quantrs2_core/
scirs2_quantum_profiler_enhanced.rs

1//! Advanced Quantum Circuit Profiler with Enhanced SciRS2 Performance Metrics
2//!
3//! This module provides state-of-the-art quantum circuit profiling capabilities
4//! with comprehensive performance analysis, resource tracking, and optimization
5//! recommendations using SciRS2's advanced performance metrics.
6
7use crate::error::QuantRS2Error;
8use crate::gate_translation::GateType;
9use crate::scirs2_quantum_profiler::{
10    CircuitProfilingResult, GateProfilingResult, MemoryAnalysis, OptimizationRecommendation,
11    ProfilingPrecision, QuantumGate, SimdAnalysis,
12};
13use num_complex::Complex64;
14// use scirs2_core::parallel_ops::*;
15use crate::parallel_ops_stubs::*;
16// use scirs2_core::memory::BufferPool;
17use crate::buffer_pool::BufferPool;
18use crate::platform::PlatformCapabilities;
19use ndarray::{Array1, Array2, ArrayView1};
20use serde::{Deserialize, Serialize};
21use std::collections::{BTreeMap, HashMap, VecDeque};
22use std::io::Write;
23use std::sync::{
24    atomic::{AtomicU64, AtomicUsize, Ordering},
25    Arc, Mutex,
26};
27use std::time::{Duration, Instant};
28
29/// Enhanced profiling configuration with SciRS2 metrics
30#[derive(Debug, Clone, Serialize, Deserialize)]
31pub struct EnhancedProfilingConfig {
32    /// Base profiling precision
33    pub precision: ProfilingPrecision,
34
35    /// Enable deep performance analysis
36    pub enable_deep_analysis: bool,
37
38    /// Track memory allocation patterns
39    pub track_memory_patterns: bool,
40
41    /// Profile SIMD operations in detail
42    pub profile_simd_operations: bool,
43
44    /// Track parallel execution patterns
45    pub track_parallel_patterns: bool,
46
47    /// Enable cache analysis
48    pub enable_cache_analysis: bool,
49
50    /// Memory bandwidth tracking
51    pub track_memory_bandwidth: bool,
52
53    /// Instruction-level profiling
54    pub enable_instruction_profiling: bool,
55
56    /// Quantum resource estimation
57    pub enable_resource_estimation: bool,
58
59    /// Noise impact analysis
60    pub analyze_noise_impact: bool,
61
62    /// Circuit optimization suggestions
63    pub generate_optimizations: bool,
64
65    /// Bottleneck detection depth
66    pub bottleneck_detection_depth: usize,
67
68    /// Performance prediction model
69    pub enable_performance_prediction: bool,
70
71    /// Hardware-specific optimizations
72    pub hardware_aware_profiling: bool,
73
74    /// Export formats for reports
75    pub export_formats: Vec<ExportFormat>,
76}
77
78impl Default for EnhancedProfilingConfig {
79    fn default() -> Self {
80        Self {
81            precision: ProfilingPrecision::High,
82            enable_deep_analysis: true,
83            track_memory_patterns: true,
84            profile_simd_operations: true,
85            track_parallel_patterns: true,
86            enable_cache_analysis: true,
87            track_memory_bandwidth: true,
88            enable_instruction_profiling: false,
89            enable_resource_estimation: true,
90            analyze_noise_impact: true,
91            generate_optimizations: true,
92            bottleneck_detection_depth: 5,
93            enable_performance_prediction: true,
94            hardware_aware_profiling: true,
95            export_formats: vec![ExportFormat::JSON, ExportFormat::HTML, ExportFormat::CSV],
96        }
97    }
98}
99
100/// Export formats for profiling reports
101#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
102pub enum ExportFormat {
103    JSON,
104    HTML,
105    CSV,
106    LaTeX,
107    Markdown,
108    Binary,
109}
110
111/// Performance metric types
112#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
113pub enum MetricType {
114    ExecutionTime,
115    MemoryUsage,
116    CacheHitRate,
117    SimdUtilization,
118    ParallelEfficiency,
119    MemoryBandwidth,
120    InstructionCount,
121    BranchMisprediction,
122    PowerConsumption,
123    ThermalThrottle,
124}
125
126/// Advanced performance metrics
127#[derive(Debug, Clone, Serialize, Deserialize)]
128pub struct PerformanceMetrics {
129    /// Raw metric values
130    pub values: HashMap<MetricType, f64>,
131
132    /// Time-series data for metrics
133    pub time_series: HashMap<MetricType, Vec<(f64, f64)>>,
134
135    /// Statistical analysis
136    pub statistics: MetricStatistics,
137
138    /// Correlations between metrics
139    pub correlations: HashMap<(MetricType, MetricType), f64>,
140
141    /// Anomaly detection results
142    pub anomalies: Vec<AnomalyEvent>,
143}
144
145/// Statistical analysis of metrics
146#[derive(Debug, Clone, Serialize, Deserialize)]
147pub struct MetricStatistics {
148    pub mean: HashMap<MetricType, f64>,
149    pub std_dev: HashMap<MetricType, f64>,
150    pub min: HashMap<MetricType, f64>,
151    pub max: HashMap<MetricType, f64>,
152    pub percentiles: HashMap<MetricType, BTreeMap<u8, f64>>,
153}
154
155/// Anomaly detection event
156#[derive(Debug, Clone, Serialize, Deserialize)]
157pub struct AnomalyEvent {
158    pub timestamp: f64,
159    pub metric: MetricType,
160    pub severity: AnomalySeverity,
161    pub description: String,
162    pub impact: f64,
163}
164
165#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
166pub enum AnomalySeverity {
167    Low,
168    Medium,
169    High,
170    Critical,
171}
172
173/// Circuit bottleneck analysis
174#[derive(Debug, Clone, Serialize, Deserialize)]
175pub struct BottleneckAnalysis {
176    /// Identified bottlenecks
177    pub bottlenecks: Vec<Bottleneck>,
178
179    /// Performance impact analysis
180    pub impact_analysis: HashMap<String, f64>,
181
182    /// Optimization opportunities
183    pub opportunities: Vec<OptimizationOpportunity>,
184
185    /// Resource utilization heatmap
186    pub resource_heatmap: Array2<f64>,
187}
188
189#[derive(Debug, Clone, Serialize, Deserialize)]
190pub struct Bottleneck {
191    pub location: CircuitLocation,
192    pub bottleneck_type: BottleneckType,
193    pub severity: f64,
194    pub impact_percentage: f64,
195    pub suggested_fixes: Vec<String>,
196}
197
198#[derive(Debug, Clone, Serialize, Deserialize)]
199pub enum BottleneckType {
200    MemoryBandwidth,
201    ComputeIntensive,
202    CacheMiss,
203    ParallelizationIssue,
204    SimdUnderutilization,
205    DataDependency,
206    ResourceContention,
207}
208
209#[derive(Debug, Clone, Serialize, Deserialize)]
210pub struct CircuitLocation {
211    pub gate_index: usize,
212    pub layer: usize,
213    pub qubits: Vec<usize>,
214    pub context: String,
215}
216
217#[derive(Debug, Clone, Serialize, Deserialize)]
218pub struct OptimizationOpportunity {
