1use crate::error::QuantRS2Error;
7use crate::gate::GateOp;
8use crate::matrix_ops::{DenseMatrix, QuantumMatrix};
9use crate::tensor_network::{Tensor, TensorNetwork};
11use num_complex::Complex64;
13use ndarray::{Array1, Array2, Axis};
15
16#[derive(Debug, Clone)]
18pub struct OptimizationResult {
19 pub parameters: Array1<f64>,
20 pub cost: f64,
21 pub iterations: usize,
22}
23
24#[derive(Debug, Clone)]
25pub struct OptimizationConfig {
26 pub max_iterations: usize,
27 pub tolerance: f64,
28}
29
30impl Default for OptimizationConfig {
31 fn default() -> Self {
32 Self {
33 max_iterations: 1000,
34 tolerance: 1e-6,
35 }
36 }
37}
38
39pub fn minimize<F>(
41 objective: F,
42 initial_params: &Array1<f64>,
43 _config: &OptimizationConfig,
44) -> Result<OptimizationResult, String>
45where
46 F: Fn(&Array1<f64>) -> Result<f64, String>,
47{
48 let cost = objective(initial_params)?;
50 Ok(OptimizationResult {
51 parameters: initial_params.clone(),
52 cost,
53 iterations: 1,
54 })
55}
56use std::f64::consts::PI;
58
59fn decompose_svd(
61 matrix: &Array2<Complex64>,
62) -> Result<(Array2<Complex64>, Array1<f64>, Array2<Complex64>), QuantRS2Error> {
63 let (nrows, ncols) = matrix.dim();
64 let min_dim = nrows.min(ncols);
65
66 let u = Array2::eye(nrows);
68 let s = Array1::ones(min_dim);
69 let vt = Array2::eye(ncols);
70
71 Ok((u, s, vt))
72}
73
74#[derive(Debug, Clone)]
76pub struct QuantumNaturalGradient {
77 pub fisher_information: Array2<f64>,
78 pub gradient: Array1<f64>,
79 pub regularization: f64,
80}
81
82impl QuantumNaturalGradient {
83 pub fn new(parameter_count: usize, regularization: f64) -> Self {
85 Self {
86 fisher_information: Array2::eye(parameter_count),
87 gradient: Array1::zeros(parameter_count),
88 regularization,
89 }
90 }
91
92 pub fn compute_fisher_information(
94 &mut self,
95 circuit_generator: impl Fn(&Array1<f64>) -> Result<Array2<Complex64>, QuantRS2Error>,
96 parameters: &Array1<f64>,
97 state: &Array1<Complex64>,
98 ) -> Result<(), QuantRS2Error> {
99 let n_params = parameters.len();
100 let eps = 1e-8;
101
102 for i in 0..n_params {
104 for j in i..n_params {
105 let mut params_plus = parameters.clone();
106 let mut params_minus = parameters.clone();
107 params_plus[i] += eps;
108 params_minus[i] -= eps;
109
110 let circuit_plus = circuit_generator(¶ms_plus)?;
111 let circuit_minus = circuit_generator(¶ms_minus)?;
112
113 let state_plus = circuit_plus.dot(state);
114 let state_minus = circuit_minus.dot(state);
115
116 let overlap = state_plus.dot(&state_minus.mapv(|x| x.conj()));
118 let fisher_element = 4.0 * (1.0 - overlap.norm_sqr());
119
120 self.fisher_information[[i, j]] = fisher_element;
121 if i != j {
122 self.fisher_information[[j, i]] = fisher_element;
123 }
124 }
125 }
126
127 for i in 0..n_params {
129 self.fisher_information[[i, i]] += self.regularization;
130 }
131
132 Ok(())
133 }
134
135 pub fn natural_gradient(&self) -> Result<Array1<f64>, QuantRS2Error> {
137 let n = self.fisher_information.nrows();
140 let mut fisher_inv = Array2::eye(n);
141 for i in 0..n {
142 let diag_val = self.fisher_information[[i, i]];
143 if diag_val.abs() > 1e-10 {
144 fisher_inv[[i, i]] = 1.0 / diag_val;
145 }
146 }
147 Ok(fisher_inv.dot(&self.gradient))
148 }
149
150 pub fn update_parameters(
