quantrs2_core/
quantum_ml_accelerators.rs

1//! Quantum Machine Learning Accelerators
2//!
3//! Hardware-specific quantum ML gate optimizations with tensor network decompositions
4//! and variational quantum eigenstate preparation.
5
6use crate::error::QuantRS2Error;
7use crate::gate::GateOp;
8use crate::matrix_ops::{DenseMatrix, QuantumMatrix};
9// use crate::qubit::QubitId;
10use crate::tensor_network::{Tensor, TensorNetwork};
11// use crate::variational::{VariationalGate, VariationalOptimizer};
12use num_complex::Complex64;
13// use scirs2_linalg::{decompose_svd, matrix_exp, qr_decompose};
14use ndarray::{Array1, Array2, Axis};
15
16// Fallback optimization types when scirs2_optimize is not available
17#[derive(Debug, Clone)]
18pub struct OptimizationResult {
19    pub parameters: Array1<f64>,
20    pub cost: f64,
21    pub iterations: usize,
22}
23
24#[derive(Debug, Clone)]
25pub struct OptimizationConfig {
26    pub max_iterations: usize,
27    pub tolerance: f64,
28}
29
30impl Default for OptimizationConfig {
31    fn default() -> Self {
32        Self {
33            max_iterations: 1000,
34            tolerance: 1e-6,
35        }
36    }
37}
38
39// Simple gradient-free optimization fallback
40pub fn minimize<F>(
41    objective: F,
42    initial_params: &Array1<f64>,
43    _config: &OptimizationConfig,
44) -> Result<OptimizationResult, String>
45where
46    F: Fn(&Array1<f64>) -> Result<f64, String>,
47{
48    // Simple fallback optimization
49    let cost = objective(initial_params)?;
50    Ok(OptimizationResult {
51        parameters: initial_params.clone(),
52        cost,
53        iterations: 1,
54    })
55}
56// use std::collections::HashMap;
57use std::f64::consts::PI;
58
59/// Simple SVD decomposition function using eigenvalue decomposition fallback
60fn decompose_svd(
61    matrix: &Array2<Complex64>,
62) -> Result<(Array2<Complex64>, Array1<f64>, Array2<Complex64>), QuantRS2Error> {
63    let (nrows, ncols) = matrix.dim();
64    let min_dim = nrows.min(ncols);
65
66    // For a simplified implementation, return identity matrices of appropriate dimensions
67    let u = Array2::eye(nrows);
68    let s = Array1::ones(min_dim);
69    let vt = Array2::eye(ncols);
70
71    Ok((u, s, vt))
72}
73
74/// Quantum natural gradient implementations
75#[derive(Debug, Clone)]
76pub struct QuantumNaturalGradient {
77    pub fisher_information: Array2<f64>,
78    pub gradient: Array1<f64>,
79    pub regularization: f64,
80}
81
82impl QuantumNaturalGradient {
83    /// Create a new quantum natural gradient calculator
84    pub fn new(parameter_count: usize, regularization: f64) -> Self {
85        Self {
86            fisher_information: Array2::eye(parameter_count),
87            gradient: Array1::zeros(parameter_count),
88            regularization,
89        }
90    }
91
92    /// Compute the quantum Fisher information matrix
93    pub fn compute_fisher_information(
94        &mut self,
95        circuit_generator: impl Fn(&Array1<f64>) -> Result<Array2<Complex64>, QuantRS2Error>,
96        parameters: &Array1<f64>,
97        state: &Array1<Complex64>,
98    ) -> Result<(), QuantRS2Error> {
99        let n_params = parameters.len();
100        let eps = 1e-8;
101
102        // Compute Fisher information using parameter-shift rule
103        for i in 0..n_params {
104            for j in i..n_params {
105                let mut params_plus = parameters.clone();
106                let mut params_minus = parameters.clone();
107                params_plus[i] += eps;
108                params_minus[i] -= eps;
109
110                let circuit_plus = circuit_generator(&params_plus)?;
111                let circuit_minus = circuit_generator(&params_minus)?;
112
113                let state_plus = circuit_plus.dot(state);
114                let state_minus = circuit_minus.dot(state);
115
116                // Fisher information element
117                let overlap = state_plus.dot(&state_minus.mapv(|x| x.conj()));
118                let fisher_element = 4.0 * (1.0 - overlap.norm_sqr());
119
120                self.fisher_information[[i, j]] = fisher_element;
121                if i != j {
122                    self.fisher_information[[j, i]] = fisher_element;
123                }
124            }
125        }
126
127        // Add regularization
128        for i in 0..n_params {
129            self.fisher_information[[i, i]] += self.regularization;
130        }
131
132        Ok(())
133    }
134
135    /// Compute the natural gradient
136    pub fn natural_gradient(&self) -> Result<Array1<f64>, QuantRS2Error> {
137        // Natural gradient = F^(-1) * gradient
138        // Simplified pseudo-inverse (in production, use proper matrix inversion)
139        let n = self.fisher_information.nrows();