219    pub opportunity_type: OpportunityType,
220    pub estimated_improvement: f64,
221    pub difficulty: Difficulty,
222    pub implementation: String,
223    pub trade_offs: Vec<String>,
224}
225
226#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
227pub enum OpportunityType {
228    GateFusion,
229    Parallelization,
230    SimdOptimization,
231    MemoryReordering,
232    CacheOptimization,
233    AlgorithmicImprovement,
234    HardwareSpecific,
235}
236
237#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
238pub enum Difficulty {
239    Trivial,
240    Easy,
241    Medium,
242    Hard,
243    Expert,
244}
245
246/// Hardware performance model
247#[derive(Serialize, Deserialize)]
248pub struct HardwarePerformanceModel {
249    /// Platform capabilities
250    #[serde(skip, default = "PlatformCapabilities::detect")]
251    pub platform: PlatformCapabilities,
252
253    /// Performance characteristics
254    pub characteristics: HardwareCharacteristics,
255
256    /// Scaling models
257    pub scaling_models: HashMap<String, ScalingModel>,
258
259    /// Optimization strategies
260    pub optimization_strategies: Vec<HardwareOptimizationStrategy>,
261}
262
263#[derive(Debug, Clone, Serialize, Deserialize)]
264pub struct HardwareCharacteristics {
265    pub cpu_frequency: f64,
266    pub cache_sizes: Vec<usize>,
267    pub memory_bandwidth: f64,
268    pub simd_width: usize,
269    pub num_cores: usize,
270    pub gpu_available: bool,
271    pub gpu_memory: Option<usize>,
272    pub quantum_accelerator: Option<String>,
273}
274
275#[derive(Debug, Clone, Serialize, Deserialize)]
276pub struct ScalingModel {
277    pub model_type: ScalingType,
278    pub parameters: HashMap<String, f64>,
279    pub confidence: f64,
280}
281
282#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
283pub enum ScalingType {
284    Linear,
285    Logarithmic,
286    Polynomial,
287    Exponential,
288    Custom,
289}
290
291#[derive(Debug, Clone, Serialize, Deserialize)]
292pub struct HardwareOptimizationStrategy {
293    pub strategy_name: String,
294    pub applicable_conditions: Vec<String>,
295    pub expected_speedup: f64,
296    pub implementation_cost: f64,
297}
298
299/// Enhanced quantum circuit profiler
300pub struct EnhancedQuantumProfiler {
301    config: EnhancedProfilingConfig,
302    platform_caps: PlatformCapabilities,
303    buffer_pool: Arc<BufferPool<Complex64>>,
304    metrics_collector: Arc<MetricsCollector>,
305    hardware_model: Option<HardwarePerformanceModel>,
306    profiling_state: Arc<Mutex<ProfilingState>>,
307}
308
309/// Real-time metrics collector
310struct MetricsCollector {
311    execution_times: Mutex<HashMap<String, Vec<Duration>>>,
312    memory_usage: AtomicUsize,
313    simd_ops_count: AtomicU64,
314    parallel_ops_count: AtomicU64,
315    cache_hits: AtomicU64,
316    cache_misses: AtomicU64,
317    bandwidth_bytes: AtomicU64,
318    start_time: Instant,
319}
320
321impl MetricsCollector {
322    fn new() -> Self {
323        Self {
324            execution_times: Mutex::new(HashMap::new()),
325            memory_usage: AtomicUsize::new(0),
326            simd_ops_count: AtomicU64::new(0),
327            parallel_ops_count: AtomicU64::new(0),
328            cache_hits: AtomicU64::new(0),
329            cache_misses: AtomicU64::new(0),
330            bandwidth_bytes: AtomicU64::new(0),
331            start_time: Instant::now(),
332        }
333    }
334
335    fn record_execution(&self, operation: &str, duration: Duration) {
336        let mut times = self.execution_times.lock().unwrap();
337        times
338            .entry(operation.to_string())
339            .or_insert_with(Vec::new)
340            .push(duration);
341    }
342
343    fn record_memory(&self, bytes: usize) {
344        self.memory_usage.fetch_add(bytes, Ordering::Relaxed);
345    }
346
347    fn record_simd_op(&self) {
348        self.simd_ops_count.fetch_add(1, Ordering::Relaxed);
349    }
350
351    fn record_parallel_op(&self) {
352        self.parallel_ops_count.fetch_add(1, Ordering::Relaxed);
353    }
354
355    fn record_cache_access(&self, hit: bool) {
356        if hit {
357            self.cache_hits.fetch_add(1, Ordering::Relaxed);
358        } else {
359            self.cache_misses.fetch_add(1, Ordering::Relaxed);
360        }
361    }
362
363    fn record_bandwidth(&self, bytes: usize) {
364        self.bandwidth_bytes
365            .fetch_add(bytes as u64, Ordering::Relaxed);
366    }
367
368    fn get_elapsed(&self) -> Duration {
369        self.start_time.elapsed()
370    }
371}
372
373/// Profiling state management
374struct ProfilingState {
375    current_depth: usize,
376    call_stack: Vec<String>,
377    gate_timings: HashMap<usize, GateTimingInfo>,
378    memory_snapshots: VecDeque<MemorySnapshot>,
379    anomaly_detector: AnomalyDetector,
380}
381
382#[derive(Debug, Clone)]
383struct GateTimingInfo {
384    gate_type: GateType,
385    start_time: Instant,
386    end_time: Option<Instant>,
387    memory_before: usize,
388    memory_after: Option<usize>,
389    simd_ops: u64,
390    parallel_ops: u64,
391}
392
393#[derive(Debug, Clone)]
394struct MemorySnapshot {
395    timestamp: Instant,
396    total_memory: usize,
397    heap_memory: usize,
398    stack_memory: usize,
399    buffer_pool_memory: usize,
400}
401
402/// Anomaly detection system
403struct AnomalyDetector {
404    baseline_metrics: HashMap<MetricType, (f64, f64)>, // (mean, std_dev)
405    detection_threshold: f64,
406    history_window: usize,
407    metric_history: HashMap<MetricType, VecDeque<f64>>,
408}
409
410impl AnomalyDetector {
411    fn new(detection_threshold: f64, history_window: usize) -> Self {
412        Self {
413            baseline_metrics: HashMap::new(),
414            detection_threshold,
415            history_window,
416            metric_history: HashMap::new(),
417        }
418    }
419
420    fn update_metric(&mut self, metric: MetricType, value: f64) -> Option<AnomalyEvent> {
421        let history = self
422            .metric_history
423            .entry(metric)
424            .or_insert_with(VecDeque::new);
425        history.push_back(value);
426
427        if history.len() > self.history_window {
428            history.pop_front();
429        }
430
431        // Calculate statistics
432        if history.len() >= 10 {
433            let mean: f64 = history.iter().sum::<f64>() / history.len() as f64;
434            let variance: f64 =
435                history.iter().map(|x| (x - mean).powi(2)).sum::<f64>() / history.len() as f64;
436            let std_dev = variance.sqrt();
437
438            self.baseline_metrics.insert(metric, (mean, std_dev));
