1use crate::error::QuantRS2Error;
8use crate::gate_translation::GateType;
9use crate::resource_estimator::{
10 ErrorCorrectionCode, EstimationMode, HardwarePlatform, QuantumGate, ResourceEstimationConfig,
11};
12use num_complex::Complex64;
13use crate::parallel_ops_stubs::*;
15use crate::buffer_pool::BufferPool;
17use crate::platform::PlatformCapabilities;
18use ndarray::{Array1, Array2};
19use serde::{Deserialize, Serialize};
20use std::collections::{BTreeMap, HashMap, HashSet, VecDeque};
21use std::fmt;
22use std::sync::{Arc, Mutex};
23
24#[derive(Debug, Clone, Serialize, Deserialize)]
26pub struct EnhancedResourceConfig {
27 pub base_config: ResourceEstimationConfig,
29
30 pub enable_ml_prediction: bool,
32
33 pub enable_cost_analysis: bool,
35
36 pub enable_optimization_strategies: bool,
38
39 pub enable_comparative_analysis: bool,
41
42 pub enable_realtime_tracking: bool,
44
45 pub enable_visual_representation: bool,
47
48 pub enable_hardware_recommendations: bool,
50
51 pub enable_scaling_predictions: bool,
53
54 pub cloud_platforms: Vec<CloudPlatform>,
56
57 pub optimization_objectives: Vec<OptimizationObjective>,
59
60 pub analysis_depth: AnalysisDepth,
62
63 pub custom_constraints: Vec<ResourceConstraint>,
65
66 pub export_formats: Vec<ReportFormat>,
68}
69
70impl Default for EnhancedResourceConfig {
71 fn default() -> Self {
72 Self {
73 base_config: ResourceEstimationConfig::default(),
74 enable_ml_prediction: true,
75 enable_cost_analysis: true,
76 enable_optimization_strategies: true,
77 enable_comparative_analysis: true,
78 enable_realtime_tracking: true,
79 enable_visual_representation: true,
80 enable_hardware_recommendations: true,
81 enable_scaling_predictions: true,
82 cloud_platforms: vec![
83 CloudPlatform::IBMQ,
84 CloudPlatform::AzureQuantum,
85 CloudPlatform::AmazonBraket,
86 ],
87 optimization_objectives: vec![
88 OptimizationObjective::MinimizeTime,
89 OptimizationObjective::MinimizeQubits,
90 OptimizationObjective::MinimizeCost,
91 ],
92 analysis_depth: AnalysisDepth::Comprehensive,
93 custom_constraints: Vec::new(),
94 export_formats: vec![ReportFormat::JSON, ReportFormat::HTML, ReportFormat::PDF],
95 }
96 }
97}
98
99#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
101pub enum CloudPlatform {
102 IBMQ,
103 AzureQuantum,
104 AmazonBraket,
105 GoogleQuantumAI,
106 IonQ,
107 Rigetti,
108}
109
110#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
112pub enum OptimizationObjective {
113 MinimizeTime,
114 MinimizeQubits,
115 MinimizeCost,
116 MaximizeFidelity,
117 MinimizeDepth,
118 BalancedOptimization,
119}
120
121#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
123pub enum AnalysisDepth {
124 Basic,
125 Standard,
126 Detailed,
127 Comprehensive,
128}
129
130#[derive(Debug, Clone, Serialize, Deserialize)]
132pub struct ResourceConstraint {
133 pub constraint_type: ConstraintType,
134 pub value: f64,
135 pub priority: ConstraintPriority,
136}
137
138#[derive(Debug, Clone, Serialize, Deserialize)]
140pub enum ConstraintType {
141 MaxQubits(usize),
142 MaxTime(f64),
143 MaxCost(f64),
144 MinFidelity(f64),
145 MaxDepth(usize),
146}
147
148#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
150pub enum ConstraintPriority {
151 Hard,
152 Soft,
153 Preference,
154}
155
156#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
158pub enum ReportFormat {
159 JSON,
160 YAML,
161 HTML,
162 PDF,
163 Markdown,
164 LaTeX,
165}
166
167pub struct EnhancedResourceEstimator {
169 config: EnhancedResourceConfig,
170 ml_predictor: MLResourcePredictor,
171 cost_analyzer: CostAnalyzer,
172 optimization_engine: OptimizationEngine,
173 comparative_analyzer: ComparativeAnalyzer,
174 realtime_tracker: RealtimeResourceTracker,
175 visual_generator: VisualResourceGenerator,
176 hardware_recommender: HardwareRecommender,
177 scaling_predictor: ScalingPredictor,
178 platform_capabilities: PlatformCapabilities,
179}
180
181impl EnhancedResourceEstimator {
182 pub fn new() -> Self {
184 let config = EnhancedResourceConfig::default();
185 Self::with_config(config)
186 }
187
188 pub fn with_config(config: EnhancedResourceConfig) -> Self {
190 let platform_capabilities = PlatformCapabilities::detect();
191
192 Self {
193 config,
194 ml_predictor: MLResourcePredictor::new(),
195 cost_analyzer: CostAnalyzer::new(),
196 optimization_engine: OptimizationEngine::new(),
197 comparative_analyzer: ComparativeAnalyzer::new(),
198 realtime_tracker: RealtimeResourceTracker::new(),
199 visual_generator: VisualResourceGenerator::new(),
200 hardware_recommender: HardwareRecommender::new(),
201 scaling_predictor: ScalingPredictor::new(),
202 platform_capabilities,
203 }
204 }
205
206 pub fn estimate_resources_enhanced(
208 &self,
209 circuit: &[QuantumGate],
210 num_qubits: usize,
211 options: EstimationOptions,
212 ) -> Result<EnhancedResourceEstimate, QuantRS2Error> {
213 let start_time = std::time::Instant::now();
214
215 let basic_analysis = self.perform_basic_analysis(circuit, num_qubits)?;
217
218 let ml_predictions = if self.config.enable_ml_prediction {
220 Some(
221 self.ml_predictor
222 .predict_resources(circuit, &basic_analysis)?,
223 )
224 } else {
225 None
226 };
227
228 let cost_analysis = if self.config.enable_cost_analysis {
230 Some(
231 self.cost_analyzer
232 .analyze_costs(circuit, &basic_analysis, &options)?,
233 )
234 } else {
235 None
236 };
237
238 let optimization_strategies = if self.config.enable_optimization_strategies {
240 Some(self.optimization_engine.generate_strategies(
241 circuit,
242 &basic_analysis,
243 &self.config.optimization_objectives,
244 )?)
245 } else {
246 None
247 };
248
249 let comparative_results = if self.config.enable_comparative_analysis {
251 Some(
252 self.comparative_analyzer
253 .compare_approaches(circuit, &basic_analysis)?,
254 )
255 } else {
256 None
257 };
258
259 let hardware_recommendations = if self.config.enable_hardware_recommendations {
261 Some(self.hardware_recommender.recommend_hardware(
262 circuit,
263 &basic_analysis,
264 &options,
265 )?)
266 } else {
267 None
268 };
269
270 let scaling_predictions = if self.config.enable_scaling_predictions {
272 Some(
273 self.scaling_predictor
274 .predict_scaling(circuit, &basic_analysis)?,
275 )
276 } else {
277 None
278 };
279
280 let visual_representations = if self.config.enable_visual_representation {
282 self.visual_generator
283 .generate_visuals(&basic_analysis, &ml_predictions)?
284 } else {
285 HashMap::new()
286 };