152 &self,
153 parameters: &Array1<f64>,
154 learning_rate: f64,
155 ) -> Result<Array1<f64>, QuantRS2Error> {
156 let nat_grad = self.natural_gradient()?;
157 Ok(parameters - learning_rate * &nat_grad)
158 }
159}
160
161#[derive(Debug, Clone)]
163pub struct ParameterShiftOptimizer {
164 pub shift_value: f64,
165 pub higher_order_shifts: Vec<f64>,
166 pub use_finite_differences: bool,
167}
168
169impl Default for ParameterShiftOptimizer {
170 fn default() -> Self {
171 Self {
172 shift_value: PI / 2.0,
173 higher_order_shifts: vec![PI / 2.0, PI, 3.0 * PI / 2.0],
174 use_finite_differences: false,
175 }
176 }
177}
178
179impl ParameterShiftOptimizer {
180 pub fn compute_gradient(
182 &self,
183 expectation_fn: impl Fn(&Array1<f64>) -> Result<f64, QuantRS2Error>,
184 parameters: &Array1<f64>,
185 ) -> Result<Array1<f64>, QuantRS2Error> {
186 let n_params = parameters.len();
187 let mut gradient = Array1::zeros(n_params);
188
189 for i in 0..n_params {
190 if self.use_finite_differences {
191 gradient[i] = self.finite_difference_gradient(&expectation_fn, parameters, i)?;
192 } else {
193 gradient[i] = self.parameter_shift_gradient(&expectation_fn, parameters, i)?;
194 }
195 }
196
197 Ok(gradient)
198 }
199
200 fn parameter_shift_gradient(
202 &self,
203 expectation_fn: &impl Fn(&Array1<f64>) -> Result<f64, QuantRS2Error>,
204 parameters: &Array1<f64>,
205 param_idx: usize,
206 ) -> Result<f64, QuantRS2Error> {
207 let mut params_plus = parameters.clone();
208 let mut params_minus = parameters.clone();
209
210 params_plus[param_idx] += self.shift_value;
211 params_minus[param_idx] -= self.shift_value;
212
213 let exp_plus = expectation_fn(¶ms_plus)?;
214 let exp_minus = expectation_fn(¶ms_minus)?;
215
216 Ok((exp_plus - exp_minus) / 2.0)
217 }
218
219 fn finite_difference_gradient(
221 &self,
222 expectation_fn: &impl Fn(&Array1<f64>) -> Result<f64, QuantRS2Error>,
223 parameters: &Array1<f64>,
224 param_idx: usize,
225 ) -> Result<f64, QuantRS2Error> {
226 let eps = 1e-7;
227 let mut params_plus = parameters.clone();
228 let mut params_minus = parameters.clone();
229
230 params_plus[param_idx] += eps;
231 params_minus[param_idx] -= eps;
232
233 let exp_plus = expectation_fn(¶ms_plus)?;
234 let exp_minus = expectation_fn(¶ms_minus)?;
235
236 Ok((exp_plus - exp_minus) / (2.0 * eps))
237 }
238
239 pub fn higher_order_gradient(
241 &self,
242 expectation_fn: impl Fn(&Array1<f64>) -> Result<f64, QuantRS2Error>,
243 parameters: &Array1<f64>,
244 param_idx: usize,
245 ) -> Result<f64, QuantRS2Error> {
246 let mut gradient = 0.0;
247 let weights = [0.5, -0.5, 0.0, 0.0]; for (i, &shift) in self.higher_order_shifts.iter().enumerate() {
250 if i < weights.len() {
251 let mut params = parameters.clone();
252 params[param_idx] += shift;
253 let expectation = expectation_fn(¶ms)?;
254 gradient += weights[i] * expectation;
255 }
256 }
257
258 Ok(gradient)
259 }
260}
261
262#[derive(Debug, Clone)]
264pub struct QuantumKernelOptimizer {
265 pub feature_map: QuantumFeatureMap,
266 pub kernel_matrix: Array2<f64>,
267 pub optimization_history: Vec<f64>,
268 pub feature_map_parameters: Array1<f64>,
269}
270
271#[derive(Debug, Clone)]
272pub enum QuantumFeatureMap {
273 ZZFeatureMap { num_qubits: usize, depth: usize },
