936        basic: &BasicResourceAnalysis,
1937        _options: &EstimationOptions,
1938    ) -> Result<Vec<HardwareRecommendation>, QuantRS2Error> {
1939        Ok(vec![HardwareRecommendation {
1940            hardware_platform: HardwarePlatform::Superconducting,
1941            suitability_score: 0.85,
1942            pros: vec!["Fast gates".to_string(), "High connectivity".to_string()],
1943            cons: vec!["Short coherence".to_string()],
1944            specific_optimizations: vec!["Use native gates".to_string()],
1945        }])
1946    }
1947}
1948
1949#[derive(Debug)]
1950pub struct ScalingPredictor {}
1951
1952impl ScalingPredictor {
1953    pub fn new() -> Self {
1954        Self {}
1955    }
1956
1957    pub fn predict_scaling(
1958        &self,
1959        _circuit: &[QuantumGate],
1960        basic: &BasicResourceAnalysis,
1961    ) -> Result<ScalingPredictions, QuantRS2Error> {
1962        let mut qubit_scaling = Vec::new();
1963
1964        for size in [10, 20, 50, 100] {
1965            qubit_scaling.push(ScalingPoint {
1966                problem_size: size,
1967                resource_value: (size as f64).powi(2),
1968                confidence: 0.8,
1969            });
1970        }
1971
1972        Ok(ScalingPredictions {
1973            qubit_scaling,
1974            depth_scaling: Vec::new(),
1975            resource_scaling: Vec::new(),
1976            feasibility_threshold: FeasibilityThreshold {
1977                current_tech_limit: 50,
1978                near_term_limit: 100,
1979                fault_tolerant_limit: 1000,
1980            },
1981        })
1982    }
1983}
1984
1985#[cfg(test)]
1986mod tests {
1987    use super::*;
1988
1989    #[test]
1990    fn test_enhanced_estimator_creation() {
1991        let estimator = EnhancedResourceEstimator::new();
1992        assert!(estimator.config.enable_ml_prediction);
1993        assert!(estimator.config.enable_cost_analysis);
1994    }
1995
1996    #[test]
1997    fn test_basic_resource_analysis() {
1998        let estimator = EnhancedResourceEstimator::new();
1999        let circuit = vec![
2000            QuantumGate::new(GateType::H, vec![0], None),
2001            QuantumGate::new(GateType::CNOT, vec![0, 1], None),
2002            QuantumGate::new(GateType::T, vec![0], None),
2003        ];
2004
2005        let analysis = estimator.perform_basic_analysis(&circuit, 2).unwrap();
2006        assert_eq!(analysis.gate_statistics.total_gates, 3);
2007        assert_eq!(analysis.num_qubits, 2);
2008    }
2009
2010    #[test]
2011    fn test_gate_pattern_detection() {
2012        let estimator = EnhancedResourceEstimator::new();
2013        let circuit = vec![
2014            QuantumGate::new(GateType::H, vec![0], None),
2015            QuantumGate::new(GateType::CNOT, vec![0, 1], None),
2016            QuantumGate::new(GateType::CNOT, vec![1, 2], None),
2017            QuantumGate::new(GateType::CNOT, vec![2, 3], None),
2018        ];
2019
2020        let patterns = estimator.detect_gate_patterns(&circuit).unwrap();
2021        assert!(!patterns.is_empty());
2022    }
2023
2024    #[test]
2025    fn test_ml_predictions() {
2026        let predictor = MLResourcePredictor::new();
2027        let basic = BasicResourceAnalysis {
2028            gate_statistics: GateStatistics {
2029                total_gates: 10,
2030                gate_counts: HashMap::new(),
2031                gate_depths: HashMap::new(),
2032                gate_patterns: Vec::new(),
2033                clifford_count: 8,
2034                non_clifford_count: 2,
2035                two_qubit_count: 3,
2036                multi_qubit_count: 0,
2037            },
2038            circuit_topology: CircuitTopology {
2039                num_qubits: 4,
2040                connectivity_matrix: vec![vec![0; 4]; 4],
2041                connectivity_density: 0.3,
2042                max_connections: 2,
2043                critical_qubits: vec![],
2044                topology_type: TopologyType::Regular,
2045            },
2046            resource_requirements: ResourceRequirements {
2047                logical_qubits: 4,
2048                physical_qubits: 100,
2049                code_distance: 5,
2050                execution_time: 1e-3,
2051                memory_requirements: MemoryRequirements {
2052                    state_vector_memory: 256,
2053                    gate_storage_memory: 640,
2054                    workspace_memory: 128,
2055                    total_memory: 1024,
2056                    memory_bandwidth: 10.0,
2057                },
2058                magic_states: 20,
2059                error_budget: ErrorBudget {
2060                    total_budget: 1e-6,
2061                    gate_errors: 4e-7,
2062                    measurement_errors: 2e-7,
2063                    idle_errors: 2e-7,
2064                    crosstalk_errors: 1e-7,