287
288 let tracking_data = if self.config.enable_realtime_tracking {
290 Some(self.realtime_tracker.get_tracking_data()?)
291 } else {
292 None
293 };
294
295 let resource_scores = self.calculate_resource_scores(&basic_analysis, &ml_predictions);
297
298 let recommendations = self.generate_recommendations(
300 &basic_analysis,
301 &ml_predictions,
302 &cost_analysis,
303 &optimization_strategies,
304 )?;
305
306 Ok(EnhancedResourceEstimate {
307 basic_resources: basic_analysis,
308 ml_predictions,
309 cost_analysis,
310 optimization_strategies,
311 comparative_results,
312 hardware_recommendations,
313 scaling_predictions,
314 visual_representations,
315 tracking_data,
316 resource_scores,
317 recommendations,
318 estimation_time: start_time.elapsed(),
319 platform_optimizations: self.identify_platform_optimizations(),
320 })
321 }
322
323 fn perform_basic_analysis(
325 &self,
326 circuit: &[QuantumGate],
327 num_qubits: usize,
328 ) -> Result<BasicResourceAnalysis, QuantRS2Error> {
329 let gate_stats = self.analyze_gate_statistics(circuit)?;
331
332 let topology = self.analyze_circuit_topology(circuit, num_qubits)?;
334
335 let requirements = self.calculate_resource_requirements(&gate_stats, &topology)?;
337
338 let complexity = self.calculate_complexity_metrics(circuit, &topology)?;
340
341 Ok(BasicResourceAnalysis {
342 gate_statistics: gate_stats,
343 circuit_topology: topology,
344 resource_requirements: requirements,
345 complexity_metrics: complexity,
346 num_qubits,
347 circuit_size: circuit.len(),
348 })
349 }
350
351 fn analyze_gate_statistics(
353 &self,
354 circuit: &[QuantumGate],
355 ) -> Result<GateStatistics, QuantRS2Error> {
356 let mut gate_counts = HashMap::new();
357 let mut gate_depths = HashMap::new();
358 let mut gate_patterns = Vec::new();
359
360 let cpu_count = PlatformCapabilities::detect().cpu.logical_cores;
362 if circuit.len() > 1000 && cpu_count > 1 {
363 let chunk_size = circuit.len() / cpu_count;
364 let counts: Vec<HashMap<String, usize>> = circuit
365 .par_chunks(chunk_size)
366 .map(|chunk| {
367 let mut local_counts = HashMap::new();
368 for gate in chunk {
369 let gate_type = format!("{:?}", gate.gate_type());
370 *local_counts.entry(gate_type).or_insert(0) += 1;
371 }
372 local_counts
373 })
374 .collect();
375
376 for local_count in counts {
378 for (gate_type, count) in local_count {
379 *gate_counts.entry(gate_type).or_insert(0) += count;
380 }
381 }
382 } else {
383 for gate in circuit {
385 let gate_type = format!("{:?}", gate.gate_type());
386 *gate_counts.entry(gate_type).or_insert(0) += 1;
387 }
388 }
389
390 gate_patterns = self.detect_gate_patterns(circuit)?;
392
393 gate_depths = self.calculate_gate_depths(circuit)?;
395
396 Ok(GateStatistics {
397 total_gates: circuit.len(),
398 gate_counts,
399 gate_depths,
400 gate_patterns,
401 clifford_count: self.count_clifford_gates(circuit),
402 non_clifford_count: self.count_non_clifford_gates(circuit),
403 two_qubit_count: self.count_two_qubit_gates(circuit),
404 multi_qubit_count: self.count_multi_qubit_gates(circuit),
405 })
406 }
407
408 fn detect_gate_patterns(
410 &self,
411 circuit: &[QuantumGate],
412 ) -> Result<Vec<GatePattern>, QuantRS2Error> {
413 let mut patterns = Vec::new();
414
415 let pattern_checks = vec![
417 ("QFT", self.detect_qft_pattern(circuit)?),
418 ("Grover", self.detect_grover_pattern(circuit)?),
419 ("QAOA", self.detect_qaoa_pattern(circuit)?),
420 ("VQE", self.detect_vqe_pattern(circuit)?),
421 ("Entanglement", self.detect_entanglement_pattern(circuit)?),
422 ];
423
424 for (name, instances_opt) in pattern_checks {
425 if let Some(instances) = instances_opt {
426 patterns.push(GatePattern {
427 pattern_type: name.to_string(),
428 instances,
429 resource_impact: self.estimate_pattern_impact(name),
430 });
431 }
432 }
433
434 Ok(patterns)
435 }
436
437 fn detect_qft_pattern(
439 &self,
440 circuit: &[QuantumGate],
441 ) -> Result<Option<Vec<PatternInstance>>, QuantRS2Error> {
442 let mut instances = Vec::new();
444
445 for i in 0..circuit.len() {
447 if matches!(circuit[i].gate_type(), GateType::H) {
448 let mut has_rotations = false;
450 for j in i + 1..circuit.len().min(i + 10) {
451 if matches!(circuit[j].gate_type(), GateType::Phase(_) | GateType::Rz(_)) {
452 has_rotations = true;
453 break;
454 }
455 }
456
457 if has_rotations {
458 instances.push(PatternInstance {
459 start_index: i,
460 end_index: i + 10,
461 confidence: 0.7,
462 });
463 }
464 }
465 }
466
467 if instances.is_empty() {
468 Ok(None)
469 } else {
470 Ok(Some(instances))
471 }
472 }
473
474 fn detect_grover_pattern(
476 &self,
477 _circuit: &[QuantumGate],
478 ) -> Result<Option<Vec<PatternInstance>>, QuantRS2Error> {
479 Ok(None)
481 }
482
483 fn detect_qaoa_pattern(
485 &self,
486 _circuit: &[QuantumGate],
487 ) -> Result<Option<Vec<PatternInstance>>, QuantRS2Error> {
488 Ok(None)
490 }
491
492 fn detect_vqe_pattern(
494 &self,
495 _circuit: &[QuantumGate],
496 ) -> Result<Option<Vec<PatternInstance>>, QuantRS2Error> {
497 Ok(None)
499 }
500
501 fn detect_entanglement_pattern(
503 &self,
504 circuit: &[QuantumGate],
505 ) -> Result<Option<Vec<PatternInstance>>, QuantRS2Error> {
506 let mut instances = Vec::new();
507
508 for i in 0..circuit.len() {
510 if matches!(circuit[i].gate_type(), GateType::CNOT | GateType::CZ) {
511 let mut j = i + 1;
512 while j < circuit.len()
513 && matches!(circuit[j].gate_type(), GateType::CNOT | GateType::CZ)
514 {
515 j += 1;
516 }
517
518 if j - i >= 3 {
519 instances.push(PatternInstance {
520 start_index: i,
521 end_index: j,
522 confidence: 0.9,
523 });
524 }
525 }
526 }
527
528 if instances.is_empty() {
529 Ok(None)
530 } else {
531 Ok(Some(instances))
532 }
533 }
534
535 fn estimate_pattern_impact(&self, pattern_name: &str) -> f64 {
537 match pattern_name {
538 "QFT" => 2.5, "Grover" => 1.8,
540 "QAOA" => 2.0,
541 "VQE" => 2.2,
542 "Entanglement" => 1.5,
543 _ => 1.0,
544 }
545 }
546
547 fn calculate_gate_depths(
549 &self,
550 circuit: &[QuantumGate],
551 ) -> Result<HashMap<String, usize>, QuantRS2Error> {
552 let mut depths = HashMap::new();
553 let mut qubit_depths = HashMap::new();
554
555 for gate in circuit {
556 let max_depth = gate
557 .target_qubits()
558 .iter()
559 .chain(gate.control_qubits().unwrap_or(&[]).iter())
560 .map(|&q| qubit_depths.get(&q).copied().unwrap_or(0))
561 .max()
562 .unwrap_or(0);
563
564 let new_depth = max_depth + 1;
565
566 for &qubit in gate.target_qubits() {
567 qubit_depths.insert(qubit, new_depth);
568 }
569 for &qubit in gate.control_qubits().unwrap_or(&[]) {
570 qubit_depths.insert(qubit, new_depth);
571 }
572
573 let gate_type = format!("{:?}", gate.gate_type());
574 depths.insert(gate_type, new_depth);
575 }
576
577 Ok(depths)
578 }
579
580 fn count_clifford_gates(&self, circuit: &[QuantumGate]) -> usize {
582 circuit
583 .iter()
584 .filter(|gate| {
585 matches!(
586 gate.gate_type(),
587 GateType::X
588 | GateType::Y
589 | GateType::Z
590 | GateType::H
591 | GateType::S
592 | GateType::CNOT
593 | GateType::CZ
594 )
595 })
596 .count()
597 }
598
599 fn count_non_clifford_gates(&self, circuit: &[QuantumGate]) -> usize {
601 circuit
602 .iter()
603 .filter(|gate| {
604 matches!(
605 gate.gate_type(),
606 GateType::T
607 | GateType::Phase(_)
608 | GateType::Rx(_)
609 | GateType::Ry(_)
610 | GateType::Rz(_)
611 )
612 })
613 .count()
614 }
615
616 fn count_two_qubit_gates(&self, circuit: &[QuantumGate]) -> usize {
618 circuit
619 .iter()
620 .filter(|gate| gate.target_qubits().len() == 2)
621 .count()
622 }
623
624 fn count_multi_qubit_gates(&self, circuit: &[QuantumGate]) -> usize {
626 circuit
627 .iter()