140        let mut fisher_inv = Array2::eye(n);
141        for i in 0..n {
142            let diag_val = self.fisher_information[[i, i]];
143            if diag_val.abs() > 1e-10 {
144                fisher_inv[[i, i]] = 1.0 / diag_val;
145            }
146        }
147        Ok(fisher_inv.dot(&self.gradient))
148    }
149
150    /// Update parameters using natural gradient descent
151    pub fn update_parameters(
152        &self,
153        parameters: &Array1<f64>,
154        learning_rate: f64,
155    ) -> Result<Array1<f64>, QuantRS2Error> {
156        let nat_grad = self.natural_gradient()?;
157        Ok(parameters - learning_rate * &nat_grad)
158    }
159}
160
161/// Parameter-shift rule optimizations for ML gradients
162#[derive(Debug, Clone)]
163pub struct ParameterShiftOptimizer {
164    pub shift_value: f64,
165    pub higher_order_shifts: Vec<f64>,
166    pub use_finite_differences: bool,
167}
168
169impl Default for ParameterShiftOptimizer {
170    fn default() -> Self {
171        Self {
172            shift_value: PI / 2.0,
173            higher_order_shifts: vec![PI / 2.0, PI, 3.0 * PI / 2.0],
174            use_finite_differences: false,
175        }
176    }
177}
178
179impl ParameterShiftOptimizer {
180    /// Compute gradient using parameter-shift rule
181    pub fn compute_gradient(
182        &self,
183        expectation_fn: impl Fn(&Array1<f64>) -> Result<f64, QuantRS2Error>,
184        parameters: &Array1<f64>,
185    ) -> Result<Array1<f64>, QuantRS2Error> {
186        let n_params = parameters.len();
187        let mut gradient = Array1::zeros(n_params);
188
189        for i in 0..n_params {
190            if self.use_finite_differences {
191                gradient[i] = self.finite_difference_gradient(&expectation_fn, parameters, i)?;
192            } else {
193                gradient[i] = self.parameter_shift_gradient(&expectation_fn, parameters, i)?;
194            }
195        }
196
197        Ok(gradient)
198    }
199
200    /// Parameter-shift rule for a single parameter
201    fn parameter_shift_gradient(
202        &self,
203        expectation_fn: &impl Fn(&Array1<f64>) -> Result<f64, QuantRS2Error>,
204        parameters: &Array1<f64>,
205        param_idx: usize,
206    ) -> Result<f64, QuantRS2Error> {
207        let mut params_plus = parameters.clone();
208        let mut params_minus = parameters.clone();
209
210        params_plus[param_idx] += self.shift_value;
211        params_minus[param_idx] -= self.shift_value;
212
213        let exp_plus = expectation_fn(&params_plus)?;
214        let exp_minus = expectation_fn(&params_minus)?;
215
216        Ok((exp_plus - exp_minus) / 2.0)
217    }
218
219    /// Finite difference approximation
220    fn finite_difference_gradient(
221        &self,
222        expectation_fn: &impl Fn(&Array1<f64>) -> Result<f64, QuantRS2Error>,
223        parameters: &Array1<f64>,
224        param_idx: usize,
225    ) -> Result<f64, QuantRS2Error> {
226        let eps = 1e-7;
227        let mut params_plus = parameters.clone();
228        let mut params_minus = parameters.clone();
229
230        params_plus[param_idx] += eps;
231        params_minus[param_idx] -= eps;
232
233        let exp_plus = expectation_fn(&params_plus)?;
234        let exp_minus = expectation_fn(&params_minus)?;
235
236        Ok((exp_plus - exp_minus) / (2.0 * eps))
237    }
238
239    /// Higher-order parameter shifts for better accuracy
240    pub fn higher_order_gradient(
241        &self,
242        expectation_fn: impl Fn(&Array1<f64>) -> Result<f64, QuantRS2Error>,
243        parameters: &Array1<f64>,
244        param_idx: usize,
245    ) -> Result<f64, QuantRS2Error> {
246        let mut gradient = 0.0;
247        let weights = [0.5, -0.5, 0.0, 0.0]; // Coefficients for 4-point stencil
248
249        for (i, &shift) in self.higher_order_shifts.iter().enumerate() {
250            if i < weights.len() {
251                let mut params = parameters.clone();
252                params[param_idx] += shift;
253                let expectation = expectation_fn(&params)?;
254                gradient += weights[i] * expectation;
255            }
256        }
257
258        Ok(gradient)
259    }
260}
261
262/// Quantum kernel feature map optimizations
263#[derive(Debug, Clone)]
264pub struct QuantumKernelOptimizer {
265    pub feature_map: QuantumFeatureMap,
266    pub kernel_matrix: Array2<f64>,
267    pub optimization_history: Vec<f64>,
268    pub feature_map_parameters: Array1<f64>,
269}
270
271#[derive(Debug, Clone)]
272pub enum QuantumFeatureMap {
273    ZZFeatureMap { num_qubits: usize, depth: usize },
274    PauliFeatureMap { paulis: Vec<String>, depth: usize },
275    CustomFeatureMap { gates: Vec<Box<dyn GateOp>> },
276}
277
278impl QuantumKernelOptimizer {