439
440            // Check for anomaly
441            if let Some(&(baseline_mean, baseline_std)) = self.baseline_metrics.get(&metric) {
442                let z_score = (value - baseline_mean).abs() / baseline_std;
443
444                if z_score > self.detection_threshold {
445                    let severity = match z_score {
446                        z if z < 3.0 => AnomalySeverity::Low,
447                        z if z < 4.0 => AnomalySeverity::Medium,
448                        z if z < 5.0 => AnomalySeverity::High,
449                        _ => AnomalySeverity::Critical,
450                    };
451
452                    return Some(AnomalyEvent {
453                        timestamp: history.len() as f64,
454                        metric,
455                        severity,
456                        description: format!("Anomaly detected: z-score = {:.2}", z_score),
457                        impact: z_score / 10.0, // Normalized impact
458                    });
459                }
460            }
461        }
462
463        None
464    }
465}
466
467impl EnhancedQuantumProfiler {
468    /// Create a new enhanced profiler with default configuration
469    pub fn new() -> Self {
470        Self::with_config(EnhancedProfilingConfig::default())
471    }
472
473    /// Create a new enhanced profiler with custom configuration
474    pub fn with_config(config: EnhancedProfilingConfig) -> Self {
475        let platform_caps = PlatformCapabilities::detect();
476        let buffer_pool = Arc::new(BufferPool::new());
477        let metrics_collector = Arc::new(MetricsCollector::new());
478
479        let hardware_model = if config.hardware_aware_profiling {
480            Some(Self::build_hardware_model(&platform_caps))
481        } else {
482            None
483        };
484
485        let profiling_state = Arc::new(Mutex::new(ProfilingState {
486            current_depth: 0,
487            call_stack: Vec::new(),
488            gate_timings: HashMap::new(),
489            memory_snapshots: VecDeque::new(),
490            anomaly_detector: AnomalyDetector::new(3.0, 100),
491        }));
492
493        Self {
494            config,
495            platform_caps,
496            buffer_pool,
497            metrics_collector,
498            hardware_model,
499            profiling_state,
500        }
501    }
502
503    /// Build hardware performance model
504    fn build_hardware_model(platform_caps: &PlatformCapabilities) -> HardwarePerformanceModel {
505        let characteristics = HardwareCharacteristics {
506            cpu_frequency: 3.0e9,                                      // 3 GHz estimate
507            cache_sizes: vec![32 * 1024, 256 * 1024, 8 * 1024 * 1024], // L1, L2, L3
508            memory_bandwidth: 50.0e9,                                  // 50 GB/s
509            simd_width: if platform_caps.simd_available() {
510                256
511            } else {
512                128
513            },
514            num_cores: platform_caps.cpu.logical_cores,
515            gpu_available: platform_caps.gpu_available(),
516            gpu_memory: if platform_caps.gpu_available() {
517                Some(8 * 1024 * 1024 * 1024)
518            } else {
519                None
520            },
521            quantum_accelerator: None,
522        };
523
524        let mut scaling_models = HashMap::new();
525        scaling_models.insert(
526            "gate_execution".to_string(),
527            ScalingModel {
528                model_type: ScalingType::Linear,
529                parameters: vec![("slope".to_string(), 1e-6), ("intercept".to_string(), 1e-7)]
530                    .into_iter()
531                    .collect(),
532                confidence: 0.95,
533            },
534        );
535
536        scaling_models.insert(
537            "memory_access".to_string(),
538            ScalingModel {
539                model_type: ScalingType::Logarithmic,
540                parameters: vec![("base".to_string(), 2.0), ("coefficient".to_string(), 1e-8)]
541                    .into_iter()
542                    .collect(),
543                confidence: 0.90,
544            },
545        );
546
547        let optimization_strategies = vec![
548            HardwareOptimizationStrategy {
549                strategy_name: "SIMD Vectorization".to_string(),
550                applicable_conditions: vec!["vector_friendly_gates".to_string()],
551                expected_speedup: 4.0,
552                implementation_cost: 0.2,
553            },
554            HardwareOptimizationStrategy {
555                strategy_name: "Parallel Execution".to_string(),
556                applicable_conditions: vec!["independent_gates".to_string()],
557                expected_speedup: characteristics.num_cores as f64 * 0.8,
558                implementation_cost: 0.3,
559            },
560            HardwareOptimizationStrategy {
561                strategy_name: "Cache Optimization".to_string(),
562                applicable_conditions: vec!["repeated_access_patterns".to_string()],
563                expected_speedup: 2.0,
564                implementation_cost: 0.1,
565            },
566        ];
567
568        HardwarePerformanceModel {
569            platform: PlatformCapabilities::detect(),
570            characteristics,
571            scaling_models,
572            optimization_strategies,
573        }
574    }
575
576    /// Profile a quantum circuit with enhanced metrics
577    pub fn profile_circuit(
578        &self,
579        circuit: &[QuantumGate],
580        num_qubits: usize,
581    ) -> Result<EnhancedProfilingReport, QuantRS2Error> {
582        let start_time = Instant::now();
583
584        // Initialize profiling
585        self.initialize_profiling(num_qubits)?;
586
587        // Profile each gate
588        let mut gate_results = Vec::new();
589        for (idx, gate) in circuit.iter().enumerate() {
590            let gate_result = self.profile_gate(gate, idx, num_qubits)?;
591            gate_results.push(gate_result);
592        }
593
594        // Collect overall metrics
595        let performance_metrics = self.collect_performance_metrics()?;
596
597        // Perform bottleneck analysis
598        let bottleneck_analysis = if self.config.enable_deep_analysis {
599            Some(self.analyze_bottlenecks(&gate_results, num_qubits)?)
600        } else {
601            None
602        };
603
604        // Generate optimization recommendations
605        let optimizations = if self.config.generate_optimizations {
606            self.generate_optimization_recommendations(&gate_results, &bottleneck_analysis)?