628 .filter(|gate| gate.target_qubits().len() > 2)
629 .count()
630 }
631
632 fn analyze_circuit_topology(
634 &self,
635 circuit: &[QuantumGate],
636 num_qubits: usize,
637 ) -> Result<CircuitTopology, QuantRS2Error> {
638 let mut connectivity = vec![vec![0; num_qubits]; num_qubits];
640 let mut interaction_count = 0;
641
642 for gate in circuit {
643 if gate.target_qubits().len() >= 2 {
644 let q1 = gate.target_qubits()[0];
645 let q2 = gate.target_qubits()[1];
646 connectivity[q1][q2] += 1;
647 connectivity[q2][q1] += 1;
648 interaction_count += 1;
649 }
650 }
651
652 let connectivity_density = if num_qubits > 1 {
654 interaction_count as f64 / ((num_qubits * (num_qubits - 1)) / 2) as f64
655 } else {
656 0.0
657 };
658
659 let max_connections = connectivity
660 .iter()
661 .map(|row| row.iter().filter(|&&x| x > 0).count())
662 .max()
663 .unwrap_or(0);
664
665 let critical_qubits = self.identify_critical_qubits(&connectivity)?;
666
667 Ok(CircuitTopology {
668 num_qubits,
669 connectivity_matrix: connectivity.clone(),
670 connectivity_density,
671 max_connections,
672 critical_qubits,
673 topology_type: self.classify_topology(&connectivity, connectivity_density),
674 })
675 }
676
677 fn identify_critical_qubits(
679 &self,
680 connectivity: &[Vec<usize>],
681 ) -> Result<Vec<usize>, QuantRS2Error> {
682 let mut critical = Vec::new();
683 let avg_connections: f64 = connectivity
684 .iter()
685 .map(|row| row.iter().filter(|&&x| x > 0).count() as f64)
686 .sum::<f64>()
687 / connectivity.len() as f64;
688
689 for (i, row) in connectivity.iter().enumerate() {
690 let connections = row.iter().filter(|&&x| x > 0).count() as f64;
691 if connections > avg_connections * 1.5 {
692 critical.push(i);
693 }
694 }
695
696 Ok(critical)
697 }
698
699 fn classify_topology(&self, _connectivity: &[Vec<usize>], density: f64) -> TopologyType {
701 if density < 0.1 {
702 TopologyType::Sparse
703 } else if density < 0.3 {
704 TopologyType::Regular
705 } else if density < 0.6 {
706 TopologyType::Dense
707 } else {
708 TopologyType::AllToAll
709 }
710 }
711
712 fn calculate_resource_requirements(
714 &self,
715 gate_stats: &GateStatistics,
716 topology: &CircuitTopology,
717 ) -> Result<ResourceRequirements, QuantRS2Error> {
718 let code_distance = self.estimate_code_distance()?;
720 let physical_qubits = self.estimate_physical_qubits(topology.num_qubits, code_distance)?;
721
722 let execution_time = self.estimate_execution_time(gate_stats)?;
724
725 let memory_requirements =
727 self.estimate_memory_requirements(topology.num_qubits, gate_stats)?;
728
729 let magic_states = self.estimate_magic_states(gate_stats)?;
731
732 Ok(ResourceRequirements {
733 logical_qubits: topology.num_qubits,
734 physical_qubits,
735 code_distance,
736 execution_time,
737 memory_requirements,
738 magic_states,
739 error_budget: self.calculate_error_budget()?,
740 })
741 }
742
743 fn estimate_code_distance(&self) -> Result<usize, QuantRS2Error> {
745 let p = self.config.base_config.physical_error_rate;
746 let p_target = self.config.base_config.target_logical_error_rate;
747
748 let threshold = 0.01; if p > threshold {
750 return Err(QuantRS2Error::InvalidInput(
751 "Physical error rate too high".into(),
752 ));
753 }
754
755 let distance = ((-p_target.log10()) / (-p.log10())).ceil() as usize;
756 Ok(distance.max(3))
757 }
758
759 fn estimate_physical_qubits(
761 &self,
762 logical_qubits: usize,
763 code_distance: usize,
764 ) -> Result<usize, QuantRS2Error> {
765 let qubits_per_logical = match self.config.base_config.error_correction_code {
766 ErrorCorrectionCode::SurfaceCode => 2 * code_distance * code_distance,
767 ErrorCorrectionCode::ColorCode => 3 * code_distance * code_distance,
768 _ => code_distance * code_distance,
769 };
770
771 Ok(logical_qubits * qubits_per_logical)
772 }
773
774 fn estimate_execution_time(&self, gate_stats: &GateStatistics) -> Result<f64, QuantRS2Error> {
776 let mut total_time = 0.0;
777
778 let gate_times = self.get_gate_times()?;
780
781 for (gate_type, count) in &gate_stats.gate_counts {
782 let time = gate_times.get(gate_type).copied().unwrap_or(1e-6);
783 total_time += time * (*count as f64);
784 }
785
786 total_time *= 1.5;
788
789 Ok(total_time)
790 }
791
792 fn get_gate_times(&self) -> Result<HashMap<String, f64>, QuantRS2Error> {
794 let mut times = HashMap::new();
795
796 match self.config.base_config.hardware_platform {
797 HardwarePlatform::Superconducting => {
798 times.insert("X".to_string(), 20e-9);
799 times.insert("Y".to_string(), 20e-9);
800 times.insert("Z".to_string(), 1e-9);
801 times.insert("H".to_string(), 20e-9);
802 times.insert("CNOT".to_string(), 40e-9);
803 times.insert("T".to_string(), 20e-9);
804 }
805 HardwarePlatform::TrappedIon => {
806 times.insert("X".to_string(), 10e-6);
807 times.insert("Y".to_string(), 10e-6);
808 times.insert("Z".to_string(), 1e-6);
809 times.insert("H".to_string(), 10e-6);
810 times.insert("CNOT".to_string(), 100e-6);
811 times.insert("T".to_string(), 10e-6);
812 }
813 _ => {
814 times.insert("X".to_string(), 1e-6);
816 times.insert("Y".to_string(), 1e-6);
817 times.insert("Z".to_string(), 1e-6);
818 times.insert("H".to_string(), 1e-6);
819 times.insert("CNOT".to_string(), 2e-6);
820 times.insert("T".to_string(), 1e-6);
821 }
822 }
823
824 Ok(times)
825 }
826
827 fn estimate_memory_requirements(
829 &self,
830 num_qubits: usize,
831 gate_stats: &GateStatistics,
832 ) -> Result<MemoryRequirements, QuantRS2Error> {
833 let state_vector_size = (1 << num_qubits) * 16; let gate_memory = gate_stats.total_gates * 64; let workspace = state_vector_size / 2; Ok(MemoryRequirements {
838 state_vector_memory: state_vector_size,
839 gate_storage_memory: gate_memory,
840 workspace_memory: workspace,
841 total_memory: state_vector_size + gate_memory + workspace,
842 memory_bandwidth: self.estimate_memory_bandwidth(gate_stats)?,
843 })
844 }
845
846 fn estimate_memory_bandwidth(&self, gate_stats: &GateStatistics) -> Result<f64, QuantRS2Error> {
848 let ops_per_second = 1e9; let bytes_per_op = 32.0; Ok(ops_per_second * bytes_per_op / 1e9)
853 }
854
855 fn estimate_magic_states(&self, gate_stats: &GateStatistics) -> Result<usize, QuantRS2Error> {
857 let t_gates = gate_stats.non_clifford_count;
858
859 let overhead = match self.config.base_config.estimation_mode {
861 EstimationMode::Conservative => 15,
862 EstimationMode::Optimistic => 10,
863 EstimationMode::Realistic => 12,
864 };
865
866 Ok(t_gates * overhead)
867 }
868
869 fn calculate_error_budget(&self) -> Result<ErrorBudget, QuantRS2Error> {
871 let total = self.config.base_config.target_logical_error_rate;
872
873 Ok(ErrorBudget {
874 total_budget: total,
875 gate_errors: total * 0.4,
876 measurement_errors: total * 0.2,
877 idle_errors: total * 0.2,
878 crosstalk_errors: total * 0.1,
879 readout_errors: total * 0.1,
880 })
881 }
882
883 fn calculate_complexity_metrics(
885 &self,
886 circuit: &[QuantumGate],
887 topology: &CircuitTopology,
888 ) -> Result<ComplexityMetrics, QuantRS2Error> {
889 let t_complexity = circuit
891 .iter()
892 .filter(|g| matches!(g.gate_type(), GateType::T))
893 .count();
894
895 let t_depth = self.calculate_t_depth(circuit)?;
897
898 let circuit_volume = topology.num_qubits * circuit.len();
900
901 let communication_complexity = topology.connectivity_density * topology.num_qubits as f64;
903
904 let entanglement_complexity = self.estimate_entanglement_complexity(circuit)?;
906
907 Ok(ComplexityMetrics {
908 t_complexity,
909 t_depth,
910 circuit_volume,
911 communication_complexity,
912 entanglement_complexity,
913 algorithmic_complexity: self.classify_algorithmic_complexity(circuit)?,
914 })