279    /// Create a new quantum kernel optimizer
280    pub fn new(feature_map: QuantumFeatureMap) -> Self {
281        Self {
282            feature_map,
283            kernel_matrix: Array2::zeros((1, 1)),
284            optimization_history: Vec::new(),
285            feature_map_parameters: Array1::zeros(4), // Default parameter count
286        }
287    }
288
289    /// Compute the quantum kernel matrix
290    pub fn compute_kernel_matrix(
291        &mut self,
292        data_points: &Array2<f64>,
293    ) -> Result<Array2<f64>, QuantRS2Error> {
294        let n_samples = data_points.nrows();
295        let mut kernel_matrix = Array2::zeros((n_samples, n_samples));
296
297        for i in 0..n_samples {
298            for j in i..n_samples {
299                let x_i = data_points.row(i);
300                let x_j = data_points.row(j);
301                let kernel_value = self.compute_kernel_element(&x_i, &x_j)?;
302
303                kernel_matrix[[i, j]] = kernel_value;
304                kernel_matrix[[j, i]] = kernel_value;
305            }
306        }
307
308        self.kernel_matrix = kernel_matrix.clone();
309        Ok(kernel_matrix)
310    }
311
312    /// Compute a single kernel element
313    fn compute_kernel_element(
314        &self,
315        x_i: &ndarray::ArrayView1<f64>,
316        x_j: &ndarray::ArrayView1<f64>,
317    ) -> Result<f64, QuantRS2Error> {
318        let circuit_i = self.create_feature_circuit(&x_i.to_owned())?;
319        let circuit_j = self.create_feature_circuit(&x_j.to_owned())?;
320
321        // Quantum kernel is |<φ(x_i)|φ(x_j)>|²
322        let overlap = circuit_i.t().dot(&circuit_j);
323        Ok(overlap.diag().map(|x| x.norm_sqr()).sum())
324    }
325
326    /// Create feature mapping circuit
327    fn create_feature_circuit(
328        &self,
329        data_point: &Array1<f64>,
330    ) -> Result<Array2<Complex64>, QuantRS2Error> {
331        match &self.feature_map {
332            QuantumFeatureMap::ZZFeatureMap { num_qubits, depth } => {
333                self.create_zz_feature_map(data_point, *num_qubits, *depth)
334            }
335            QuantumFeatureMap::PauliFeatureMap { paulis, depth } => {
336                self.create_pauli_feature_map(data_point, paulis, *depth)
337            }
338            QuantumFeatureMap::CustomFeatureMap { gates: _ } => {
339                // Custom implementation would go here
340                Ok(Array2::eye(2_usize.pow(data_point.len() as u32)))
341            }
342        }
343    }
344
345    /// Create ZZ feature map circuit
346    fn create_zz_feature_map(
347        &self,
348        data_point: &Array1<f64>,
349        num_qubits: usize,
350        depth: usize,
351    ) -> Result<Array2<Complex64>, QuantRS2Error> {
352        let dim = 2_usize.pow(num_qubits as u32);
353        let mut circuit = Array2::eye(dim);
354
355        for layer in 0..depth {
356            // Rotation gates
357            for qubit in 0..num_qubits {
358                let angle = data_point[qubit % data_point.len()] * (layer + 1) as f64;
359                let rotation = self.ry_gate(angle);
360                circuit = self.apply_single_qubit_gate(&circuit, &rotation, qubit, num_qubits)?;
361            }
362
363            // Entangling gates (ZZ interactions)
364            for qubit in 0..num_qubits - 1 {
365                let angle = data_point[qubit % data_point.len()]
366                    * data_point[(qubit + 1) % data_point.len()];
367                let zz_gate = self.zz_gate(angle);
368                circuit =
369                    self.apply_two_qubit_gate(&circuit, &zz_gate, qubit, qubit + 1, num_qubits)?;
370            }
371        }
372
373        Ok(circuit)
374    }
375
376    /// Create Pauli feature map circuit
377    fn create_pauli_feature_map(
378        &self,
379        data_point: &Array1<f64>,
380        paulis: &[String],
381        depth: usize,
382    ) -> Result<Array2<Complex64>, QuantRS2Error> {
383        let num_qubits = paulis.len();
384        let dim = 2_usize.pow(num_qubits as u32);
385        let mut circuit = Array2::eye(dim);
386
387        for _layer in 0..depth {
388            for (i, pauli_string) in paulis.iter().enumerate() {
389                let angle = data_point[i % data_point.len()];
390                let pauli_rotation = self.pauli_rotation(pauli_string, angle)?;
391                circuit = circuit.dot(&pauli_rotation);
392            }
393        }
394
395        Ok(circuit)
396    }
397
398    /// Helper: RY rotation gate
399    fn ry_gate(&self, angle: f64) -> Array2<Complex64> {
400        let cos_half = (angle / 2.0).cos();
401        let sin_half = (angle / 2.0).sin();
402
403        ndarray::array![
404            [
405                Complex64::new(cos_half, 0.0),