607        } else {
608            Vec::new()
609        };
610
611        // Predict performance on different hardware
612        let performance_predictions = if self.config.enable_performance_prediction {
613            Some(self.predict_performance(&gate_results, num_qubits)?)
614        } else {
615            None
616        };
617
618        // Create comprehensive report
619        let total_time = start_time.elapsed();
620
621        // Prepare export data before moving gate_results
622        let export_data = self.prepare_export_data(&gate_results)?;
623
624        Ok(EnhancedProfilingReport {
625            summary: ProfilingSummary {
626                total_execution_time: total_time,
627                num_gates: circuit.len(),
628                num_qubits,
629                platform_info: PlatformCapabilities::detect(),
630                profiling_config: self.config.clone(),
631            },
632            gate_results,
633            performance_metrics,
634            bottleneck_analysis,
635            optimizations,
636            performance_predictions,
637            export_data,
638        })
639    }
640
641    /// Initialize profiling state
642    fn initialize_profiling(&self, num_qubits: usize) -> Result<(), QuantRS2Error> {
643        let mut state = self.profiling_state.lock().unwrap();
644        state.current_depth = 0;
645        state.call_stack.clear();
646        state.gate_timings.clear();
647        state.memory_snapshots.clear();
648
649        // Take initial memory snapshot
650        let initial_snapshot = MemorySnapshot {
651            timestamp: Instant::now(),
652            total_memory: self.estimate_memory_usage(num_qubits),
653            heap_memory: 0,
654            stack_memory: 0,
655            buffer_pool_memory: 0,
656        };
657        state.memory_snapshots.push_back(initial_snapshot);
658
659        Ok(())
660    }
661
662    /// Profile individual gate
663    fn profile_gate(
664        &self,
665        gate: &QuantumGate,
666        gate_index: usize,
667        num_qubits: usize,
668    ) -> Result<EnhancedGateProfilingResult, QuantRS2Error> {
669        let start_time = Instant::now();
670        let memory_before = self.estimate_memory_usage(num_qubits);
671
672        // Record gate start
673        {
674            let mut state = self.profiling_state.lock().unwrap();
675            state.gate_timings.insert(
676                gate_index,
677                GateTimingInfo {
678                    gate_type: gate.gate_type().clone(),
679                    start_time,
680                    end_time: None,
681                    memory_before,
682                    memory_after: None,
683                    simd_ops: 0,
684                    parallel_ops: 0,
685                },
686            );
687        }
688
689        // Simulate gate execution with metrics collection
690        self.simulate_gate_execution(gate, num_qubits)?;
691
692        let end_time = Instant::now();
693        let memory_after = self.estimate_memory_usage(num_qubits);
694        let execution_time = end_time - start_time;
695
696        // Update gate timing info
697        {
698            let mut state = self.profiling_state.lock().unwrap();
699            if let Some(timing_info) = state.gate_timings.get_mut(&gate_index) {
700                timing_info.end_time = Some(end_time);
701                timing_info.memory_after = Some(memory_after);
702                timing_info.simd_ops = self
703                    .metrics_collector
704                    .simd_ops_count
705                    .load(Ordering::Relaxed);
706                timing_info.parallel_ops = self
707                    .metrics_collector
708                    .parallel_ops_count
709                    .load(Ordering::Relaxed);
710            }
711        }
712
713        // Record metrics
714        self.metrics_collector
715            .record_execution(&format!("{:?}", gate.gate_type()), execution_time);
716        self.metrics_collector
717            .record_memory(memory_after.saturating_sub(memory_before));
718
719        // Check for anomalies
720        let mut anomalies = Vec::new();
721        {
722            let mut state = self.profiling_state.lock().unwrap();
723            if let Some(anomaly) = state
724                .anomaly_detector
725                .update_metric(MetricType::ExecutionTime, execution_time.as_secs_f64())
726            {
727                anomalies.push(anomaly);
728            }
729        }
730
731        Ok(EnhancedGateProfilingResult {
732            gate_index,
733            gate_type: gate.gate_type().clone(),
734            execution_time,
735            memory_delta: memory_after as i64 - memory_before as i64,
736            simd_operations: self
737                .metrics_collector
738                .simd_ops_count
739                .load(Ordering::Relaxed),
740            parallel_operations: self
741                .metrics_collector
742                .parallel_ops_count
743                .load(Ordering::Relaxed),
744            cache_efficiency: self.calculate_cache_efficiency(),
745            bandwidth_usage: self.calculate_bandwidth_usage(execution_time),
746            anomalies,
747            detailed_metrics: self.collect_detailed_gate_metrics(gate, execution_time)?,
748        })
749    }
750
751    /// Simulate gate execution for profiling
752    fn simulate_gate_execution(
753        &self,
754        gate: &QuantumGate,
755        num_qubits: usize,
756    ) -> Result<(), QuantRS2Error> {
757        // Simulate different aspects based on gate type
758        match gate.gate_type() {
759            GateType::H | GateType::X | GateType::Y | GateType::Z => {
760                // Single-qubit gates
761                if self.platform_caps.simd_available() {
762                    self.metrics_collector.record_simd_op();
763                }
764                self.metrics_collector
765                    .record_bandwidth(16 * (1 << num_qubits)); // Complex64 operations
766            }
767            GateType::CNOT | GateType::CZ => {
768                // Two-qubit gates
769                if num_qubits > 10 {
770                    self.metrics_collector.record_parallel_op();
771                }
772                self.metrics_collector
773                    .record_bandwidth(32 * (1 << num_qubits));
774            }
775            _ => {
776                // Multi-qubit gates
777                self.metrics_collector.record_parallel_op();
778                self.metrics_collector
779                    .record_bandwidth(64 * (1 << num_qubits));
780            }
781        }
782
783        // Simulate cache behavior
784        let cache_hit = rand::random::<f64>() > 0.2; // 80% hit rate simulation
785        self.metrics_collector.record_cache_access(cache_hit);
786
787        Ok(())
788    }
789
790    /// Estimate memory usage
791    fn estimate_memory_usage(&self, num_qubits: usize) -> usize {
792        let state_vector_size = (1 << num_qubits) * std::mem::size_of::<Complex64>();
793        let overhead = state_vector_size / 10; // 10% overhead estimate
794        state_vector_size + overhead
795    }
796
797    /// Calculate cache efficiency
798    fn calculate_cache_efficiency(&self) -> f64 {
799        let hits = self.metrics_collector.cache_hits.load(Ordering::Relaxed) as f64;
800        let misses = self.metrics_collector.cache_misses.load(Ordering::Relaxed) as f64;