915 }
916
917 fn calculate_t_depth(&self, circuit: &[QuantumGate]) -> Result<usize, QuantRS2Error> {
919 let mut qubit_t_depths = HashMap::new();
920 let mut max_t_depth = 0;
921
922 for gate in circuit {
923 if matches!(gate.gate_type(), GateType::T) {
924 let current_depth = gate
925 .target_qubits()
926 .iter()
927 .map(|&q| qubit_t_depths.get(&q).copied().unwrap_or(0))
928 .max()
929 .unwrap_or(0);
930
931 let new_depth = current_depth + 1;
932 for &qubit in gate.target_qubits() {
933 qubit_t_depths.insert(qubit, new_depth);
934 max_t_depth = max_t_depth.max(new_depth);
935 }
936 }
937 }
938
939 Ok(max_t_depth)
940 }
941
942 fn estimate_entanglement_complexity(
944 &self,
945 circuit: &[QuantumGate],
946 ) -> Result<f64, QuantRS2Error> {
947 let entangling_gates = circuit
948 .iter()
949 .filter(|g| g.target_qubits().len() >= 2)
950 .count();
951
952 let total_gates = circuit.len().max(1);
953 Ok(entangling_gates as f64 / total_gates as f64)
954 }
955
956 fn classify_algorithmic_complexity(
958 &self,
959 circuit: &[QuantumGate],
960 ) -> Result<String, QuantRS2Error> {
961 let depth = circuit.len();
962 let two_qubit_ratio =
963 self.count_two_qubit_gates(circuit) as f64 / circuit.len().max(1) as f64;
964
965 if depth < 100 && two_qubit_ratio < 0.2 {
966 Ok("Low (BQP-easy)".to_string())
967 } else if depth < 1000 && two_qubit_ratio < 0.5 {
968 Ok("Medium (BQP-intermediate)".to_string())
969 } else {
970 Ok("High (BQP-hard)".to_string())
971 }
972 }
973
974 fn calculate_resource_scores(
976 &self,
977 basic: &BasicResourceAnalysis,
978 ml_predictions: &Option<MLPredictions>,
979 ) -> ResourceScores {
980 let efficiency_score = self.calculate_efficiency_score(basic);
981 let scalability_score = self.calculate_scalability_score(basic);
982 let feasibility_score = self.calculate_feasibility_score(basic, ml_predictions);
983 let optimization_potential = self.calculate_optimization_potential(basic);
984
985 ResourceScores {
986 overall_score: (efficiency_score + scalability_score + feasibility_score) / 3.0,
987 efficiency_score,
988 scalability_score,
989 feasibility_score,
990 optimization_potential,
991 readiness_level: self.determine_readiness_level(feasibility_score),
992 }
993 }
994
995 fn calculate_efficiency_score(&self, basic: &BasicResourceAnalysis) -> f64 {
997 let gate_efficiency = 1.0 / (1.0 + basic.gate_statistics.total_gates as f64 / 1000.0);
998 let depth_efficiency = 1.0 / (1.0 + basic.complexity_metrics.t_depth as f64 / 100.0);
999 let qubit_efficiency = 1.0 / (1.0 + basic.num_qubits as f64 / 50.0);
1000
1001 (gate_efficiency + depth_efficiency + qubit_efficiency) / 3.0
1002 }
1003
1004 fn calculate_scalability_score(&self, basic: &BasicResourceAnalysis) -> f64 {
1006 let connectivity_score = 1.0 - basic.circuit_topology.connectivity_density.min(1.0);
1007 let volume_score = 1.0 / (1.0 + (basic.complexity_metrics.circuit_volume as f64).log10());
1008
1009 (connectivity_score + volume_score) / 2.0
1010 }
1011
1012 fn calculate_feasibility_score(
1014 &self,
1015 basic: &BasicResourceAnalysis,
1016 ml_predictions: &Option<MLPredictions>,
1017 ) -> f64 {
1018 let base_score = if basic.resource_requirements.physical_qubits < 1000 {
1019 0.9
1020 } else if basic.resource_requirements.physical_qubits < 10000 {
1021 0.6
1022 } else {
1023 0.3
1024 };
1025
1026 if let Some(predictions) = ml_predictions {
1027 (base_score + predictions.feasibility_confidence) / 2.0
1028 } else {
1029 base_score
1030 }
1031 }
1032
1033 fn calculate_optimization_potential(&self, basic: &BasicResourceAnalysis) -> f64 {
1035 let pattern_potential = basic.gate_statistics.gate_patterns.len() as f64 * 0.1;
1036 let redundancy_potential = 0.2; (pattern_potential + redundancy_potential).min(1.0)
1039 }
1040
1041 fn determine_readiness_level(&self, feasibility_score: f64) -> ReadinessLevel {
1043 if feasibility_score > 0.8 {
1044 ReadinessLevel::ProductionReady
1045 } else if feasibility_score > 0.6 {
1046 ReadinessLevel::Experimental
1047 } else if feasibility_score > 0.4 {
1048 ReadinessLevel::Research
1049 } else {
1050 ReadinessLevel::Theoretical
1051 }
1052 }
1053
1054 fn generate_recommendations(
1056 &self,
1057 basic: &BasicResourceAnalysis,
1058 ml_predictions: &Option<MLPredictions>,
1059 cost_analysis: &Option<CostAnalysisResult>,
1060 optimization_strategies: &Option<Vec<OptimizationStrategy>>,
1061 ) -> Result<Vec<Recommendation>, QuantRS2Error> {
1062 let mut recommendations = Vec::new();
1063
1064 if basic.gate_statistics.non_clifford_count > 100 {
1066 recommendations.push(Recommendation {
1067 category: RecommendationCategory::Optimization,
1068 priority: Priority::High,
1069 title: "Reduce T-gate count".to_string(),
1070 description:
1071 "High number of non-Clifford gates detected. Consider T-gate optimization."
1072 .to_string(),
1073 expected_impact: Impact::Significant,
1074 implementation_effort: Effort::Medium,
1075 });
1076 }
1077
1078 if let Some(predictions) = ml_predictions {
1080 for suggestion in &predictions.optimization_suggestions {
1081 recommendations.push(Recommendation {
1082 category: RecommendationCategory::MLSuggestion,
1083 priority: Priority::Medium,
1084 title: suggestion.clone(),
1085 description: "ML-based optimization suggestion".to_string(),
1086 expected_impact: Impact::Moderate,
1087 implementation_effort: Effort::Low,
1088 });
1089 }
1090 }
1091
1092 if let Some(costs) = cost_analysis {
1094 if costs.total_estimated_cost > 1000.0 {
1095 recommendations.push(Recommendation {
1096 category: RecommendationCategory::Cost,
1097 priority: Priority::High,
1098 title: "Consider cost optimization".to_string(),
1099 description: format!(
1100 "Estimated cost ${:.2} is high. Consider circuit optimization.",
1101 costs.total_estimated_cost
1102 ),
1103 expected_impact: Impact::Significant,
1104 implementation_effort: Effort::High,
1105 });
1106 }
1107 }
1108
1109 if let Some(strategies) = optimization_strategies {
1111 for strategy in strategies.iter().take(3) {
1112 recommendations.push(Recommendation {
1113 category: RecommendationCategory::Strategy,
1114 priority: Priority::Medium,
1115 title: strategy.name.clone(),
1116 description: strategy.description.clone(),
1117 expected_impact: Impact::Moderate,
1118 implementation_effort: Effort::Medium,
1119 });
1120 }
1121 }
1122
1123 Ok(recommendations)
1124 }
1125
1126 fn identify_platform_optimizations(&self) -> Vec<PlatformOptimization> {
1128 let mut optimizations = Vec::new();
1129
1130 if self.platform_capabilities.simd_available() {
1131 optimizations.push(PlatformOptimization {
1132 platform_feature: "SIMD".to_string(),
1133 optimization_type: "Vectorized state operations".to_string(),
1134 expected_speedup: 2.5,
1135 applicable: true,
1136 });
1137 }
1138
1139 let cpu_count = PlatformCapabilities::detect().cpu.logical_cores;
1140 if cpu_count > 4 {
1141 optimizations.push(PlatformOptimization {
1142 platform_feature: "Multi-core".to_string(),
1143 optimization_type: "Parallel gate execution".to_string(),
1144 expected_speedup: cpu_count as f64 * 0.7,
1145 applicable: true,
1146 });
1147 }
1148
1149 optimizations
1150 }
1151
1152 pub fn start_monitoring(&mut self) -> Result<(), QuantRS2Error> {
1154 self.realtime_tracker.start_monitoring()
1155 }
1156
1157 pub fn stop_monitoring(&mut self) -> Result<MonitoringReport, QuantRS2Error> {
1159 self.realtime_tracker.stop_monitoring()
1160 }
1161
1162 pub fn export_report(
1164 &self,
1165 estimate: &EnhancedResourceEstimate,
1166 format: ReportFormat,
1167 ) -> Result<String, QuantRS2Error> {
1168 match format {
1169 ReportFormat::JSON => self.export_json_report(estimate),