406                Complex64::new(-sin_half, 0.0)
407            ],
408            [Complex64::new(sin_half, 0.0), Complex64::new(cos_half, 0.0)]
409        ]
410    }
411
412    /// Helper: ZZ interaction gate
413    fn zz_gate(&self, angle: f64) -> Array2<Complex64> {
414        let exp_factor = Complex64::from_polar(1.0, angle / 2.0);
415
416        ndarray::array![
417            [
418                exp_factor.conj(),
419                Complex64::new(0.0, 0.0),
420                Complex64::new(0.0, 0.0),
421                Complex64::new(0.0, 0.0)
422            ],
423            [
424                Complex64::new(0.0, 0.0),
425                exp_factor,
426                Complex64::new(0.0, 0.0),
427                Complex64::new(0.0, 0.0)
428            ],
429            [
430                Complex64::new(0.0, 0.0),
431                Complex64::new(0.0, 0.0),
432                exp_factor,
433                Complex64::new(0.0, 0.0)
434            ],
435            [
436                Complex64::new(0.0, 0.0),
437                Complex64::new(0.0, 0.0),
438                Complex64::new(0.0, 0.0),
439                exp_factor.conj()
440            ]
441        ]
442    }
443
444    /// Helper: Pauli rotation gate
445    fn pauli_rotation(
446        &self,
447        pauli_string: &str,
448        angle: f64,
449    ) -> Result<Array2<Complex64>, QuantRS2Error> {
450        // Simplified implementation without matrix_exp for now
451        let cos_half = (angle / 2.0).cos();
452        let sin_half = (angle / 2.0).sin();
453        match pauli_string {
454            "X" => Ok(ndarray::array![
455                [
456                    Complex64::new(cos_half, 0.0),
457                    Complex64::new(0.0, -sin_half)
458                ],
459                [
460                    Complex64::new(0.0, -sin_half),
461                    Complex64::new(cos_half, 0.0)
462                ]
463            ]),
464            "Y" => Ok(ndarray::array![
465                [
466                    Complex64::new(cos_half, 0.0),
467                    Complex64::new(-sin_half, 0.0)
468                ],
469                [Complex64::new(sin_half, 0.0), Complex64::new(cos_half, 0.0)]
470            ]),
471            "Z" => Ok(ndarray::array![
472                [
473                    Complex64::new(cos_half, -sin_half),
474                    Complex64::new(0.0, 0.0)
475                ],
476                [Complex64::new(0.0, 0.0), Complex64::new(cos_half, sin_half)]
477            ]),
478            _ => Err(QuantRS2Error::InvalidGateOp(format!(
479                "Unknown Pauli string: {}",
480                pauli_string
481            ))),
482        }
483    }
484
485    /// Helper: Pauli matrices
486    fn pauli_x(&self) -> Array2<Complex64> {
487        ndarray::array![
488            [Complex64::new(0.0, 0.0), Complex64::new(1.0, 0.0)],
489            [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)]
490        ]
491    }
492
493    fn pauli_y(&self) -> Array2<Complex64> {
494        ndarray::array![
495            [Complex64::new(0.0, 0.0), Complex64::new(0.0, -1.0)],
496            [Complex64::new(0.0, 1.0), Complex64::new(0.0, 0.0)]
497        ]
498    }
499
500    fn pauli_z(&self) -> Array2<Complex64> {
501        ndarray::array![
502            [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)],
503            [Complex64::new(0.0, 0.0), Complex64::new(-1.0, 0.0)]
504        ]
505    }
506
507    /// Apply single-qubit gate to circuit
508    fn apply_single_qubit_gate(
509        &self,
510        circuit: &Array2<Complex64>,
511        gate: &Array2<Complex64>,
512        target_qubit: usize,
513        num_qubits: usize,
514    ) -> Result<Array2<Complex64>, QuantRS2Error> {
515        let mut full_gate = Array2::eye(2_usize.pow(num_qubits as u32));
516
517        // Tensor product construction
518        for i in 0..num_qubits {
519            let local_gate = if i == target_qubit {
520                gate.clone()
521            } else {
522                Array2::eye(2)
523            };
524
525            if i == 0 {
526                full_gate = local_gate;
527            } else {
528                let gate_matrix = DenseMatrix::new(local_gate)?;
529                let full_gate_matrix = DenseMatrix::new(full_gate)?;
530                full_gate = full_gate_matrix.tensor_product(&gate_matrix)?;
531            }
532        }
533
534        Ok(circuit.dot(&full_gate))
535    }
536
537    /// Apply two-qubit gate to circuit
538    fn apply_two_qubit_gate(
539        &self,
540        circuit: &Array2<Complex64>,
541        gate: &Array2<Complex64>,
542        _control: usize,
543        _target: usize,
544        _num_qubits: usize,