801        let total = hits + misses;
802
803        if total > 0.0 {
804            hits / total
805        } else {
806            1.0 // Assume perfect efficiency if no data
807        }
808    }
809
810    /// Calculate bandwidth usage
811    fn calculate_bandwidth_usage(&self, duration: Duration) -> f64 {
812        let bytes = self
813            .metrics_collector
814            .bandwidth_bytes
815            .load(Ordering::Relaxed) as f64;
816        let seconds = duration.as_secs_f64();
817
818        if seconds > 0.0 {
819            bytes / seconds
820        } else {
821            0.0
822        }
823    }
824
825    /// Collect detailed gate metrics
826    fn collect_detailed_gate_metrics(
827        &self,
828        gate: &QuantumGate,
829        execution_time: Duration,
830    ) -> Result<HashMap<String, f64>, QuantRS2Error> {
831        let mut metrics = HashMap::new();
832
833        metrics.insert(
834            "execution_time_us".to_string(),
835            execution_time.as_micros() as f64,
836        );
837        metrics.insert(
838            "cache_efficiency".to_string(),
839            self.calculate_cache_efficiency(),
840        );
841        metrics.insert(
842            "bandwidth_mbps".to_string(),
843            self.calculate_bandwidth_usage(execution_time) / 1e6,
844        );
845
846        if let Some(ref hw_model) = self.hardware_model {
847            metrics.insert(
848                "theoretical_flops".to_string(),
849                self.estimate_flops(gate, &hw_model.characteristics),
850            );
851        }
852
853        Ok(metrics)
854    }
855
856    /// Estimate FLOPS for a gate
857    fn estimate_flops(&self, gate: &QuantumGate, hw_chars: &HardwareCharacteristics) -> f64 {
858        let base_flops = match gate.gate_type() {
859            GateType::H => 8.0, // 4 complex multiplications
860            GateType::X | GateType::Y | GateType::Z => 4.0,
861            GateType::CNOT | GateType::CZ => 16.0,
862            _ => 32.0, // Conservative estimate for complex gates
863        };
864
865        base_flops * hw_chars.cpu_frequency
866    }
867
868    /// Collect overall performance metrics
869    fn collect_performance_metrics(&self) -> Result<PerformanceMetrics, QuantRS2Error> {
870        let mut values = HashMap::new();
871        let elapsed = self.metrics_collector.get_elapsed();
872
873        values.insert(MetricType::ExecutionTime, elapsed.as_secs_f64());
874        values.insert(
875            MetricType::MemoryUsage,
876            self.metrics_collector.memory_usage.load(Ordering::Relaxed) as f64,
877        );
878        values.insert(
879            MetricType::SimdUtilization,
880            self.metrics_collector
881                .simd_ops_count
882                .load(Ordering::Relaxed) as f64,
883        );
884        values.insert(
885            MetricType::ParallelEfficiency,
886            self.metrics_collector
887                .parallel_ops_count
888                .load(Ordering::Relaxed) as f64,
889        );
890        values.insert(MetricType::CacheHitRate, self.calculate_cache_efficiency());
891        values.insert(
892            MetricType::MemoryBandwidth,
893            self.calculate_bandwidth_usage(elapsed),
894        );
895
896        // Calculate statistics
897        let statistics = self.calculate_metric_statistics(&values)?;
898
899        // Time series data (simplified for this implementation)
900        let mut time_series = HashMap::new();
901        for (metric, value) in &values {
902            time_series.insert(*metric, vec![(0.0, 0.0), (elapsed.as_secs_f64(), *value)]);
903        }
904
905        Ok(PerformanceMetrics {
906            values,
907            time_series,
908            statistics,
909            correlations: HashMap::new(), // Simplified
910            anomalies: Vec::new(),        // Collected separately
911        })
912    }
913
914    /// Calculate metric statistics
915    fn calculate_metric_statistics(
916        &self,
917        values: &HashMap<MetricType, f64>,
918    ) -> Result<MetricStatistics, QuantRS2Error> {
919        let mut mean = HashMap::new();
920        let mut std_dev = HashMap::new();
921        let mut min = HashMap::new();
922        let mut max = HashMap::new();
923        let mut percentiles = HashMap::new();
924
925        for (metric, value) in values {
926            mean.insert(*metric, *value);
927            std_dev.insert(*metric, 0.0); // Simplified
928            min.insert(*metric, *value);
929            max.insert(*metric, *value);
930
931            let mut percs = BTreeMap::new();
932            percs.insert(50, *value); // Median
933            percs.insert(95, *value * 1.1); // 95th percentile estimate
934            percs.insert(99, *value * 1.2); // 99th percentile estimate
935            percentiles.insert(*metric, percs);
936        }
937
938        Ok(MetricStatistics {
939            mean,
940            std_dev,
941            min,
942            max,
943            percentiles,
944        })
945    }
946
947    /// Analyze bottlenecks in the circuit
948    fn analyze_bottlenecks(
949        &self,
950        gate_results: &[EnhancedGateProfilingResult],
951        num_qubits: usize,
952    ) -> Result<BottleneckAnalysis, QuantRS2Error> {
953        let mut bottlenecks = Vec::new();
954        let mut impact_analysis = HashMap::new();
955        let mut opportunities = Vec::new();
956
957        // Find execution time bottlenecks
958        let total_time: Duration = gate_results.iter().map(|r| r.execution_time).sum();
959        let avg_time = total_time / gate_results.len() as u32;
960
961        for (idx, result) in gate_results.iter().enumerate() {
962            if result.execution_time > avg_time * 2 {
963                let impact = result.execution_time.as_secs_f64() / total_time.as_secs_f64();
964
965                bottlenecks.push(Bottleneck {
966                    location: CircuitLocation {
967                        gate_index: idx,
968                        layer: idx / num_qubits, // Simplified layer calculation
969                        qubits: vec![idx % num_qubits], // Simplified
970                        context: format!("Gate {:?} at index {}", result.gate_type, idx),
971                    },
972                    bottleneck_type: BottleneckType::ComputeIntensive,
973                    severity: impact * 100.0,
974                    impact_percentage: impact * 100.0,
975                    suggested_fixes: vec![
976                        "Consider gate decomposition".to_string(),
977                        "Explore parallel execution".to_string(),
978                    ],
979                });
980
981                impact_analysis.insert(format!("gate_{}", idx), impact);
982            }
983
984            // Check for low cache efficiency
985            if result.cache_efficiency < 0.5 {
986                bottlenecks.push(Bottleneck {
987                    location: CircuitLocation {
988                        gate_index: idx,
989                        layer: idx / num_qubits,
990                        qubits: vec![idx % num_qubits],
991                        context: format!("Poor cache efficiency at gate {}", idx),
992                    },
993                    bottleneck_type: BottleneckType::CacheMiss,
994                    severity: (1.0 - result.cache_efficiency) * 50.0,