274 PauliFeatureMap { paulis: Vec<String>, depth: usize },
275 CustomFeatureMap { gates: Vec<Box<dyn GateOp>> },
276}
277
278impl QuantumKernelOptimizer {
279 pub fn new(feature_map: QuantumFeatureMap) -> Self {
281 Self {
282 feature_map,
283 kernel_matrix: Array2::zeros((1, 1)),
284 optimization_history: Vec::new(),
285 feature_map_parameters: Array1::zeros(4), }
287 }
288
289 pub fn compute_kernel_matrix(
291 &mut self,
292 data_points: &Array2<f64>,
293 ) -> Result<Array2<f64>, QuantRS2Error> {
294 let n_samples = data_points.nrows();
295 let mut kernel_matrix = Array2::zeros((n_samples, n_samples));
296
297 for i in 0..n_samples {
298 for j in i..n_samples {
299 let x_i = data_points.row(i);
300 let x_j = data_points.row(j);
301 let kernel_value = self.compute_kernel_element(&x_i, &x_j)?;
302
303 kernel_matrix[[i, j]] = kernel_value;
304 kernel_matrix[[j, i]] = kernel_value;
305 }
306 }
307
308 self.kernel_matrix = kernel_matrix.clone();
309 Ok(kernel_matrix)
310 }
311
312 fn compute_kernel_element(
314 &self,
315 x_i: &ndarray::ArrayView1<f64>,
316 x_j: &ndarray::ArrayView1<f64>,
317 ) -> Result<f64, QuantRS2Error> {
318 let circuit_i = self.create_feature_circuit(&x_i.to_owned())?;
319 let circuit_j = self.create_feature_circuit(&x_j.to_owned())?;
320
321 let overlap = circuit_i.t().dot(&circuit_j);
323 Ok(overlap.diag().map(|x| x.norm_sqr()).sum())
324 }
325
326 fn create_feature_circuit(
328 &self,
329 data_point: &Array1<f64>,
330 ) -> Result<Array2<Complex64>, QuantRS2Error> {
331 match &self.feature_map {
332 QuantumFeatureMap::ZZFeatureMap { num_qubits, depth } => {
333 self.create_zz_feature_map(data_point, *num_qubits, *depth)
334 }
335 QuantumFeatureMap::PauliFeatureMap { paulis, depth } => {
336 self.create_pauli_feature_map(data_point, paulis, *depth)
337 }
338 QuantumFeatureMap::CustomFeatureMap { gates: _ } => {
339 Ok(Array2::eye(2_usize.pow(data_point.len() as u32)))
341 }
342 }
343 }
344
345 fn create_zz_feature_map(
347 &self,
348 data_point: &Array1<f64>,
349 num_qubits: usize,
350 depth: usize,
351 ) -> Result<Array2<Complex64>, QuantRS2Error> {
352 let dim = 2_usize.pow(num_qubits as u32);
353 let mut circuit = Array2::eye(dim);
354
355 for layer in 0..depth {
356 for qubit in 0..num_qubits {
358 let angle = data_point[qubit % data_point.len()] * (layer + 1) as f64;
359 let rotation = self.ry_gate(angle);
360 circuit = self.apply_single_qubit_gate(&circuit, &rotation, qubit, num_qubits)?;
361 }
362
363 for qubit in 0..num_qubits - 1 {
365 let angle = data_point[qubit % data_point.len()]
366 * data_point[(qubit + 1) % data_point.len()];
367 let zz_gate = self.zz_gate(angle);
368 circuit =
369 self.apply_two_qubit_gate(&circuit, &zz_gate, qubit, qubit + 1, num_qubits)?;
370 }
371 }
372
373 Ok(circuit)
374 }
375
376 fn create_pauli_feature_map(
378 &self,
379 data_point: &Array1<f64>,
380 paulis: &[String],
381 depth: usize,
382 ) -> Result<Array2<Complex64>, QuantRS2Error> {
383 let num_qubits = paulis.len();
384 let dim = 2_usize.pow(num_qubits as u32);
385 let mut circuit = Array2::eye(dim);
386
387 for _layer in 0..depth {
388 for (i, pauli_string) in paulis.iter().enumerate() {
389 let angle = data_point[i % data_point.len()];
390 let pauli_rotation = self.pauli_rotation(pauli_string, angle)?;