2065                    readout_errors: 1e-7,
2066                },
2067            },
2068            complexity_metrics: ComplexityMetrics {
2069                t_complexity: 2,
2070                t_depth: 2,
2071                circuit_volume: 40,
2072                communication_complexity: 1.2,
2073                entanglement_complexity: 0.3,
2074                algorithmic_complexity: "Low".to_string(),
2075            },
2076            num_qubits: 4,
2077            circuit_size: 10,
2078        };
2079
2080        let predictions = predictor.predict_resources(&[], &basic).unwrap();
2081        assert!(predictions.predicted_success_rate > 0.9);
2082    }
2083
2084    #[test]
2085    fn test_cost_analysis() {
2086        let analyzer = CostAnalyzer::new();
2087        let basic = BasicResourceAnalysis {
2088            gate_statistics: GateStatistics {
2089                total_gates: 10,
2090                gate_counts: HashMap::new(),
2091                gate_depths: HashMap::new(),
2092                gate_patterns: Vec::new(),
2093                clifford_count: 8,
2094                non_clifford_count: 2,
2095                two_qubit_count: 3,
2096                multi_qubit_count: 0,
2097            },
2098            circuit_topology: CircuitTopology {
2099                num_qubits: 4,
2100                connectivity_matrix: vec![vec![0; 4]; 4],
2101                connectivity_density: 0.3,
2102                max_connections: 2,
2103                critical_qubits: vec![],
2104                topology_type: TopologyType::Regular,
2105            },
2106            resource_requirements: ResourceRequirements {
2107                logical_qubits: 4,
2108                physical_qubits: 100,
2109                code_distance: 5,
2110                execution_time: 1e-3,
2111                memory_requirements: MemoryRequirements {
2112                    state_vector_memory: 256,
2113                    gate_storage_memory: 640,
2114                    workspace_memory: 128,
2115                    total_memory: 1024,
2116                    memory_bandwidth: 10.0,
2117                },
2118                magic_states: 20,
2119                error_budget: ErrorBudget {
2120                    total_budget: 1e-6,
2121                    gate_errors: 4e-7,
2122                    measurement_errors: 2e-7,
2123                    idle_errors: 2e-7,
2124                    crosstalk_errors: 1e-7,
2125                    readout_errors: 1e-7,
2126                },
2127            },
2128            complexity_metrics: ComplexityMetrics {
2129                t_complexity: 2,
2130                t_depth: 2,
2131                circuit_volume: 40,
2132                communication_complexity: 1.2,
2133                entanglement_complexity: 0.3,
2134                algorithmic_complexity: "Low".to_string(),
2135            },
2136            num_qubits: 4,
2137            circuit_size: 10,
2138        };
2139
2140        let options = EstimationOptions {
2141            target_platforms: vec![CloudPlatform::IBMQ],
2142            optimization_level: OptimizationLevel::Basic,
2143            include_alternatives: false,
2144            max_alternatives: 3,
2145        };
2146
2147        let costs = analyzer.analyze_costs(&[], &basic, &options).unwrap();
2148        assert!(costs.total_estimated_cost > 0.0);
2149    }
2150
2151    #[test]
2152    fn test_resource_scores() {
2153        let estimator = EnhancedResourceEstimator::new();
2154        let basic = BasicResourceAnalysis {
2155            gate_statistics: GateStatistics {
2156                total_gates: 10,
2157                gate_counts: HashMap::new(),
2158                gate_depths: HashMap::new(),
2159                gate_patterns: Vec::new(),
2160                clifford_count: 8,
2161                non_clifford_count: 2,
2162                two_qubit_count: 3,
2163                multi_qubit_count: 0,
2164            },
2165            circuit_topology: CircuitTopology {
2166                num_qubits: 4,
2167                connectivity_matrix: vec![vec![0; 4]; 4],
2168                connectivity_density: 0.3,
2169                max_connections: 2,
2170                critical_qubits: vec![],
2171                topology_type: TopologyType::Regular,
2172            },
2173            resource_requirements: ResourceRequirements {
2174                logical_qubits: 4,
2175                physical_qubits: 100,
2176                code_distance: 5,
2177                execution_time: 1e-3,
2178                memory_requirements: MemoryRequirements {
2179                    state_vector_memory: 256,
2180                    gate_storage_memory: 640,
2181                    workspace_memory: 128,
2182                    total_memory: 1024,
2183                    memory_bandwidth: 10.0,
2184                },
2185                magic_states: 20,