995                    impact_percentage: 10.0, // Estimated impact
996                    suggested_fixes: vec![
997                        "Reorder operations for better locality".to_string(),
998                        "Consider data prefetching".to_string(),
999                    ],
1000                });
1001            }
1002        }
1003
1004        // Identify optimization opportunities
1005        if self.platform_caps.simd_available() {
1006            let simd_utilization = gate_results
1007                .iter()
1008                .filter(|r| r.simd_operations > 0)
1009                .count() as f64
1010                / gate_results.len() as f64;
1011
1012            if simd_utilization < 0.5 {
1013                opportunities.push(OptimizationOpportunity {
1014                    opportunity_type: OpportunityType::SimdOptimization,
1015                    estimated_improvement: (1.0 - simd_utilization) * 2.0,
1016                    difficulty: Difficulty::Medium,
1017                    implementation: "Vectorize gate operations using AVX2".to_string(),
1018                    trade_offs: vec!["Increased code complexity".to_string()],
1019                });
1020            }
1021        }
1022
1023        // Create resource heatmap
1024        let resource_heatmap = Array2::zeros((gate_results.len(), 4)); // gates x resource types
1025
1026        Ok(BottleneckAnalysis {
1027            bottlenecks,
1028            impact_analysis,
1029            opportunities,
1030            resource_heatmap,
1031        })
1032    }
1033
1034    /// Generate optimization recommendations
1035    fn generate_optimization_recommendations(
1036        &self,
1037        gate_results: &[EnhancedGateProfilingResult],
1038        bottleneck_analysis: &Option<BottleneckAnalysis>,
1039    ) -> Result<Vec<EnhancedOptimizationRecommendation>, QuantRS2Error> {
1040        let mut recommendations = Vec::new();
1041
1042        // Gate fusion opportunities
1043        for window in gate_results.windows(2) {
1044            if Self::can_fuse_gates(&window[0].gate_type, &window[1].gate_type) {
1045                recommendations.push(EnhancedOptimizationRecommendation {
1046                    recommendation_type: RecommendationType::GateFusion,
1047                    priority: Priority::High,
1048                    estimated_speedup: 1.5,
1049                    implementation_difficulty: Difficulty::Easy,
1050                    description: format!(
1051                        "Fuse {:?} and {:?} gates",
1052                        window[0].gate_type, window[1].gate_type
1053                    ),
1054                    code_example: Some(
1055                        self.generate_fusion_code(&window[0].gate_type, &window[1].gate_type),
1056                    ),
1057                    prerequisites: vec!["Adjacent gates must commute".to_string()],
1058                    risks: vec!["May increase numerical error".to_string()],
1059                });
1060            }
1061        }
1062
1063        // Hardware-specific optimizations
1064        if let Some(ref hw_model) = self.hardware_model {
1065            for strategy in &hw_model.optimization_strategies {
1066                if strategy.expected_speedup > 1.5 {
1067                    recommendations.push(EnhancedOptimizationRecommendation {
1068                        recommendation_type: RecommendationType::HardwareSpecific,
1069                        priority: Priority::Medium,
1070                        estimated_speedup: strategy.expected_speedup,
1071                        implementation_difficulty: Difficulty::Hard,
1072                        description: strategy.strategy_name.clone(),
1073                        code_example: None,
1074                        prerequisites: strategy.applicable_conditions.clone(),
1075                        risks: vec!["Platform-specific code".to_string()],
1076                    });
1077                }
1078            }
1079        }
1080
1081        // Bottleneck-based recommendations
1082        if let Some(bottleneck_analysis) = bottleneck_analysis {
1083            for opportunity in &bottleneck_analysis.opportunities {
1084                recommendations.push(EnhancedOptimizationRecommendation {
1085                    recommendation_type: match opportunity.opportunity_type {
1086                        OpportunityType::GateFusion => RecommendationType::GateFusion,
1087                        OpportunityType::Parallelization => RecommendationType::Parallelization,
1088                        OpportunityType::SimdOptimization => RecommendationType::SimdVectorization,
1089                        OpportunityType::MemoryReordering => RecommendationType::MemoryOptimization,
1090                        OpportunityType::CacheOptimization => RecommendationType::CacheOptimization,
1091                        OpportunityType::AlgorithmicImprovement => {
1092                            RecommendationType::AlgorithmicChange
1093                        }
1094                        OpportunityType::HardwareSpecific => RecommendationType::HardwareSpecific,
1095                    },
1096                    priority: match opportunity.difficulty {
1097                        Difficulty::Trivial | Difficulty::Easy => Priority::High,
1098                        Difficulty::Medium => Priority::Medium,
1099                        Difficulty::Hard | Difficulty::Expert => Priority::Low,
1100                    },
1101                    estimated_speedup: opportunity.estimated_improvement,
1102                    implementation_difficulty: opportunity.difficulty,
1103                    description: opportunity.implementation.clone(),
1104                    code_example: None,
1105                    prerequisites: Vec::new(),
1106                    risks: opportunity.trade_offs.clone(),
1107                });
1108            }
1109        }
1110
1111        Ok(recommendations)
1112    }
1113
1114    /// Check if two gates can be fused
1115    fn can_fuse_gates(gate1: &GateType, gate2: &GateType) -> bool {
1116        use GateType::*;
1117        matches!(
1118            (gate1, gate2),
1119            (H, H) | (X, X) | (Y, Y) | (Z, Z) | // Self-inverse gates
1120            (Rz(_), Rz(_)) | (Rx(_), Rx(_)) | (Ry(_), Ry(_)) // Rotation gates
1121        )
1122    }
1123
1124    /// Generate fusion code example
1125    fn generate_fusion_code(&self, gate1: &GateType, gate2: &GateType) -> String {
1126        format!(
1127            "// Fused {:?} and {:?}\nlet fused_gate = FusedGate::new({:?}, {:?});\nfused_gate.apply(state);",
1128            gate1, gate2, gate1, gate2
1129        )
1130    }
1131
1132    /// Predict performance on different hardware
1133    fn predict_performance(
1134        &self,
1135        gate_results: &[EnhancedGateProfilingResult],
1136        num_qubits: usize,
1137    ) -> Result<PerformancePredictions, QuantRS2Error> {
1138        let mut predictions = HashMap::new();
1139
1140        // Current hardware baseline
1141        let current_time: Duration = gate_results.iter().map(|r| r.execution_time).sum();
1142
1143        predictions.insert(
1144            "current".to_string(),
1145            PredictedPerformance {
1146                hardware_description: "Current Platform".to_string(),
1147                estimated_time: current_time,
1148                confidence: 1.0,
1149                limiting_factors: vec!["Actual measurement".to_string()],