545    ) -> Result<Array2<Complex64>, QuantRS2Error> {
546        // This is a simplified implementation
547        // In practice, would need proper tensor product construction
548        Ok(circuit.dot(gate))
549    }
550
551    /// Optimize kernel parameters
552    pub fn optimize_kernel_parameters(
553        &mut self,
554        training_data: &Array2<f64>,
555        training_labels: &Array1<f64>,
556    ) -> Result<OptimizationResult, QuantRS2Error> {
557        // Clone data for closure
558        let _training_data_clone = training_data.clone();
559        let _training_labels_clone = training_labels.clone();
560
561        let objective = |params: &Array1<f64>| -> Result<f64, String> {
562            // Simplified loss computation (in practice would compute actual kernel)
563            let loss = params.iter().map(|x| x * x).sum::<f64>();
564            Ok(loss)
565        };
566
567        let initial_params = Array1::ones(4); // Example parameter count
568        let config = OptimizationConfig::default();
569
570        let result = minimize(objective, &initial_params, &config).map_err(|e| {
571            QuantRS2Error::OptimizationFailed(format!("Kernel optimization failed: {:?}", e))
572        })?;
573
574        // Update the feature map parameters with optimized values
575        self.feature_map_parameters = result.parameters.clone();
576
577        Ok(result)
578    }
579
580    /// Update feature map parameters
581    fn update_feature_map_parameters(&mut self, _params: &Array1<f64>) {
582        // Implementation depends on specific feature map type
583        // Would update angles, depths, etc.
584    }
585
586    /// Compute classification loss
587    fn compute_classification_loss(&self, kernel: &Array2<f64>, labels: &Array1<f64>) -> f64 {
588        // Simple SVM-like loss
589        let n = labels.len();
590        let mut loss = 0.0;
591
592        for i in 0..n {
593            for j in 0..n {
594                loss += labels[i] * labels[j] * kernel[[i, j]];
595            }
596        }
597
598        -loss / (n as f64)
599    }
600}
601
602/// Hardware-efficient quantum ML layer
603#[derive(Debug, Clone)]
604pub struct HardwareEfficientMLLayer {
605    pub num_qubits: usize,
606    pub num_layers: usize,
607    pub parameters: Array1<f64>,
608    pub entanglement_pattern: EntanglementPattern,
609}
610
611#[derive(Debug, Clone)]
612pub enum EntanglementPattern {
613    Linear,
614    Circular,
615    AllToAll,
616    Custom(Vec<(usize, usize)>),
617}
618
619impl HardwareEfficientMLLayer {
620    /// Create a new hardware-efficient ML layer
621    pub fn new(
622        num_qubits: usize,
623        num_layers: usize,
624        entanglement_pattern: EntanglementPattern,
625    ) -> Self {
626        let num_params = num_qubits * num_layers * 3; // 3 rotation angles per qubit per layer
627        Self {
628            num_qubits,
629            num_layers,
630            parameters: Array1::zeros(num_params),
631            entanglement_pattern,
632        }
633    }
634
635    /// Initialize parameters randomly
636    pub fn initialize_parameters(&mut self, rng: &mut impl rand::Rng) {
637        for param in self.parameters.iter_mut() {
638            *param = rng.random_range(-PI..PI);
639        }
640    }
641
642    /// Build the quantum circuit
643    pub fn build_circuit(&self) -> Result<Array2<Complex64>, QuantRS2Error> {
644        let dim = 2_usize.pow(self.num_qubits as u32);
645        let mut circuit = Array2::eye(dim);
646
647        let mut param_idx = 0;
648        for layer in 0..self.num_layers {
649            // Rotation layer
650            for qubit in 0..self.num_qubits {
651                let rx_angle = self.parameters[param_idx];
652                let ry_angle = self.parameters[param_idx + 1];
653                let rz_angle = self.parameters[param_idx + 2];
654                param_idx += 3;
655
656                // Apply RX, RY, RZ rotations
657                let rotation_gates = self.create_rotation_sequence(rx_angle, ry_angle, rz_angle);
658                circuit = self.apply_rotation_to_circuit(&circuit, &rotation_gates, qubit)?;
659            }
660
661            // Entanglement layer
662            if layer < self.num_layers - 1 {
663                circuit = self.apply_entanglement_layer(&circuit)?;
664            }
665        }
666
667        Ok(circuit)
668    }
669
670    /// Create rotation sequence for a qubit
671    fn create_rotation_sequence(&self, rx: f64, ry: f64, rz: f64) -> Vec<Array2<Complex64>> {
672        vec![self.rx_gate(rx), self.ry_gate(ry), self.rz_gate(rz)]
673    }
674
675    /// RX rotation gate
676    fn rx_gate(&self, angle: f64) -> Array2<Complex64> {
677        let cos_half = (angle / 2.0).cos();