2186                error_budget: ErrorBudget {
2187                    total_budget: 1e-6,
2188                    gate_errors: 4e-7,
2189                    measurement_errors: 2e-7,
2190                    idle_errors: 2e-7,
2191                    crosstalk_errors: 1e-7,
2192                    readout_errors: 1e-7,
2193                },
2194            },
2195            complexity_metrics: ComplexityMetrics {
2196                t_complexity: 2,
2197                t_depth: 2,
2198                circuit_volume: 40,
2199                communication_complexity: 1.2,
2200                entanglement_complexity: 0.3,
2201                algorithmic_complexity: "Low".to_string(),
2202            },
2203            num_qubits: 4,
2204            circuit_size: 10,
2205        };
2206
2207        let scores = estimator.calculate_resource_scores(&basic, &None);
2208        assert!(scores.overall_score > 0.0);
2209        assert!(scores.overall_score <= 1.0);
2210    }
2211
2212    #[test]
2213    fn test_export_report() {
2214        let estimator = EnhancedResourceEstimator::new();
2215        let estimate = EnhancedResourceEstimate {
2216            basic_resources: BasicResourceAnalysis {
2217                gate_statistics: GateStatistics {
2218                    total_gates: 10,
2219                    gate_counts: HashMap::new(),
2220                    gate_depths: HashMap::new(),
2221                    gate_patterns: Vec::new(),
2222                    clifford_count: 8,
2223                    non_clifford_count: 2,
2224                    two_qubit_count: 3,
2225                    multi_qubit_count: 0,
2226                },
2227                circuit_topology: CircuitTopology {
2228                    num_qubits: 4,
2229                    connectivity_matrix: vec![vec![0; 4]; 4],
2230                    connectivity_density: 0.3,
2231                    max_connections: 2,
2232                    critical_qubits: vec![],
2233                    topology_type: TopologyType::Regular,
2234                },
2235                resource_requirements: ResourceRequirements {
2236                    logical_qubits: 4,
2237                    physical_qubits: 100,
2238                    code_distance: 5,
2239                    execution_time: 1e-3,
2240                    memory_requirements: MemoryRequirements {
2241                        state_vector_memory: 256,
2242                        gate_storage_memory: 640,
2243                        workspace_memory: 128,
2244                        total_memory: 1024,
2245                        memory_bandwidth: 10.0,
2246                    },
2247                    magic_states: 20,
2248                    error_budget: ErrorBudget {
2249                        total_budget: 1e-6,
2250                        gate_errors: 4e-7,
2251                        measurement_errors: 2e-7,
2252                        idle_errors: 2e-7,
2253                        crosstalk_errors: 1e-7,
2254                        readout_errors: 1e-7,
2255                    },
2256                },
2257                complexity_metrics: ComplexityMetrics {
2258                    t_complexity: 2,
2259                    t_depth: 2,
2260                    circuit_volume: 40,
2261                    communication_complexity: 1.2,
2262                    entanglement_complexity: 0.3,
2263                    algorithmic_complexity: "Low".to_string(),
2264                },
2265                num_qubits: 4,
2266                circuit_size: 10,
2267            },
2268            ml_predictions: None,
2269            cost_analysis: None,
2270            optimization_strategies: None,
2271            comparative_results: None,
2272            hardware_recommendations: None,
2273            scaling_predictions: None,
2274            visual_representations: HashMap::new(),
2275            tracking_data: None,
2276            resource_scores: ResourceScores {
2277                overall_score: 0.8,
2278                efficiency_score: 0.85,
2279                scalability_score: 0.75,
2280                feasibility_score: 0.8,
2281                optimization_potential: 0.3,
2282                readiness_level: ReadinessLevel::Experimental,
2283            },
2284            recommendations: Vec::new(),
2285            estimation_time: std::time::Duration::from_millis(100),
2286            platform_optimizations: Vec::new(),
2287        };
2288
2289        let json_report = estimator
2290            .export_report(&estimate, ReportFormat::JSON)
2291            .unwrap();
2292        assert!(json_report.contains("resource_scores"));
2293
2294        let md_report = estimator
2295            .export_report(&estimate, ReportFormat::Markdown)
2296            .unwrap();
2297        assert!(md_report.contains("# Enhanced Resource Estimation Report"));
2298    }
2299}