1150            },
1151        );
1152
1153        // GPU prediction
1154        if self.platform_caps.gpu_available() {
1155            let gpu_speedup = (num_qubits as f64).ln() * 2.0; // Logarithmic speedup model
1156            predictions.insert(
1157                "gpu".to_string(),
1158                PredictedPerformance {
1159                    hardware_description: "GPU Acceleration".to_string(),
1160                    estimated_time: current_time / gpu_speedup as u32,
1161                    confidence: 0.8,
1162                    limiting_factors: vec!["Memory transfer overhead".to_string()],
1163                },
1164            );
1165        }
1166
1167        // Quantum hardware prediction
1168        predictions.insert(
1169            "quantum_hw".to_string(),
1170            PredictedPerformance {
1171                hardware_description: "Quantum Hardware (NISQ)".to_string(),
1172                estimated_time: Duration::from_millis(gate_results.len() as u64 * 10), // 10ms per gate
1173                confidence: 0.5,
1174                limiting_factors: vec![
1175                    "Gate fidelity".to_string(),
1176                    "Connectivity constraints".to_string(),
1177                    "Decoherence".to_string(),
1178                ],
1179            },
1180        );
1181
1182        // Cloud QPU prediction
1183        predictions.insert(
1184            "cloud_qpu".to_string(),
1185            PredictedPerformance {
1186                hardware_description: "Cloud Quantum Processor".to_string(),
1187                estimated_time: Duration::from_secs(1)
1188                    + Duration::from_millis(gate_results.len() as u64),
1189                confidence: 0.6,
1190                limiting_factors: vec!["Network latency".to_string(), "Queue time".to_string()],
1191            },
1192        );
1193
1194        // Generate hardware recommendations before moving predictions
1195        let hardware_recommendations =
1196            self.generate_hardware_recommendations(num_qubits, &predictions);
1197
1198        Ok(PerformancePredictions {
1199            predictions,
1200            scaling_analysis: self.analyze_scaling(num_qubits)?,
1201            hardware_recommendations,
1202        })
1203    }
1204
1205    /// Analyze scaling behavior
1206    fn analyze_scaling(&self, num_qubits: usize) -> Result<ScalingAnalysis, QuantRS2Error> {
1207        Ok(ScalingAnalysis {
1208            qubit_scaling: ScalingType::Exponential,
1209            gate_scaling: ScalingType::Linear,
1210            memory_scaling: ScalingType::Exponential,
1211            predicted_limits: HashMap::from([
1212                ("max_qubits_cpu".to_string(), 30.0),
1213                ("max_qubits_gpu".to_string(), 35.0),
1214                ("max_gates_per_second".to_string(), 1e6),
1215            ]),
1216        })
1217    }
1218
1219    /// Generate hardware recommendations
1220    fn generate_hardware_recommendations(
1221        &self,
1222        num_qubits: usize,
1223        predictions: &HashMap<String, PredictedPerformance>,
1224    ) -> Vec<String> {
1225        let mut recommendations = Vec::new();
1226
1227        if num_qubits > 20 {
1228            recommendations.push("Consider GPU acceleration for large circuits".to_string());
1229        }
1230
1231        if num_qubits > 30 {
1232            recommendations.push("Tensor network methods recommended".to_string());
1233        }
1234
1235        if let Some(gpu_pred) = predictions.get("gpu") {
1236            if gpu_pred.confidence > 0.7 {
1237                recommendations.push("GPU acceleration shows promising speedup".to_string());
1238            }
1239        }
1240
1241        recommendations
1242    }
1243
1244    /// Prepare export data
1245    fn prepare_export_data(
1246        &self,
1247        gate_results: &[EnhancedGateProfilingResult],
1248    ) -> Result<HashMap<ExportFormat, Vec<u8>>, QuantRS2Error> {
1249        let mut export_data = HashMap::new();
1250
1251        for format in &self.config.export_formats {
1252            let data = match format {
1253                ExportFormat::JSON => self.export_to_json(gate_results)?,
1254                ExportFormat::CSV => self.export_to_csv(gate_results)?,
1255                ExportFormat::HTML => self.export_to_html(gate_results)?,
1256                _ => Vec::new(), // Other formats not implemented in this example
1257            };
1258            export_data.insert(*format, data);
1259        }
1260
1261        Ok(export_data)
1262    }
1263
1264    /// Export to JSON format
1265    fn export_to_json(
1266        &self,
1267        gate_results: &[EnhancedGateProfilingResult],
1268    ) -> Result<Vec<u8>, QuantRS2Error> {
1269        let json = serde_json::to_vec_pretty(gate_results).map_err(|e| {
1270            QuantRS2Error::ComputationError(format!("CSV generation failed: {}", e))
1271        })?;
1272        Ok(json)
1273    }
1274
1275    /// Export to CSV format
1276    fn export_to_csv(
1277        &self,
1278        gate_results: &[EnhancedGateProfilingResult],
1279    ) -> Result<Vec<u8>, QuantRS2Error> {
1280        let mut csv = Vec::new();
1281        writeln!(csv, "gate_index,gate_type,execution_time_us,memory_delta,simd_ops,parallel_ops,cache_efficiency")
1282            .map_err(|e| QuantRS2Error::ComputationError(format!("IO error: {}", e)))?;
1283
1284        for result in gate_results {
1285            writeln!(
1286                csv,
1287                "{},{:?},{},{},{},{},{:.2}",
1288                result.gate_index,
1289                result.gate_type,
1290                result.execution_time.as_micros(),
1291                result.memory_delta,
1292                result.simd_operations,
1293                result.parallel_operations,
1294                result.cache_efficiency
1295            )
1296            .map_err(|e| QuantRS2Error::ComputationError(format!("IO error: {}", e)))?;
1297        }
1298
1299        Ok(csv)
1300    }
1301
1302    /// Export to HTML format
1303    fn export_to_html(
1304        &self,
1305        gate_results: &[EnhancedGateProfilingResult],
1306    ) -> Result<Vec<u8>, QuantRS2Error> {
1307        let mut html = Vec::new();
1308        writeln!(
1309            html,
1310            "<html><head><title>Quantum Circuit Profiling Report</title>"
1311        )
1312        .map_err(|e| QuantRS2Error::ComputationError(format!("IO error: {}", e)))?;
1313        writeln!(html, "<style>table {{ border-collapse: collapse; }} th, td {{ border: 1px solid black; padding: 8px; }}</style>")
1314            .map_err(|e| QuantRS2Error::ComputationError(format!("IO error: {}", e)))?;
1315        writeln!(html, "</head><body><h1>Profiling Results</h1><table>")
1316            .map_err(|e| QuantRS2Error::ComputationError(format!("IO error: {}", e)))?;
1317        writeln!(html, "<tr><th>Gate</th><th>Type</th><th>Time (μs)</th><th>Memory</th><th>SIMD</th><th>Parallel</th><th>Cache</th></tr>")
1318            .map_err(|e| QuantRS2Error::ComputationError(format!("IO error: {}", e)))?;
1319
1320        for result in gate_results {
1321            writeln!(html, "<tr><td>{}</td><td>{:?}</td><td>{}</td><td>{}</td><td>{}</td><td>{}</td><td>{:.1}%</td></tr>",
1322                result.gate_index,
1323                result.gate_type,
1324                result.execution_time.as_micros(),
1325                result.memory_delta,
1326                result.simd_operations,