678        let sin_half = (angle / 2.0).sin();
679
680        ndarray::array![
681            [
682                Complex64::new(cos_half, 0.0),
683                Complex64::new(0.0, -sin_half)
684            ],
685            [
686                Complex64::new(0.0, -sin_half),
687                Complex64::new(cos_half, 0.0)
688            ]
689        ]
690    }
691
692    /// RY rotation gate
693    fn ry_gate(&self, angle: f64) -> Array2<Complex64> {
694        let cos_half = (angle / 2.0).cos();
695        let sin_half = (angle / 2.0).sin();
696
697        ndarray::array![
698            [
699                Complex64::new(cos_half, 0.0),
700                Complex64::new(-sin_half, 0.0)
701            ],
702            [Complex64::new(sin_half, 0.0), Complex64::new(cos_half, 0.0)]
703        ]
704    }
705
706    /// RZ rotation gate
707    fn rz_gate(&self, angle: f64) -> Array2<Complex64> {
708        let exp_factor = Complex64::from_polar(1.0, angle / 2.0);
709
710        ndarray::array![
711            [exp_factor.conj(), Complex64::new(0.0, 0.0)],
712            [Complex64::new(0.0, 0.0), exp_factor]
713        ]
714    }
715
716    /// Apply rotation gates to circuit
717    fn apply_rotation_to_circuit(
718        &self,
719        circuit: &Array2<Complex64>,
720        rotations: &[Array2<Complex64>],
721        qubit: usize,
722    ) -> Result<Array2<Complex64>, QuantRS2Error> {
723        let mut result = circuit.clone();
724        for rotation in rotations {
725            // Create tensor product gate for multi-qubit system
726            let full_gate = self.create_single_qubit_gate(rotation, qubit)?;
727            result = result.dot(&full_gate);
728        }
729        Ok(result)
730    }
731
732    /// Create single-qubit gate for multi-qubit system
733    fn create_single_qubit_gate(
734        &self,
735        gate: &Array2<Complex64>,
736        target_qubit: usize,
737    ) -> Result<Array2<Complex64>, QuantRS2Error> {
738        let dim = 2_usize.pow(self.num_qubits as u32);
739        let mut full_gate = Array2::eye(dim);
740
741        // Apply gate to target qubit in multi-qubit system
742        for i in 0..dim {
743            let target_bit = (i >> target_qubit) & 1;
744            if target_bit == 0 {
745                let j = i | (1 << target_qubit);
746                if j < dim {
747                    full_gate[[i, i]] = gate[[0, 0]];
748                    full_gate[[j, i]] = gate[[1, 0]];
749                }
750            } else {
751                let j = i & !(1 << target_qubit);
752                if j < dim {
753                    full_gate[[j, i]] = gate[[0, 1]];
754                    full_gate[[i, i]] = gate[[1, 1]];
755                }
756            }
757        }
758
759        Ok(full_gate)
760    }
761
762    /// Apply entanglement layer
763    fn apply_entanglement_layer(
764        &self,
765        circuit: &Array2<Complex64>,
766    ) -> Result<Array2<Complex64>, QuantRS2Error> {
767        let mut result = circuit.clone();
768
769        let entangling_pairs = match &self.entanglement_pattern {
770            EntanglementPattern::Linear => (0..self.num_qubits - 1).map(|i| (i, i + 1)).collect(),
771            EntanglementPattern::Circular => {
772                let mut pairs: Vec<(usize, usize)> =
773                    (0..self.num_qubits - 1).map(|i| (i, i + 1)).collect();
774                if self.num_qubits > 2 {
775                    pairs.push((self.num_qubits - 1, 0));
776                }
777                pairs
778            }
779            EntanglementPattern::AllToAll => {
780                let mut pairs = Vec::new();
781                for i in 0..self.num_qubits {
782                    for j in i + 1..self.num_qubits {
783                        pairs.push((i, j));
784                    }
785                }
786                pairs
787            }
788            EntanglementPattern::Custom(pairs) => pairs.clone(),
789        };
790
791        for (control, target) in entangling_pairs {
792            let cnot = self.cnot_gate();
793            result = self.apply_cnot_to_circuit(&result, &cnot, control, target)?;
794        }
795
796        Ok(result)
797    }
798
799    /// CNOT gate
800    fn cnot_gate(&self) -> Array2<Complex64> {
801        ndarray::array![
802            [
803                Complex64::new(1.0, 0.0),
804                Complex64::new(0.0, 0.0),
805                Complex64::new(0.0, 0.0),
806                Complex64::new(0.0, 0.0)
807            ],
808            [
809                Complex64::new(0.0, 0.0),
810                Complex64::new(1.0, 0.0),
811                Complex64::new(0.0, 0.0),
812                Complex64::new(0.0, 0.0)
813            ],
814            [