391 circuit = circuit.dot(&pauli_rotation);
392 }
393 }
394
395 Ok(circuit)
396 }
397
398 fn ry_gate(&self, angle: f64) -> Array2<Complex64> {
400 let cos_half = (angle / 2.0).cos();
401 let sin_half = (angle / 2.0).sin();
402
403 ndarray::array![
404 [
405 Complex64::new(cos_half, 0.0),
406 Complex64::new(-sin_half, 0.0)
407 ],
408 [Complex64::new(sin_half, 0.0), Complex64::new(cos_half, 0.0)]
409 ]
410 }
411
412 fn zz_gate(&self, angle: f64) -> Array2<Complex64> {
414 let exp_factor = Complex64::from_polar(1.0, angle / 2.0);
415
416 ndarray::array![
417 [
418 exp_factor.conj(),
419 Complex64::new(0.0, 0.0),
420 Complex64::new(0.0, 0.0),
421 Complex64::new(0.0, 0.0)
422 ],
423 [
424 Complex64::new(0.0, 0.0),
425 exp_factor,
426 Complex64::new(0.0, 0.0),
427 Complex64::new(0.0, 0.0)
428 ],
429 [
430 Complex64::new(0.0, 0.0),
431 Complex64::new(0.0, 0.0),
432 exp_factor,
433 Complex64::new(0.0, 0.0)
434 ],
435 [
436 Complex64::new(0.0, 0.0),
437 Complex64::new(0.0, 0.0),
438 Complex64::new(0.0, 0.0),
439 exp_factor.conj()
440 ]
441 ]
442 }
443
444 fn pauli_rotation(
446 &self,
447 pauli_string: &str,
448 angle: f64,
449 ) -> Result<Array2<Complex64>, QuantRS2Error> {
450 let cos_half = (angle / 2.0).cos();
452 let sin_half = (angle / 2.0).sin();
453 match pauli_string {
454 "X" => Ok(ndarray::array![
455 [
456 Complex64::new(cos_half, 0.0),
457 Complex64::new(0.0, -sin_half)
458 ],
459 [
460 Complex64::new(0.0, -sin_half),
461 Complex64::new(cos_half, 0.0)
462 ]
463 ]),
464 "Y" => Ok(ndarray::array![
465 [
466 Complex64::new(cos_half, 0.0),
467 Complex64::new(-sin_half, 0.0)
468 ],
469 [Complex64::new(sin_half, 0.0), Complex64::new(cos_half, 0.0)]
470 ]),
471 "Z" => Ok(ndarray::array![
472 [
473 Complex64::new(cos_half, -sin_half),
474 Complex64::new(0.0, 0.0)
475 ],
476 [Complex64::new(0.0, 0.0), Complex64::new(cos_half, sin_half)]
477 ]),
478 _ => Err(QuantRS2Error::InvalidGateOp(format!(
479 "Unknown Pauli string: {}",
480 pauli_string
481 ))),
482 }
483 }
484
485 fn pauli_x(&self) -> Array2<Complex64> {
487 ndarray::array![
488 [Complex64::new(0.0, 0.0), Complex64::new(1.0, 0.0)],
489 [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)]
490 ]
491 }
492
493 fn pauli_y(&self) -> Array2<Complex64> {
494 ndarray::array![
495 [Complex64::new(0.0, 0.0), Complex64::new(0.0, -1.0)],
496 [Complex64::new(0.0, 1.0), Complex64::new(0.0, 0.0)]
497 ]
498 }
499
500 fn pauli_z(&self) -> Array2<Complex64> {
501 ndarray::array![
502 [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)],
503 [Complex64::new(0.0, 0.0), Complex64::new(-1.0, 0.0)]
504 ]
505 }
506
507 fn apply_single_qubit_gate(
509 &self,
510 circuit: &Array2<Complex64>,
511 gate: &Array2<Complex64>,
512 target_qubit: usize,
513 num_qubits: usize,
514 ) -> Result<Array2<Complex64>, QuantRS2Error> {
515 let mut full_gate = Array2::eye(2_usize.pow(num_qubits as u32));
516
517 for i in 0..num_qubits {
519 let local_gate = if i == target_qubit {
520 gate.clone()
521 } else {
522 Array2::eye(2)
523 };
524
525 if i == 0 {
526 full_gate = local_gate;
527 } else {
528 let gate_matrix = DenseMatrix::new(local_gate)?;
529 let full_gate_matrix = DenseMatrix::new(full_gate)?;
530 full_gate = full_gate_matrix.tensor_product(&gate_matrix)?;
531 }
532 }
533
534 Ok(circuit.dot(&full_gate))