1170 ReportFormat::HTML => self.export_html_report(estimate),
1171 ReportFormat::PDF => self.export_pdf_report(estimate),
1172 ReportFormat::Markdown => self.export_markdown_report(estimate),
1173 ReportFormat::LaTeX => self.export_latex_report(estimate),
1174 _ => Err(QuantRS2Error::UnsupportedOperation(
1175 "Format not supported".into(),
1176 )),
1177 }
1178 }
1179
1180 fn export_json_report(
1182 &self,
1183 estimate: &EnhancedResourceEstimate,
1184 ) -> Result<String, QuantRS2Error> {
1185 serde_json::to_string_pretty(estimate).map_err(|e| {
1186 QuantRS2Error::ComputationError(format!("JSON serialization failed: {}", e))
1187 })
1188 }
1189
1190 fn export_html_report(
1192 &self,
1193 estimate: &EnhancedResourceEstimate,
1194 ) -> Result<String, QuantRS2Error> {
1195 let mut html = String::new();
1196 html.push_str(
1197 "<!DOCTYPE html><html><head><title>Resource Estimation Report</title></head><body>",
1198 );
1199 html.push_str("<h1>Enhanced Resource Estimation Report</h1>");
1200 html.push_str(&format!(
1201 "<p>Estimation Time: {:?}</p>",
1202 estimate.estimation_time
1203 ));
1204 html.push_str(&format!(
1205 "<p>Overall Score: {:.2}</p>",
1206 estimate.resource_scores.overall_score
1207 ));
1208 html.push_str("</body></html>");
1209 Ok(html)
1210 }
1211
1212 fn export_pdf_report(
1214 &self,
1215 _estimate: &EnhancedResourceEstimate,
1216 ) -> Result<String, QuantRS2Error> {
1217 Ok("PDF export not implemented".to_string())
1219 }
1220
1221 fn export_markdown_report(
1223 &self,
1224 estimate: &EnhancedResourceEstimate,
1225 ) -> Result<String, QuantRS2Error> {
1226 let mut md = String::new();
1227 md.push_str("# Enhanced Resource Estimation Report\n\n");
1228 md.push_str(&format!(
1229 "**Estimation Time**: {:?}\n\n",
1230 estimate.estimation_time
1231 ));
1232 md.push_str("## Resource Scores\n\n");
1233 md.push_str(&format!(
1234 "- Overall Score: {:.2}\n",
1235 estimate.resource_scores.overall_score
1236 ));
1237 md.push_str(&format!(
1238 "- Efficiency: {:.2}\n",
1239 estimate.resource_scores.efficiency_score
1240 ));
1241 md.push_str(&format!(
1242 "- Scalability: {:.2}\n",
1243 estimate.resource_scores.scalability_score
1244 ));
1245 md.push_str(&format!(
1246 "- Feasibility: {:.2}\n",
1247 estimate.resource_scores.feasibility_score
1248 ));
1249 Ok(md)
1250 }
1251
1252 fn export_latex_report(
1254 &self,
1255 _estimate: &EnhancedResourceEstimate,
1256 ) -> Result<String, QuantRS2Error> {
1257 Ok("\\documentclass{article}\n\\begin{document}\nResource Estimation Report\n\\end{document}".to_string())
1258 }
1259}
1260
1261#[derive(Debug, Clone, Serialize, Deserialize)]
1263pub struct EnhancedResourceEstimate {
1264 pub basic_resources: BasicResourceAnalysis,
1265 pub ml_predictions: Option<MLPredictions>,
1266 pub cost_analysis: Option<CostAnalysisResult>,
1267 pub optimization_strategies: Option<Vec<OptimizationStrategy>>,
1268 pub comparative_results: Option<ComparativeAnalysis>,
1269 pub hardware_recommendations: Option<Vec<HardwareRecommendation>>,
1270 pub scaling_predictions: Option<ScalingPredictions>,
1271 pub visual_representations: HashMap<String, VisualRepresentation>,
1272 pub tracking_data: Option<TrackingData>,
1273 pub resource_scores: ResourceScores,
1274 pub recommendations: Vec<Recommendation>,
1275 pub estimation_time: std::time::Duration,
1276 pub platform_optimizations: Vec<PlatformOptimization>,
1277}
1278
1279#[derive(Debug, Clone)]
1281pub struct EstimationOptions {
1282 pub target_platforms: Vec<CloudPlatform>,
1283 pub optimization_level: OptimizationLevel,
1284 pub include_alternatives: bool,
1285 pub max_alternatives: usize,
1286}
1287
1288#[derive(Debug, Clone, Copy)]
1290pub enum OptimizationLevel {
1291 None,
1292 Basic,
1293 Aggressive,
1294 Maximum,
1295}
1296
1297#[derive(Debug, Clone, Serialize, Deserialize)]
1299pub struct BasicResourceAnalysis {
1300 pub gate_statistics: GateStatistics,
1301 pub circuit_topology: CircuitTopology,
1302 pub resource_requirements: ResourceRequirements,
1303 pub complexity_metrics: ComplexityMetrics,
1304 pub num_qubits: usize,
1305 pub circuit_size: usize,
1306}
1307
1308#[derive(Debug, Clone, Serialize, Deserialize)]
1310pub struct GateStatistics {
1311 pub total_gates: usize,
1312 pub gate_counts: HashMap<String, usize>,
1313 pub gate_depths: HashMap<String, usize>,
1314 pub gate_patterns: Vec<GatePattern>,
1315 pub clifford_count: usize,
1316 pub non_clifford_count: usize,
1317 pub two_qubit_count: usize,
1318 pub multi_qubit_count: usize,
1319}
1320
1321#[derive(Debug, Clone, Serialize, Deserialize)]
1323pub struct GatePattern {
1324 pub pattern_type: String,
1325 pub instances: Vec<PatternInstance>,
1326 pub resource_impact: f64,
1327}
1328
1329#[derive(Debug, Clone, Serialize, Deserialize)]
1331pub struct PatternInstance {
1332 pub start_index: usize,
1333 pub end_index: usize,
1334 pub confidence: f64,
1335}
1336
1337#[derive(Debug, Clone, Serialize, Deserialize)]
1339pub struct CircuitTopology {
1340 pub num_qubits: usize,
1341 pub connectivity_matrix: Vec<Vec<usize>>,
1342 pub connectivity_density: f64,
1343 pub max_connections: usize,
1344 pub critical_qubits: Vec<usize>,
1345 pub topology_type: TopologyType,
1346}
1347
1348#[derive(Debug, Clone, Serialize, Deserialize)]
1350pub enum TopologyType {
1351 Sparse,
1352 Regular,
1353 Dense,
1354 AllToAll,
1355}
1356
1357#[derive(Debug, Clone, Serialize, Deserialize)]
1359pub struct ResourceRequirements {
1360 pub logical_qubits: usize,
1361 pub physical_qubits: usize,
1362 pub code_distance: usize,
1363 pub execution_time: f64,
1364 pub memory_requirements: MemoryRequirements,
1365 pub magic_states: usize,
1366 pub error_budget: ErrorBudget,
1367}
1368
1369#[derive(Debug, Clone, Serialize, Deserialize)]
1371pub struct MemoryRequirements {
1372 pub state_vector_memory: usize,
1373 pub gate_storage_memory: usize,
1374 pub workspace_memory: usize,
1375 pub total_memory: usize,
1376 pub memory_bandwidth: f64,
1377}
1378
1379#[derive(Debug, Clone, Serialize, Deserialize)]
1381pub struct ErrorBudget {
1382 pub total_budget: f64,
1383 pub gate_errors: f64,
1384 pub measurement_errors: f64,
1385 pub idle_errors: f64,
1386 pub crosstalk_errors: f64,
1387 pub readout_errors: f64,
1388}
1389
1390#[derive(Debug, Clone, Serialize, Deserialize)]
1392pub struct ComplexityMetrics {
1393 pub t_complexity: usize,
1394 pub t_depth: usize,
1395 pub circuit_volume: usize,
1396 pub communication_complexity: f64,
1397 pub entanglement_complexity: f64,
1398 pub algorithmic_complexity: String,
1399}
1400
1401#[derive(Debug, Clone, Serialize, Deserialize)]
1403pub struct MLPredictions {
1404 pub predicted_runtime: f64,
1405 pub predicted_success_rate: f64,
1406 pub resource_scaling: HashMap<String, f64>,
1407 pub optimization_suggestions: Vec<String>,
1408 pub anomaly_detection: Vec<ResourceAnomaly>,
1409 pub confidence_intervals: ConfidenceIntervals,
1410 pub feasibility_confidence: f64,
1411}
1412
1413#[derive(Debug, Clone, Serialize, Deserialize)]
1415pub struct ResourceAnomaly {
1416 pub anomaly_type: String,
1417 pub severity: AnomalySeverity,
1418 pub description: String,
1419 pub location: String,
1420}
1421
1422#[derive(Debug, Clone, Serialize, Deserialize)]
1424pub enum AnomalySeverity {
1425 Low,
1426 Medium,
1427 High,
1428 Critical,
1429}
1430
1431#[derive(Debug, Clone, Serialize, Deserialize)]
1433pub struct ConfidenceIntervals {
1434 pub runtime_ci: (f64, f64),
1435 pub success_rate_ci: (f64, f64),
1436 pub resource_ci: (f64, f64),
1437}
1438
1439#[derive(Debug, Clone, Serialize, Deserialize)]
1441pub struct CostAnalysisResult {
1442 pub platform_costs: HashMap<String, PlatformCost>,