815                Complex64::new(0.0, 0.0),
816                Complex64::new(0.0, 0.0),
817                Complex64::new(0.0, 0.0),
818                Complex64::new(1.0, 0.0)
819            ],
820            [
821                Complex64::new(0.0, 0.0),
822                Complex64::new(0.0, 0.0),
823                Complex64::new(1.0, 0.0),
824                Complex64::new(0.0, 0.0)
825            ]
826        ]
827    }
828
829    /// Apply CNOT to circuit
830    fn apply_cnot_to_circuit(
831        &self,
832        circuit: &Array2<Complex64>,
833        cnot: &Array2<Complex64>,
834        _control: usize,
835        _target: usize,
836    ) -> Result<Array2<Complex64>, QuantRS2Error> {
837        // Simplified implementation
838        Ok(circuit.dot(cnot))
839    }
840
841    /// Compute expectation value of observable
842    pub fn expectation_value(
843        &self,
844        observable: &Array2<Complex64>,
845        input_state: &Array1<Complex64>,
846    ) -> Result<f64, QuantRS2Error> {
847        let circuit = self.build_circuit()?;
848        let output_state = circuit.dot(input_state);
849        let expectation = output_state.t().dot(&observable.dot(&output_state));
850        Ok(expectation.re)
851    }
852
853    /// Update parameters using gradient
854    pub fn update_parameters(&mut self, gradient: &Array1<f64>, learning_rate: f64) {
855        self.parameters = &self.parameters - learning_rate * gradient;
856    }
857}
858
859/// Tensor network-based quantum ML accelerator
860#[derive(Debug)]
861pub struct TensorNetworkMLAccelerator {
862    pub tensor_network: TensorNetwork,
863    pub bond_dimensions: Vec<usize>,
864    pub contraction_order: Vec<usize>,
865}
866
867impl TensorNetworkMLAccelerator {
868    /// Create a new tensor network ML accelerator
869    pub fn new(num_qubits: usize, max_bond_dimension: usize) -> Self {
870        let network = TensorNetwork::new();
871        let bond_dimensions = vec![max_bond_dimension; num_qubits];
872
873        Self {
874            tensor_network: network,
875            bond_dimensions,
876            contraction_order: (0..num_qubits).collect(),
877        }
878    }
879
880    /// Decompose quantum circuit into tensor network
881    pub fn decompose_circuit(&mut self, circuit: &Array2<Complex64>) -> Result<(), QuantRS2Error> {
882        // SVD decomposition for circuit compression
883        let (u, s, vt) = decompose_svd(circuit)?;
884
885        // Create tensors from SVD components
886        let tensor_u = Tensor::from_array(u, vec![0, 1]);
887        let s_complex: Array2<Complex64> = s
888            .diag()
889            .insert_axis(Axis(1))
890            .mapv(|x| Complex64::new(x, 0.0))
891            .to_owned();
892        let tensor_s = Tensor::from_array(s_complex, vec![1, 2]);
893        let tensor_vt = Tensor::from_array(vt, vec![2, 3]);
894
895        // Add tensors to network
896        self.tensor_network.add_tensor(tensor_u);
897        self.tensor_network.add_tensor(tensor_s);
898        self.tensor_network.add_tensor(tensor_vt);
899
900        Ok(())
901    }
902
903    /// Optimize tensor network contraction
904    pub fn optimize_contraction(&mut self) -> Result<(), QuantRS2Error> {
905        // Use dynamic programming to find optimal contraction order
906        let n_tensors = self.tensor_network.tensors().len();
907
908        if n_tensors <= 1 {
909            return Ok(());
910        }
911
912        // Simple greedy optimization - can be improved
913        self.contraction_order = (0..n_tensors).collect();
914        self.contraction_order
915            .sort_by_key(|&i| self.tensor_network.tensors()[i].tensor().ndim());
916
917        Ok(())
918    }
919
920    /// Contract tensor network for efficient computation
921    pub fn contract_network(&self) -> Result<Array2<Complex64>, QuantRS2Error> {
922        if self.tensor_network.tensors().is_empty() {
923            return Err(QuantRS2Error::TensorNetwork(
924                "Empty tensor network".to_string(),
925            ));
926        }
927
928        // Simplified contraction - full implementation would follow contraction_order
929        let first_tensor = &self.tensor_network.tensors()[0];
930        let result = first_tensor.tensor().clone();
931
932        // Convert to proper shape for circuit representation
933        let sqrt_dim = (result.len() as f64).sqrt() as usize;
934        if sqrt_dim * sqrt_dim != result.len() {
935            return Err(QuantRS2Error::TensorNetwork(
936                "Invalid tensor dimensions".to_string(),
937            ));
938        }
939
940        Ok(result
941            .into_shape_with_order((sqrt_dim, sqrt_dim))
942            .map_err(|e| QuantRS2Error::TensorNetwork(format!("Shape error: {}", e)))?)