535 }
536
537 fn apply_two_qubit_gate(
539 &self,
540 circuit: &Array2<Complex64>,
541 gate: &Array2<Complex64>,
542 _control: usize,
543 _target: usize,
544 _num_qubits: usize,
545 ) -> Result<Array2<Complex64>, QuantRS2Error> {
546 Ok(circuit.dot(gate))
549 }
550
551 pub fn optimize_kernel_parameters(
553 &mut self,
554 training_data: &Array2<f64>,
555 training_labels: &Array1<f64>,
556 ) -> Result<OptimizationResult, QuantRS2Error> {
557 let _training_data_clone = training_data.clone();
559 let _training_labels_clone = training_labels.clone();
560
561 let objective = |params: &Array1<f64>| -> Result<f64, String> {
562 let loss = params.iter().map(|x| x * x).sum::<f64>();
564 Ok(loss)
565 };
566
567 let initial_params = Array1::ones(4); let config = OptimizationConfig::default();
569
570 let result = minimize(objective, &initial_params, &config).map_err(|e| {
571 QuantRS2Error::OptimizationFailed(format!("Kernel optimization failed: {:?}", e))
572 })?;
573
574 self.feature_map_parameters = result.parameters.clone();
576
577 Ok(result)
578 }
579
580 fn update_feature_map_parameters(&mut self, _params: &Array1<f64>) {
582 }
585
586 fn compute_classification_loss(&self, kernel: &Array2<f64>, labels: &Array1<f64>) -> f64 {
588 let n = labels.len();
590 let mut loss = 0.0;
591
592 for i in 0..n {
593 for j in 0..n {
594 loss += labels[i] * labels[j] * kernel[[i, j]];
595 }
596 }
597
598 -loss / (n as f64)
599 }
600}
601
602#[derive(Debug, Clone)]
604pub struct HardwareEfficientMLLayer {
605 pub num_qubits: usize,
606 pub num_layers: usize,
607 pub parameters: Array1<f64>,
608 pub entanglement_pattern: EntanglementPattern,
609}
610
611#[derive(Debug, Clone)]
612pub enum EntanglementPattern {
613 Linear,
614 Circular,
615 AllToAll,
616 Custom(Vec<(usize, usize)>),
617}
618
619impl HardwareEfficientMLLayer {
620 pub fn new(
622 num_qubits: usize,
623 num_layers: usize,
624 entanglement_pattern: EntanglementPattern,
625 ) -> Self {
626 let num_params = num_qubits * num_layers * 3; Self {
628 num_qubits,
629 num_layers,
630 parameters: Array1::zeros(num_params),
631 entanglement_pattern,
632 }
633 }
634
635 pub fn initialize_parameters(&mut self, rng: &mut impl rand::Rng) {
637 for param in self.parameters.iter_mut() {
638 *param = rng.random_range(-PI..PI);
639 }
640 }
641
642 pub fn build_circuit(&self) -> Result<Array2<Complex64>, QuantRS2Error> {
644 let dim = 2_usize.pow(self.num_qubits as u32);
645 let mut circuit = Array2::eye(dim);
646
647 let mut param_idx = 0;
648 for layer in 0..self.num_layers {
649 for qubit in 0..self.num_qubits {
651 let rx_angle = self.parameters[param_idx];
652 let ry_angle = self.parameters[param_idx + 1];
653 let rz_angle = self.parameters[param_idx + 2];
654 param_idx += 3;
655
656 let rotation_gates = self.create_rotation_sequence(rx_angle, ry_angle, rz_angle);
658 circuit = self.apply_rotation_to_circuit(&circuit, &rotation_gates, qubit)?;
659 }
660
661 if layer < self.num_layers - 1 {
663 circuit = self.apply_entanglement_layer(&circuit)?;
664 }
665 }
666
667 Ok(circuit)
668 }
669
670 fn create_rotation_sequence(&self, rx: f64, ry: f64, rz: f64) -> Vec<Array2<Complex64>> {
672 vec![self.rx_gate(rx), self.ry_gate(ry), self.rz_gate(rz)]
673 }
674
675 fn rx_gate(&self, angle: f64) -> Array2<Complex64> {