1443 pub total_estimated_cost: f64,
1444 pub cost_breakdown: CostBreakdown,
1445 pub cost_optimization_opportunities: Vec<CostOptimization>,
1446}
1447
1448#[derive(Debug, Clone, Serialize, Deserialize)]
1450pub struct PlatformCost {
1451 pub platform: CloudPlatform,
1452 pub estimated_cost: f64,
1453 pub cost_per_shot: f64,
1454 pub setup_cost: f64,
1455 pub runtime_cost: f64,
1456}
1457
1458#[derive(Debug, Clone, Serialize, Deserialize)]
1460pub struct CostBreakdown {
1461 pub compute_cost: f64,
1462 pub storage_cost: f64,
1463 pub network_cost: f64,
1464 pub overhead_cost: f64,
1465}
1466
1467#[derive(Debug, Clone, Serialize, Deserialize)]
1469pub struct CostOptimization {
1470 pub optimization_type: String,
1471 pub potential_savings: f64,
1472 pub implementation_effort: Effort,
1473}
1474
1475#[derive(Debug, Clone, Serialize, Deserialize)]
1477pub struct OptimizationStrategy {
1478 pub name: String,
1479 pub description: String,
1480 pub expected_improvement: ResourceImprovement,
1481 pub implementation_steps: Vec<String>,
1482 pub risk_assessment: RiskAssessment,
1483}
1484
1485#[derive(Debug, Clone, Serialize, Deserialize)]
1487pub struct ResourceImprovement {
1488 pub qubit_reduction: f64,
1489 pub depth_reduction: f64,
1490 pub gate_reduction: f64,
1491 pub time_reduction: f64,
1492}
1493
1494#[derive(Debug, Clone, Serialize, Deserialize)]
1496pub struct RiskAssessment {
1497 pub risk_level: RiskLevel,
1498 pub potential_issues: Vec<String>,
1499 pub mitigation_strategies: Vec<String>,
1500}
1501
1502#[derive(Debug, Clone, Serialize, Deserialize)]
1504pub enum RiskLevel {
1505 Low,
1506 Medium,
1507 High,
1508}
1509
1510#[derive(Debug, Clone, Serialize, Deserialize)]
1512pub struct ComparativeAnalysis {
1513 pub approach_comparisons: Vec<ApproachComparison>,
1514 pub best_approach: String,
1515 pub tradeoff_analysis: TradeoffAnalysis,
1516}
1517
1518#[derive(Debug, Clone, Serialize, Deserialize)]
1520pub struct ApproachComparison {
1521 pub approach_name: String,
1522 pub resources: ResourceRequirements,
1523 pub advantages: Vec<String>,
1524 pub disadvantages: Vec<String>,
1525 pub suitability_score: f64,
1526}
1527
1528#[derive(Debug, Clone, Serialize, Deserialize)]
1530pub struct TradeoffAnalysis {
1531 pub pareto_optimal: Vec<String>,
1532 pub dominated_approaches: Vec<String>,
1533 pub tradeoff_recommendations: Vec<String>,
1534}
1535
1536#[derive(Debug, Clone, Serialize, Deserialize)]
1538pub struct HardwareRecommendation {
1539 pub hardware_platform: HardwarePlatform,
1540 pub suitability_score: f64,
1541 pub pros: Vec<String>,
1542 pub cons: Vec<String>,
1543 pub specific_optimizations: Vec<String>,
1544}
1545
1546#[derive(Debug, Clone, Serialize, Deserialize)]
1548pub struct ScalingPredictions {
1549 pub qubit_scaling: Vec<ScalingPoint>,
1550 pub depth_scaling: Vec<ScalingPoint>,
1551 pub resource_scaling: Vec<ScalingPoint>,
1552 pub feasibility_threshold: FeasibilityThreshold,
1553}
1554
1555#[derive(Debug, Clone, Serialize, Deserialize)]
1557pub struct ScalingPoint {
1558 pub problem_size: usize,
1559 pub resource_value: f64,
1560 pub confidence: f64,
1561}
1562
1563#[derive(Debug, Clone, Serialize, Deserialize)]
1565pub struct FeasibilityThreshold {
1566 pub current_tech_limit: usize,
1567 pub near_term_limit: usize,
1568 pub fault_tolerant_limit: usize,
1569}
1570
1571#[derive(Debug, Clone, Serialize, Deserialize)]
1573pub struct VisualRepresentation {
1574 pub format: String,
1575 pub content: String,
1576}
1577
1578#[derive(Debug, Clone, Serialize, Deserialize)]
1580pub struct TrackingData {
1581 pub resource_timeline: Vec<ResourceSnapshot>,
1582 pub peak_usage: PeakUsage,
1583 pub usage_patterns: Vec<UsagePattern>,
1584}
1585
1586#[derive(Debug, Clone, Serialize, Deserialize)]
1588pub struct ResourceSnapshot {
1589 pub timestamp: u64,
1590 pub memory_usage: usize,
1591 pub cpu_usage: f64,
1592 pub active_gates: usize,
1593}
1594
1595#[derive(Debug, Clone, Serialize, Deserialize)]
1597pub struct PeakUsage {
1598 pub peak_memory: usize,
1599 pub peak_cpu: f64,
1600 pub peak_timestamp: u64,
1601}
1602
1603#[derive(Debug, Clone, Serialize, Deserialize)]
1605pub struct UsagePattern {
1606 pub pattern_type: String,
1607 pub frequency: usize,
1608 pub impact: String,
1609}
1610
1611#[derive(Debug, Clone, Serialize, Deserialize)]
1613pub struct ResourceScores {
1614 pub overall_score: f64,
1615 pub efficiency_score: f64,
1616 pub scalability_score: f64,
1617 pub feasibility_score: f64,
1618 pub optimization_potential: f64,
1619 pub readiness_level: ReadinessLevel,
1620}
1621
1622#[derive(Debug, Clone, Serialize, Deserialize)]
1624pub enum ReadinessLevel {
1625 Theoretical,
1626 Research,
1627 Experimental,
1628 ProductionReady,
1629}
1630
1631#[derive(Debug, Clone, Serialize, Deserialize)]
1633pub struct Recommendation {
1634 pub category: RecommendationCategory,
1635 pub priority: Priority,
1636 pub title: String,
1637 pub description: String,
1638 pub expected_impact: Impact,
1639 pub implementation_effort: Effort,
1640}
1641
1642#[derive(Debug, Clone, Serialize, Deserialize)]
1644pub enum RecommendationCategory {
1645 Optimization,
1646 Cost,
1647 Hardware,
1648 Algorithm,
1649 MLSuggestion,
1650 Strategy,
1651}
1652
1653#[derive(Debug, Clone, Serialize, Deserialize)]
1655pub enum Priority {
1656 Low,
1657 Medium,
1658 High,
1659 Critical,
1660}
1661
1662#[derive(Debug, Clone, Serialize, Deserialize)]
1664pub enum Impact {
1665 Minor,
1666 Moderate,
1667 Significant,
1668 Transformative,
1669}
1670
1671#[derive(Debug, Clone, Serialize, Deserialize)]
1673pub enum Effort {
1674 Low,
1675 Medium,
1676 High,
1677 VeryHigh,
1678}
1679
1680#[derive(Debug, Clone, Serialize, Deserialize)]
1682pub struct PlatformOptimization {
1683 pub platform_feature: String,
1684 pub optimization_type: String,
1685 pub expected_speedup: f64,
1686 pub applicable: bool,
1687}
1688
1689#[derive(Debug, Clone)]
1691pub struct MonitoringReport {
1692 pub monitoring_duration: std::time::Duration,
1693 pub resource_usage: TrackingData,
1694 pub anomalies_detected: Vec<ResourceAnomaly>,
1695 pub optimization_opportunities: Vec<String>,
1696}
1697
1698#[derive(Debug)]
1701pub struct MLResourcePredictor {}
1702
1703impl MLResourcePredictor {
1704 pub fn new() -> Self {
1705 Self {}
1706 }
1707
1708 pub fn predict_resources(
1709 &self,
1710 _circuit: &[QuantumGate],
1711 basic: &BasicResourceAnalysis,
1712 ) -> Result<MLPredictions, QuantRS2Error> {
1713 Ok(MLPredictions {
1714 predicted_runtime: basic.resource_requirements.execution_time * 1.1,
1715 predicted_success_rate: 0.95,
1716 resource_scaling: HashMap::new(),
1717 optimization_suggestions: vec!["Consider gate fusion".to_string()],
1718 anomaly_detection: Vec::new(),
1719 confidence_intervals: ConfidenceIntervals {
1720 runtime_ci: (
1721 basic.resource_requirements.execution_time * 0.9,
1722 basic.resource_requirements.execution_time * 1.2,
1723 ),
1724 success_rate_ci: (0.92, 0.98),
1725 resource_ci: (0.8, 1.2),
1726 },
1727 feasibility_confidence: 0.85,
1728 })
1729 }
1730}
1731
1732#[derive(Debug)]
1733pub struct CostAnalyzer {}
1734
1735impl CostAnalyzer {
1736 pub fn new() -> Self {
1737 Self {}
1738 }
1739
1740 pub fn analyze_costs(
1741 &self,
1742 _circuit: &[QuantumGate],
1743 basic: &BasicResourceAnalysis,
1744 options: &EstimationOptions,
1745 ) -> Result<CostAnalysisResult, QuantRS2Error> {
1746 let mut platform_costs = HashMap::new();
1747
1748 for platform in &options.target_platforms {
1749 let cost = match platform {
1750 CloudPlatform::IBMQ => basic.resource_requirements.execution_time * 0.05,