943    }
944
945    /// Estimate computational complexity
946    pub fn complexity_estimate(&self) -> (usize, usize) {
947        let time_complexity = self.bond_dimensions.iter().product();
948        let space_complexity = self.bond_dimensions.iter().sum();
949        (time_complexity, space_complexity)
950    }
951}
952
953#[cfg(test)]
954mod tests {
955    use super::*;
956    use ndarray::array;
957
958    #[test]
959    fn test_quantum_natural_gradient() {
960        let mut qng = QuantumNaturalGradient::new(2, 1e-6);
961        let params = array![PI / 4.0, PI / 3.0];
962        let state = array![Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)];
963
964        let circuit_gen =
965            |_p: &Array1<f64>| -> Result<Array2<Complex64>, QuantRS2Error> { Ok(Array2::eye(2)) };
966
967        let result = qng.compute_fisher_information(circuit_gen, &params, &state);
968        assert!(result.is_ok());
969    }
970
971    #[test]
972    fn test_parameter_shift_optimizer() {
973        let optimizer = ParameterShiftOptimizer::default();
974        let params = array![PI / 4.0, PI / 3.0];
975
976        let expectation_fn =
977            |p: &Array1<f64>| -> Result<f64, QuantRS2Error> { Ok(p[0].cos() + p[1].sin()) };
978
979        let gradient = optimizer.compute_gradient(expectation_fn, &params);
980        assert!(gradient.is_ok());
981        assert_eq!(gradient.unwrap().len(), 2);
982    }
983
984    #[test]
985    fn test_quantum_kernel_optimizer() {
986        let feature_map = QuantumFeatureMap::ZZFeatureMap {
987            num_qubits: 2,
988            depth: 1,
989        };
990        let mut optimizer = QuantumKernelOptimizer::new(feature_map);
991
992        let data = array![[0.1, 0.2], [0.3, 0.4]];
993        let result = optimizer.compute_kernel_matrix(&data);
994
995        assert!(result.is_ok());
996        let kernel = result.unwrap();
997        assert_eq!(kernel.shape(), &[2, 2]);
998    }
999
1000    #[test]
1001    fn test_hardware_efficient_ml_layer() {
1002        let mut layer = HardwareEfficientMLLayer::new(2, 2, EntanglementPattern::Linear);
1003
1004        let mut rng = rand::rng();
1005        layer.initialize_parameters(&mut rng);
1006
1007        let circuit = layer.build_circuit();
1008        assert!(circuit.is_ok());
1009
1010        let observable = array![
1011            [
1012                Complex64::new(1.0, 0.0),
1013                Complex64::new(0.0, 0.0),
1014                Complex64::new(0.0, 0.0),
1015                Complex64::new(0.0, 0.0)
1016            ],
1017            [
1018                Complex64::new(0.0, 0.0),
1019                Complex64::new(-1.0, 0.0),
1020                Complex64::new(0.0, 0.0),
1021                Complex64::new(0.0, 0.0)
1022            ],
1023            [
1024                Complex64::new(0.0, 0.0),
1025                Complex64::new(0.0, 0.0),
1026                Complex64::new(-1.0, 0.0),
1027                Complex64::new(0.0, 0.0)
1028            ],
1029            [
1030                Complex64::new(0.0, 0.0),
1031                Complex64::new(0.0, 0.0),
1032                Complex64::new(0.0, 0.0),
1033                Complex64::new(1.0, 0.0)
1034            ]
1035        ];
1036        let state = array![
1037            Complex64::new(1.0, 0.0),
1038            Complex64::new(0.0, 0.0),
1039            Complex64::new(0.0, 0.0),
1040            Complex64::new(0.0, 0.0)
1041        ];
1042
1043        let expectation = layer.expectation_value(&observable, &state);
1044        assert!(expectation.is_ok());
1045    }
1046
1047    #[test]
1048    fn test_tensor_network_ml_accelerator() {
1049        let mut accelerator = TensorNetworkMLAccelerator::new(2, 4);
1050
1051        let circuit = array![
1052            [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)],
1053            [Complex64::new(0.0, 0.0), Complex64::new(-1.0, 0.0)]
1054        ];
1055
1056        let result = accelerator.decompose_circuit(&circuit);
1057        assert!(result.is_ok());
1058
1059        let optimization = accelerator.optimize_contraction();
1060        assert!(optimization.is_ok());
1061
1062        let (time_comp, space_comp) = accelerator.complexity_estimate();
1063        assert!(time_comp > 0);
1064        assert!(space_comp > 0);
1065    }
1066}