677 let cos_half = (angle / 2.0).cos();
678 let sin_half = (angle / 2.0).sin();
679
680 ndarray::array![
681 [
682 Complex64::new(cos_half, 0.0),
683 Complex64::new(0.0, -sin_half)
684 ],
685 [
686 Complex64::new(0.0, -sin_half),
687 Complex64::new(cos_half, 0.0)
688 ]
689 ]
690 }
691
692 fn ry_gate(&self, angle: f64) -> Array2<Complex64> {
694 let cos_half = (angle / 2.0).cos();
695 let sin_half = (angle / 2.0).sin();
696
697 ndarray::array![
698 [
699 Complex64::new(cos_half, 0.0),
700 Complex64::new(-sin_half, 0.0)
701 ],
702 [Complex64::new(sin_half, 0.0), Complex64::new(cos_half, 0.0)]
703 ]
704 }
705
706 fn rz_gate(&self, angle: f64) -> Array2<Complex64> {
708 let exp_factor = Complex64::from_polar(1.0, angle / 2.0);
709
710 ndarray::array![
711 [exp_factor.conj(), Complex64::new(0.0, 0.0)],
712 [Complex64::new(0.0, 0.0), exp_factor]
713 ]
714 }
715
716 fn apply_rotation_to_circuit(
718 &self,
719 circuit: &Array2<Complex64>,
720 rotations: &[Array2<Complex64>],
721 qubit: usize,
722 ) -> Result<Array2<Complex64>, QuantRS2Error> {
723 let mut result = circuit.clone();
724 for rotation in rotations {
725 let full_gate = self.create_single_qubit_gate(rotation, qubit)?;
727 result = result.dot(&full_gate);
728 }
729 Ok(result)
730 }
731
732 fn create_single_qubit_gate(
734 &self,
735 gate: &Array2<Complex64>,
736 target_qubit: usize,
737 ) -> Result<Array2<Complex64>, QuantRS2Error> {
738 let dim = 2_usize.pow(self.num_qubits as u32);
739 let mut full_gate = Array2::eye(dim);
740
741 for i in 0..dim {
743 let target_bit = (i >> target_qubit) & 1;
744 if target_bit == 0 {
745 let j = i | (1 << target_qubit);
746 if j < dim {
747 full_gate[[i, i]] = gate[[0, 0]];
748 full_gate[[j, i]] = gate[[1, 0]];
749 }
750 } else {
751 let j = i & !(1 << target_qubit);
752 if j < dim {
753 full_gate[[j, i]] = gate[[0, 1]];
754 full_gate[[i, i]] = gate[[1, 1]];
755 }
756 }
757 }
758
759 Ok(full_gate)
760 }
761
762 fn apply_entanglement_layer(
764 &self,
765 circuit: &Array2<Complex64>,
766 ) -> Result<Array2<Complex64>, QuantRS2Error> {
767 let mut result = circuit.clone();
768
769 let entangling_pairs = match &self.entanglement_pattern {
770 EntanglementPattern::Linear => (0..self.num_qubits - 1).map(|i| (i, i + 1)).collect(),
771 EntanglementPattern::Circular => {
772 let mut pairs: Vec<(usize, usize)> =
773 (0..self.num_qubits - 1).map(|i| (i, i + 1)).collect();
774 if self.num_qubits > 2 {
775 pairs.push((self.num_qubits - 1, 0));
776 }
777 pairs
778 }
779 EntanglementPattern::AllToAll => {
780 let mut pairs = Vec::new();
781 for i in 0..self.num_qubits {
782 for j in i + 1..self.num_qubits {
783 pairs.push((i, j));
784 }
785 }
786 pairs
787 }
788 EntanglementPattern::Custom(pairs) => pairs.clone(),
789 };
790
791 for (control, target) in entangling_pairs {
792 let cnot = self.cnot_gate();
793 result = self.apply_cnot_to_circuit(&result, &cnot, control, target)?;
794 }
795
796 Ok(result)
797 }
798
799 fn cnot_gate(&self) -> Array2<Complex64> {
801 ndarray::array![
802 [
803 Complex64::new(1.0, 0.0),
804 Complex64::new(0.0, 0.0),
805 Complex64::new(0.0, 0.0),
806 Complex64::new(0.0, 0.0)
807 ],
808 [
809 Complex64::new(0.0, 0.0),
810 Complex64::new(1.0, 0.0),
811 Complex64::new(0.0, 0.0),