1751 CloudPlatform::AzureQuantum => basic.resource_requirements.execution_time * 0.08,
1752 CloudPlatform::AmazonBraket => basic.resource_requirements.execution_time * 0.06,
1753 _ => basic.resource_requirements.execution_time * 0.07,
1754 };
1755
1756 platform_costs.insert(
1757 format!("{:?}", platform),
1758 PlatformCost {
1759 platform: *platform,
1760 estimated_cost: cost * 1000.0, cost_per_shot: cost,
1762 setup_cost: 10.0,
1763 runtime_cost: cost * 990.0,
1764 },
1765 );
1766 }
1767
1768 Ok(CostAnalysisResult {
1769 platform_costs,
1770 total_estimated_cost: 500.0,
1771 cost_breakdown: CostBreakdown {
1772 compute_cost: 400.0,
1773 storage_cost: 50.0,
1774 network_cost: 30.0,
1775 overhead_cost: 20.0,
1776 },
1777 cost_optimization_opportunities: vec![CostOptimization {
1778 optimization_type: "Reduce circuit depth".to_string(),
1779 potential_savings: 100.0,
1780 implementation_effort: Effort::Medium,
1781 }],
1782 })
1783 }
1784}
1785
1786#[derive(Debug)]
1787pub struct OptimizationEngine {}
1788
1789impl OptimizationEngine {
1790 pub fn new() -> Self {
1791 Self {}
1792 }
1793
1794 pub fn generate_strategies(
1795 &self,
1796 _circuit: &[QuantumGate],
1797 _basic: &BasicResourceAnalysis,
1798 objectives: &[OptimizationObjective],
1799 ) -> Result<Vec<OptimizationStrategy>, QuantRS2Error> {
1800 let mut strategies = Vec::new();
1801
1802 for objective in objectives {
1803 strategies.push(OptimizationStrategy {
1804 name: format!("Strategy for {:?}", objective),
1805 description: "Optimization strategy based on objective".to_string(),
1806 expected_improvement: ResourceImprovement {
1807 qubit_reduction: 0.1,
1808 depth_reduction: 0.2,
1809 gate_reduction: 0.15,
1810 time_reduction: 0.25,
1811 },
1812 implementation_steps: vec!["Step 1".to_string(), "Step 2".to_string()],
1813 risk_assessment: RiskAssessment {
1814 risk_level: RiskLevel::Low,
1815 potential_issues: Vec::new(),
1816 mitigation_strategies: Vec::new(),
1817 },
1818 });
1819 }
1820
1821 Ok(strategies)
1822 }
1823}
1824
1825#[derive(Debug)]
1826pub struct ComparativeAnalyzer {}
1827
1828impl ComparativeAnalyzer {
1829 pub fn new() -> Self {
1830 Self {}
1831 }
1832
1833 pub fn compare_approaches(
1834 &self,
1835 _circuit: &[QuantumGate],
1836 basic: &BasicResourceAnalysis,
1837 ) -> Result<ComparativeAnalysis, QuantRS2Error> {
1838 Ok(ComparativeAnalysis {
1839 approach_comparisons: vec![ApproachComparison {
1840 approach_name: "Current approach".to_string(),
1841 resources: basic.resource_requirements.clone(),
1842 advantages: vec!["Straightforward".to_string()],
1843 disadvantages: vec!["Resource intensive".to_string()],
1844 suitability_score: 0.7,
1845 }],
1846 best_approach: "Current approach".to_string(),
1847 tradeoff_analysis: TradeoffAnalysis {
1848 pareto_optimal: vec!["Current approach".to_string()],
1849 dominated_approaches: Vec::new(),
1850 tradeoff_recommendations: vec!["Consider optimization".to_string()],
1851 },
1852 })
1853 }
1854}
1855
1856#[derive(Debug)]
1857pub struct RealtimeResourceTracker {}
1858
1859impl RealtimeResourceTracker {
1860 pub fn new() -> Self {
1861 Self {}
1862 }
1863
1864 pub fn start_monitoring(&mut self) -> Result<(), QuantRS2Error> {
1865 Ok(())
1866 }
1867
1868 pub fn stop_monitoring(&mut self) -> Result<MonitoringReport, QuantRS2Error> {
1869 Ok(MonitoringReport {
1870 monitoring_duration: std::time::Duration::from_secs(60),
1871 resource_usage: TrackingData {
1872 resource_timeline: Vec::new(),
1873 peak_usage: PeakUsage {
1874 peak_memory: 1024 * 1024,
1875 peak_cpu: 0.8,
1876 peak_timestamp: 0,
1877 },
1878 usage_patterns: Vec::new(),
1879 },
1880 anomalies_detected: Vec::new(),
1881 optimization_opportunities: Vec::new(),
1882 })
1883 }
1884
1885 pub fn get_tracking_data(&self) -> Result<TrackingData, QuantRS2Error> {
1886 Ok(TrackingData {
1887 resource_timeline: Vec::new(),
1888 peak_usage: PeakUsage {
1889 peak_memory: 1024 * 1024,
1890 peak_cpu: 0.8,
1891 peak_timestamp: 0,
1892 },
1893 usage_patterns: Vec::new(),
1894 })
1895 }
1896}
1897
1898#[derive(Debug)]
1899pub struct VisualResourceGenerator {}
1900
1901impl VisualResourceGenerator {
1902 pub fn new() -> Self {
1903 Self {}
1904 }
1905
1906 pub fn generate_visuals(
1907 &self,
1908 _basic: &BasicResourceAnalysis,
1909 _ml_predictions: &Option<MLPredictions>,
1910 ) -> Result<HashMap<String, VisualRepresentation>, QuantRS2Error> {
1911 let mut visuals = HashMap::new();
1912
1913 visuals.insert(
1914 "resource_chart".to_string(),
1915 VisualRepresentation {
1916 format: "ASCII".to_string(),
1917 content: "Resource Usage Chart\n[████████████████████]".to_string(),
1918 },
1919 );
1920
1921 Ok(visuals)
1922 }
1923}
1924
1925#[derive(Debug)]
1926pub struct HardwareRecommender {}
1927
1928impl HardwareRecommender {
1929 pub fn new() -> Self {
1930 Self {}
1931 }
1932
1933 pub fn recommend_hardware(
1934 &self,
1935 _circuit: &[QuantumGate],
1936 basic: &BasicResourceAnalysis,
1937 _options: &EstimationOptions,
1938 ) -> Result<Vec<HardwareRecommendation>, QuantRS2Error> {
1939 Ok(vec![HardwareRecommendation {
1940 hardware_platform: HardwarePlatform::Superconducting,
1941 suitability_score: 0.85,
1942 pros: vec!["Fast gates".to_string(), "High connectivity".to_string()],
1943 cons: vec!["Short coherence".to_string()],
1944 specific_optimizations: vec!["Use native gates".to_string()],
1945 }])
1946 }
1947}
1948
1949#[derive(Debug)]
1950pub struct ScalingPredictor {}
1951
1952impl ScalingPredictor {
1953 pub fn new() -> Self {
1954 Self {}
1955 }
1956
1957 pub fn predict_scaling(
1958 &self,
1959 _circuit: &[QuantumGate],
1960 basic: &BasicResourceAnalysis,
1961 ) -> Result<ScalingPredictions, QuantRS2Error> {
1962 let mut qubit_scaling = Vec::new();
1963
1964 for size in [10, 20, 50, 100] {
1965 qubit_scaling.push(ScalingPoint {
1966 problem_size: size,
1967 resource_value: (size as f64).powi(2),
1968 confidence: 0.8,
1969 });
1970 }
1971
1972 Ok(ScalingPredictions {
1973 qubit_scaling,
1974 depth_scaling: Vec::new(),
1975 resource_scaling: Vec::new(),
1976 feasibility_threshold: FeasibilityThreshold {
1977 current_tech_limit: 50,
1978 near_term_limit: 100,
1979 fault_tolerant_limit: 1000,
1980 },
1981 })
1982 }
1983}
1984
1985#[cfg(test)]
1986mod tests {
1987 use super::*;
1988
1989 #[test]
1990 fn test_enhanced_estimator_creation() {
1991 let estimator = EnhancedResourceEstimator::new();
1992 assert!(estimator.config.enable_ml_prediction);
1993 assert!(estimator.config.enable_cost_analysis);
1994 }
1995
1996 #[test]
1997 fn test_basic_resource_analysis() {
1998 let estimator = EnhancedResourceEstimator::new();
1999 let circuit = vec![
2000 QuantumGate::new(GateType::H, vec![0], None),
2001 QuantumGate::new(GateType::CNOT, vec![0, 1], None),
2002 QuantumGate::new(GateType::T, vec![0], None),
2003 ];
2004
2005 let analysis = estimator.perform_basic_analysis(&circuit, 2).unwrap();
2006 assert_eq!(analysis.gate_statistics.total_gates, 3);
2007 assert_eq!(analysis.num_qubits, 2);
2008 }
2009
2010 #[test]
2011 fn test_gate_pattern_detection() {
2012 let estimator = EnhancedResourceEstimator::new();
2013 let circuit = vec![
2014 QuantumGate::new(GateType::H, vec![0], None),
2015 QuantumGate::new(GateType::CNOT, vec![0, 1], None),
2016 QuantumGate::new(GateType::CNOT, vec![1, 2], None),
2017 QuantumGate::new(GateType::CNOT, vec![2, 3], None),
2018 ];
2019
2020 let patterns = estimator.detect_gate_patterns(&circuit).unwrap();
2021 assert!(!patterns.is_empty());
2022 }
2023
2024 #[test]
2025 fn test_ml_predictions() {
2026 let predictor = MLResourcePredictor::new();
2027 let basic = BasicResourceAnalysis {
2028 gate_statistics: GateStatistics {
2029 total_gates: 10,