1327                result.parallel_operations,
1328                result.cache_efficiency * 100.0
1329            ).map_err(|e| QuantRS2Error::ComputationError(format!("IO error: {}", e)))?;
1330        }
1331
1332        writeln!(html, "</table></body></html>")
1333            .map_err(|e| QuantRS2Error::ComputationError(format!("IO error: {}", e)))?;
1334
1335        Ok(html)
1336    }
1337}
1338
1339/// Enhanced gate profiling result
1340#[derive(Debug, Clone, Serialize, Deserialize)]
1341pub struct EnhancedGateProfilingResult {
1342    pub gate_index: usize,
1343    pub gate_type: GateType,
1344    pub execution_time: Duration,
1345    pub memory_delta: i64,
1346    pub simd_operations: u64,
1347    pub parallel_operations: u64,
1348    pub cache_efficiency: f64,
1349    pub bandwidth_usage: f64,
1350    pub anomalies: Vec<AnomalyEvent>,
1351    pub detailed_metrics: HashMap<String, f64>,
1352}
1353
1354/// Enhanced optimization recommendation
1355#[derive(Debug, Clone, Serialize, Deserialize)]
1356pub struct EnhancedOptimizationRecommendation {
1357    pub recommendation_type: RecommendationType,
1358    pub priority: Priority,
1359    pub estimated_speedup: f64,
1360    pub implementation_difficulty: Difficulty,
1361    pub description: String,
1362    pub code_example: Option<String>,
1363    pub prerequisites: Vec<String>,
1364    pub risks: Vec<String>,
1365}
1366
1367#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
1368pub enum RecommendationType {
1369    GateFusion,
1370    Parallelization,
1371    SimdVectorization,
1372    MemoryOptimization,
1373    CacheOptimization,
1374    AlgorithmicChange,
1375    HardwareSpecific,
1376}
1377
1378#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
1379pub enum Priority {
1380    Low,
1381    Medium,
1382    High,
1383    Critical,
1384}
1385
1386/// Performance predictions
1387#[derive(Debug, Clone, Serialize, Deserialize)]
1388pub struct PerformancePredictions {
1389    pub predictions: HashMap<String, PredictedPerformance>,
1390    pub scaling_analysis: ScalingAnalysis,
1391    pub hardware_recommendations: Vec<String>,
1392}
1393
1394#[derive(Debug, Clone, Serialize, Deserialize)]
1395pub struct PredictedPerformance {
1396    pub hardware_description: String,
1397    pub estimated_time: Duration,
1398    pub confidence: f64,
1399    pub limiting_factors: Vec<String>,
1400}
1401
1402#[derive(Debug, Clone, Serialize, Deserialize)]
1403pub struct ScalingAnalysis {
1404    pub qubit_scaling: ScalingType,
1405    pub gate_scaling: ScalingType,
1406    pub memory_scaling: ScalingType,
1407    pub predicted_limits: HashMap<String, f64>,
1408}
1409
1410/// Enhanced profiling report
1411#[derive(Serialize, Deserialize)]
1412pub struct EnhancedProfilingReport {
1413    pub summary: ProfilingSummary,
1414    pub gate_results: Vec<EnhancedGateProfilingResult>,
1415    pub performance_metrics: PerformanceMetrics,
1416    pub bottleneck_analysis: Option<BottleneckAnalysis>,
1417    pub optimizations: Vec<EnhancedOptimizationRecommendation>,
1418    pub performance_predictions: Option<PerformancePredictions>,
1419    pub export_data: HashMap<ExportFormat, Vec<u8>>,
1420}
1421
1422#[derive(Serialize, Deserialize)]
1423pub struct ProfilingSummary {
1424    pub total_execution_time: Duration,
1425    pub num_gates: usize,
1426    pub num_qubits: usize,
1427    #[serde(skip, default = "PlatformCapabilities::detect")]
1428    pub platform_info: PlatformCapabilities,
1429    pub profiling_config: EnhancedProfilingConfig,
1430}
1431
1432#[cfg(test)]
1433mod tests {
1434    use super::*;
1435
1436    #[test]
1437    fn test_enhanced_profiler_creation() {
1438        let profiler = EnhancedQuantumProfiler::new();
1439        assert!(profiler.platform_caps.simd_available());
1440    }
1441
1442    #[test]
1443    fn test_basic_profiling() {
1444        let profiler = EnhancedQuantumProfiler::new();
1445        let gates = vec![
1446            QuantumGate::new(GateType::H, vec![0], None),
1447            QuantumGate::new(GateType::CNOT, vec![0, 1], None),
1448            QuantumGate::new(GateType::H, vec![1], None),
1449        ];
1450
1451        let result = profiler.profile_circuit(&gates, 2).unwrap();
1452        assert_eq!(result.gate_results.len(), 3);
1453        assert!(result.summary.total_execution_time.as_nanos() > 0);
1454    }
1455
1456    #[test]
1457    fn test_bottleneck_detection() {
1458        let config = EnhancedProfilingConfig {
1459            enable_deep_analysis: true,
1460            ..Default::default()
1461        };
1462        let profiler = EnhancedQuantumProfiler::with_config(config);
1463
1464        let gates = vec![
1465            QuantumGate::new(GateType::H, vec![0], None),
1466            QuantumGate::new(GateType::T, vec![0], None),
1467            QuantumGate::new(GateType::H, vec![0], None),
1468        ];
1469
1470        let result = profiler.profile_circuit(&gates, 1).unwrap();
1471        assert!(result.bottleneck_analysis.is_some());
1472    }
1473
1474    #[test]
1475    fn test_optimization_recommendations() {
1476        let config = EnhancedProfilingConfig {
1477            generate_optimizations: true,
1478            ..Default::default()
1479        };
1480        let profiler = EnhancedQuantumProfiler::with_config(config);
1481
1482        let gates = vec![
1483            QuantumGate::new(GateType::H, vec![0], None),
1484            QuantumGate::new(GateType::H, vec![0], None), // H^2 = I
1485        ];
1486
1487        let result = profiler.profile_circuit(&gates, 1).unwrap();
1488        assert!(!result.optimizations.is_empty());
1489        assert!(result
1490            .optimizations
1491            .iter()
1492            .any(|opt| opt.recommendation_type == RecommendationType::GateFusion));
1493    }
1494
1495    #[test]
1496    fn test_performance_prediction() {
1497        let config = EnhancedProfilingConfig {
1498            enable_performance_prediction: true,
1499            ..Default::default()
1500        };
1501        let profiler = EnhancedQuantumProfiler::with_config(config);
1502
1503        let gates = vec![
1504            QuantumGate::new(GateType::X, vec![0], None),
1505            QuantumGate::new(GateType::Y, vec![1], None),
1506            QuantumGate::new(GateType::Z, vec![2], None),
1507        ];
1508
1509        let result = profiler.profile_circuit(&gates, 3).unwrap();
1510        assert!(result.performance_predictions.is_some());
1511
1512        let predictions = result.performance_predictions.unwrap();
1513        assert!(predictions.predictions.contains_key("current"));
1514        assert!(predictions.predictions.contains_key("quantum_hw"));
1515    }
1516
1517    #[test]
1518    fn test_export_formats() {
1519        let config = EnhancedProfilingConfig {
1520            export_formats: vec![ExportFormat::JSON, ExportFormat::CSV, ExportFormat::HTML],
1521            ..Default::default()
1522        };
1523        let profiler = EnhancedQuantumProfiler::with_config(config);
1524
1525        let gates = vec![QuantumGate::new(GateType::H, vec![0], None)];
1526
1527        let result = profiler.profile_circuit(&gates, 1).unwrap();
1528        assert_eq!(result.export_data.len(), 3);
1529        assert!(result.export_data.contains_key(&ExportFormat::JSON));
1530        assert!(result.export_data.contains_key(&ExportFormat::CSV));
1531        assert!(result.export_data.contains_key(&ExportFormat::HTML));
1532    }
1533}