812 Complex64::new(0.0, 0.0)
813 ],
814 [
815 Complex64::new(0.0, 0.0),
816 Complex64::new(0.0, 0.0),
817 Complex64::new(0.0, 0.0),
818 Complex64::new(1.0, 0.0)
819 ],
820 [
821 Complex64::new(0.0, 0.0),
822 Complex64::new(0.0, 0.0),
823 Complex64::new(1.0, 0.0),
824 Complex64::new(0.0, 0.0)
825 ]
826 ]
827 }
828
829 fn apply_cnot_to_circuit(
831 &self,
832 circuit: &Array2<Complex64>,
833 cnot: &Array2<Complex64>,
834 _control: usize,
835 _target: usize,
836 ) -> Result<Array2<Complex64>, QuantRS2Error> {
837 Ok(circuit.dot(cnot))
839 }
840
841 pub fn expectation_value(
843 &self,
844 observable: &Array2<Complex64>,
845 input_state: &Array1<Complex64>,
846 ) -> Result<f64, QuantRS2Error> {
847 let circuit = self.build_circuit()?;
848 let output_state = circuit.dot(input_state);
849 let expectation = output_state.t().dot(&observable.dot(&output_state));
850 Ok(expectation.re)
851 }
852
853 pub fn update_parameters(&mut self, gradient: &Array1<f64>, learning_rate: f64) {
855 self.parameters = &self.parameters - learning_rate * gradient;
856 }
857}
858
859#[derive(Debug)]
861pub struct TensorNetworkMLAccelerator {
862 pub tensor_network: TensorNetwork,
863 pub bond_dimensions: Vec<usize>,
864 pub contraction_order: Vec<usize>,
865}
866
867impl TensorNetworkMLAccelerator {
868 pub fn new(num_qubits: usize, max_bond_dimension: usize) -> Self {
870 let network = TensorNetwork::new();
871 let bond_dimensions = vec![max_bond_dimension; num_qubits];
872
873 Self {
874 tensor_network: network,
875 bond_dimensions,
876 contraction_order: (0..num_qubits).collect(),
877 }
878 }
879
880 pub fn decompose_circuit(&mut self, circuit: &Array2<Complex64>) -> Result<(), QuantRS2Error> {
882 let (u, s, vt) = decompose_svd(circuit)?;
884
885 let tensor_u = Tensor::from_array(u, vec![0, 1]);
887 let s_complex: Array2<Complex64> = s
888 .diag()
889 .insert_axis(Axis(1))
890 .mapv(|x| Complex64::new(x, 0.0))
891 .to_owned();
892 let tensor_s = Tensor::from_array(s_complex, vec![1, 2]);
893 let tensor_vt = Tensor::from_array(vt, vec![2, 3]);
894
895 self.tensor_network.add_tensor(tensor_u);
897 self.tensor_network.add_tensor(tensor_s);
898 self.tensor_network.add_tensor(tensor_vt);
899
900 Ok(())
901 }
902
903 pub fn optimize_contraction(&mut self) -> Result<(), QuantRS2Error> {
905 let n_tensors = self.tensor_network.tensors().len();
907
908 if n_tensors <= 1 {
909 return Ok(());
910 }
911
912 self.contraction_order = (0..n_tensors).collect();
914 self.contraction_order
915 .sort_by_key(|&i| self.tensor_network.tensors()[i].tensor().ndim());
916
917 Ok(())
918 }
919
920 pub fn contract_network(&self) -> Result<Array2<Complex64>, QuantRS2Error> {
922 if self.tensor_network.tensors().is_empty() {
923 return Err(QuantRS2Error::TensorNetwork(
924 "Empty tensor network".to_string(),
925 ));
926 }
927
928 let first_tensor = &self.tensor_network.tensors()[0];
930 let result = first_tensor.tensor().clone();
931
932 let sqrt_dim = (result.len() as f64).sqrt() as usize;
934 if sqrt_dim * sqrt_dim != result.len() {
935 return Err(QuantRS2Error::TensorNetwork(
936 "Invalid tensor dimensions".to_string(),
937 ));
938 }
939
940 Ok(result
941 .into_shape_with_order((sqrt_dim, sqrt_dim))
942 .map_err(|e| QuantRS2Error::TensorNetwork(format!("Shape error: {}", e)))?)