2030 gate_counts: HashMap::new(),
2031 gate_depths: HashMap::new(),
2032 gate_patterns: Vec::new(),
2033 clifford_count: 8,
2034 non_clifford_count: 2,
2035 two_qubit_count: 3,
2036 multi_qubit_count: 0,
2037 },
2038 circuit_topology: CircuitTopology {
2039 num_qubits: 4,
2040 connectivity_matrix: vec![vec![0; 4]; 4],
2041 connectivity_density: 0.3,
2042 max_connections: 2,
2043 critical_qubits: vec![],
2044 topology_type: TopologyType::Regular,
2045 },
2046 resource_requirements: ResourceRequirements {
2047 logical_qubits: 4,
2048 physical_qubits: 100,
2049 code_distance: 5,
2050 execution_time: 1e-3,
2051 memory_requirements: MemoryRequirements {
2052 state_vector_memory: 256,
2053 gate_storage_memory: 640,
2054 workspace_memory: 128,
2055 total_memory: 1024,
2056 memory_bandwidth: 10.0,
2057 },
2058 magic_states: 20,
2059 error_budget: ErrorBudget {
2060 total_budget: 1e-6,
2061 gate_errors: 4e-7,
2062 measurement_errors: 2e-7,
2063 idle_errors: 2e-7,
2064 crosstalk_errors: 1e-7,
2065 readout_errors: 1e-7,
2066 },
2067 },
2068 complexity_metrics: ComplexityMetrics {
2069 t_complexity: 2,
2070 t_depth: 2,
2071 circuit_volume: 40,
2072 communication_complexity: 1.2,
2073 entanglement_complexity: 0.3,
2074 algorithmic_complexity: "Low".to_string(),
2075 },
2076 num_qubits: 4,
2077 circuit_size: 10,
2078 };
2079
2080 let predictions = predictor.predict_resources(&[], &basic).unwrap();
2081 assert!(predictions.predicted_success_rate > 0.9);
2082 }
2083
2084 #[test]
2085 fn test_cost_analysis() {
2086 let analyzer = CostAnalyzer::new();
2087 let basic = BasicResourceAnalysis {
2088 gate_statistics: GateStatistics {
2089 total_gates: 10,
2090 gate_counts: HashMap::new(),
2091 gate_depths: HashMap::new(),
2092 gate_patterns: Vec::new(),
2093 clifford_count: 8,
2094 non_clifford_count: 2,
2095 two_qubit_count: 3,
2096 multi_qubit_count: 0,
2097 },
2098 circuit_topology: CircuitTopology {
2099 num_qubits: 4,
2100 connectivity_matrix: vec![vec![0; 4]; 4],
2101 connectivity_density: 0.3,
2102 max_connections: 2,
2103 critical_qubits: vec![],
2104 topology_type: TopologyType::Regular,
2105 },
2106 resource_requirements: ResourceRequirements {
2107 logical_qubits: 4,
2108 physical_qubits: 100,
2109 code_distance: 5,
2110 execution_time: 1e-3,
2111 memory_requirements: MemoryRequirements {
2112 state_vector_memory: 256,
2113 gate_storage_memory: 640,
2114 workspace_memory: 128,
2115 total_memory: 1024,
2116 memory_bandwidth: 10.0,
2117 },
2118 magic_states: 20,
2119 error_budget: ErrorBudget {
2120 total_budget: 1e-6,
2121 gate_errors: 4e-7,
2122 measurement_errors: 2e-7,
2123 idle_errors: 2e-7,
2124 crosstalk_errors: 1e-7,
2125 readout_errors: 1e-7,
2126 },
2127 },
2128 complexity_metrics: ComplexityMetrics {
2129 t_complexity: 2,
2130 t_depth: 2,
2131 circuit_volume: 40,
2132 communication_complexity: 1.2,
2133 entanglement_complexity: 0.3,
2134 algorithmic_complexity: "Low".to_string(),
2135 },
2136 num_qubits: 4,
2137 circuit_size: 10,
2138 };
2139
2140 let options = EstimationOptions {
2141 target_platforms: vec![CloudPlatform::IBMQ],
2142 optimization_level: OptimizationLevel::Basic,
2143 include_alternatives: false,
2144 max_alternatives: 3,
2145 };
2146
2147 let costs = analyzer.analyze_costs(&[], &basic, &options).unwrap();
2148 assert!(costs.total_estimated_cost > 0.0);
2149 }
2150
2151 #[test]
2152 fn test_resource_scores() {
2153 let estimator = EnhancedResourceEstimator::new();
2154 let basic = BasicResourceAnalysis {
2155 gate_statistics: GateStatistics {
2156 total_gates: 10,
2157 gate_counts: HashMap::new(),
2158 gate_depths: HashMap::new(),
2159 gate_patterns: Vec::new(),
2160 clifford_count: 8,
2161 non_clifford_count: 2,
2162 two_qubit_count: 3,
2163 multi_qubit_count: 0,
2164 },
2165 circuit_topology: CircuitTopology {
2166 num_qubits: 4,
2167 connectivity_matrix: vec![vec![0; 4]; 4],
2168 connectivity_density: 0.3,
2169 max_connections: 2,
2170 critical_qubits: vec![],
2171 topology_type: TopologyType::Regular,
2172 },
2173 resource_requirements: ResourceRequirements {
2174 logical_qubits: 4,
2175 physical_qubits: 100,
2176 code_distance: 5,
2177 execution_time: 1e-3,
2178 memory_requirements: MemoryRequirements {
2179 state_vector_memory: 256,
2180 gate_storage_memory: 640,
2181 workspace_memory: 128,
2182 total_memory: 1024,
2183 memory_bandwidth: 10.0,
2184 },
2185 magic_states: 20,
2186 error_budget: ErrorBudget {
2187 total_budget: 1e-6,
2188 gate_errors: 4e-7,
2189 measurement_errors: 2e-7,
2190 idle_errors: 2e-7,
2191 crosstalk_errors: 1e-7,
2192 readout_errors: 1e-7,
2193 },
2194 },
2195 complexity_metrics: ComplexityMetrics {
2196 t_complexity: 2,
2197 t_depth: 2,
2198 circuit_volume: 40,
2199 communication_complexity: 1.2,
2200 entanglement_complexity: 0.3,
2201 algorithmic_complexity: "Low".to_string(),
2202 },
2203 num_qubits: 4,
2204 circuit_size: 10,
2205 };
2206
2207 let scores = estimator.calculate_resource_scores(&basic, &None);
2208 assert!(scores.overall_score > 0.0);
2209 assert!(scores.overall_score <= 1.0);
2210 }
2211
2212 #[test]
2213 fn test_export_report() {
2214 let estimator = EnhancedResourceEstimator::new();
2215 let estimate = EnhancedResourceEstimate {
2216 basic_resources: BasicResourceAnalysis {
2217 gate_statistics: GateStatistics {
2218 total_gates: 10,
2219 gate_counts: HashMap::new(),
2220 gate_depths: HashMap::new(),
2221 gate_patterns: Vec::new(),
2222 clifford_count: 8,
2223 non_clifford_count: 2,
2224 two_qubit_count: 3,
2225 multi_qubit_count: 0,
2226 },
2227 circuit_topology: CircuitTopology {
2228 num_qubits: 4,
2229 connectivity_matrix: vec![vec![0; 4]; 4],
2230 connectivity_density: 0.3,
2231 max_connections: 2,
2232 critical_qubits: vec![],
2233 topology_type: TopologyType::Regular,
2234 },
2235 resource_requirements: ResourceRequirements {
2236 logical_qubits: 4,
2237 physical_qubits: 100,
2238 code_distance: 5,
2239 execution_time: 1e-3,
2240 memory_requirements: MemoryRequirements {
2241 state_vector_memory: 256,
2242 gate_storage_memory: 640,
2243 workspace_memory: 128,
2244 total_memory: 1024,
2245 memory_bandwidth: 10.0,
2246 },
2247 magic_states: 20,
2248 error_budget: ErrorBudget {
2249 total_budget: 1e-6,
2250 gate_errors: 4e-7,
2251 measurement_errors: 2e-7,
2252 idle_errors: 2e-7,
2253 crosstalk_errors: 1e-7,
2254 readout_errors: 1e-7,
2255 },
2256 },
2257 complexity_metrics: ComplexityMetrics {
2258 t_complexity: 2,
2259 t_depth: 2,
2260 circuit_volume: 40,
2261 communication_complexity: 1.2,
2262 entanglement_complexity: 0.3,
2263 algorithmic_complexity: "Low".to_string(),
2264 },
2265 num_qubits: 4,
2266 circuit_size: 10,
2267 },
2268 ml_predictions: None,
2269 cost_analysis: None,
2270 optimization_strategies: None,
2271 comparative_results: None,
2272 hardware_recommendations: None,
2273 scaling_predictions: None,
2274 visual_representations: HashMap::new(),
2275 tracking_data: None,
2276 resource_scores: ResourceScores {
2277 overall_score: 0.8,
2278 efficiency_score: 0.85,
2279 scalability_score: 0.75,
2280 feasibility_score: 0.8,
2281 optimization_potential: 0.3,
2282 readiness_level: ReadinessLevel::Experimental,
2283 },
2284 recommendations: Vec::new(),
2285 estimation_time: std::time::Duration::from_millis(100),
2286 platform_optimizations: Vec::new(),
2287 };
2288
2289 let json_report = estimator
2290 .export_report(&estimate, ReportFormat::JSON)
2291 .unwrap();
2292 assert!(json_report.contains("resource_scores"));
2293
2294 let md_report = estimator
2295 .export_report(&estimate, ReportFormat::Markdown)
2296 .unwrap();
2297 assert!(md_report.contains("# Enhanced Resource Estimation Report"));
2298 }
2299}