943 }
944
945 pub fn complexity_estimate(&self) -> (usize, usize) {
947 let time_complexity = self.bond_dimensions.iter().product();
948 let space_complexity = self.bond_dimensions.iter().sum();
949 (time_complexity, space_complexity)
950 }
951}
952
953#[cfg(test)]
954mod tests {
955 use super::*;
956 use ndarray::array;
957
958 #[test]
959 fn test_quantum_natural_gradient() {
960 let mut qng = QuantumNaturalGradient::new(2, 1e-6);
961 let params = array![PI / 4.0, PI / 3.0];
962 let state = array![Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)];
963
964 let circuit_gen =
965 |_p: &Array1<f64>| -> Result<Array2<Complex64>, QuantRS2Error> { Ok(Array2::eye(2)) };
966
967 let result = qng.compute_fisher_information(circuit_gen, ¶ms, &state);
968 assert!(result.is_ok());
969 }
970
971 #[test]
972 fn test_parameter_shift_optimizer() {
973 let optimizer = ParameterShiftOptimizer::default();
974 let params = array![PI / 4.0, PI / 3.0];
975
976 let expectation_fn =
977 |p: &Array1<f64>| -> Result<f64, QuantRS2Error> { Ok(p[0].cos() + p[1].sin()) };
978
979 let gradient = optimizer.compute_gradient(expectation_fn, ¶ms);
980 assert!(gradient.is_ok());
981 assert_eq!(gradient.unwrap().len(), 2);
982 }
983
984 #[test]
985 fn test_quantum_kernel_optimizer() {
986 let feature_map = QuantumFeatureMap::ZZFeatureMap {
987 num_qubits: 2,
988 depth: 1,
989 };
990 let mut optimizer = QuantumKernelOptimizer::new(feature_map);
991
992 let data = array![[0.1, 0.2], [0.3, 0.4]];
993 let result = optimizer.compute_kernel_matrix(&data);
994
995 assert!(result.is_ok());
996 let kernel = result.unwrap();
997 assert_eq!(kernel.shape(), &[2, 2]);
998 }
999
1000 #[test]
1001 fn test_hardware_efficient_ml_layer() {
1002 let mut layer = HardwareEfficientMLLayer::new(2, 2, EntanglementPattern::Linear);
1003
1004 let mut rng = rand::rng();
1005 layer.initialize_parameters(&mut rng);
1006
1007 let circuit = layer.build_circuit();
1008 assert!(circuit.is_ok());
1009
1010 let observable = array![
1011 [
1012 Complex64::new(1.0, 0.0),
1013 Complex64::new(0.0, 0.0),
1014 Complex64::new(0.0, 0.0),
1015 Complex64::new(0.0, 0.0)
1016 ],
1017 [
1018 Complex64::new(0.0, 0.0),
1019 Complex64::new(-1.0, 0.0),
1020 Complex64::new(0.0, 0.0),
1021 Complex64::new(0.0, 0.0)
1022 ],
1023 [
1024 Complex64::new(0.0, 0.0),
1025 Complex64::new(0.0, 0.0),
1026 Complex64::new(-1.0, 0.0),
1027 Complex64::new(0.0, 0.0)
1028 ],
1029 [
1030 Complex64::new(0.0, 0.0),
1031 Complex64::new(0.0, 0.0),
1032 Complex64::new(0.0, 0.0),
1033 Complex64::new(1.0, 0.0)
1034 ]
1035 ];
1036 let state = array![
1037 Complex64::new(1.0, 0.0),
1038 Complex64::new(0.0, 0.0),
1039 Complex64::new(0.0, 0.0),
1040 Complex64::new(0.0, 0.0)
1041 ];
1042
1043 let expectation = layer.expectation_value(&observable, &state);
1044 assert!(expectation.is_ok());
1045 }
1046
1047 #[test]
1048 fn test_tensor_network_ml_accelerator() {
1049 let mut accelerator = TensorNetworkMLAccelerator::new(2, 4);
1050
1051 let circuit = array![
1052 [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)],
1053 [Complex64::new(0.0, 0.0), Complex64::new(-1.0, 0.0)]
1054 ];
1055
1056 let result = accelerator.decompose_circuit(&circuit);
1057 assert!(result.is_ok());
1058
1059 let optimization = accelerator.optimize_contraction();
1060 assert!(optimization.is_ok());
1061
1062 let (time_comp, space_comp) = accelerator.complexity_estimate();
1063 assert!(time_comp > 0);
1064 assert!(space_comp > 0);
1065 }
1066}