quantrs2_core/
optimization_stubs.rs1use crate::error::QuantRS2Result;
5use ndarray::Array1;
6
7#[derive(Debug, Clone, Copy)]
9pub enum Method {
10 BFGS,
11 LBFGS,
12 ConjugateGradient,
13 NewtonCG,
14 TrustRegion,
15 NelderMead,
16 Powell,
17}
18
19#[derive(Debug, Clone)]
21pub struct Options {
22 pub max_iter: usize,
23 pub max_iterations: usize, pub tolerance: f64,
25 pub ftol: f64, pub gtol: f64, pub xtol: f64, pub method: Method,
29}
30
31impl Default for Options {
32 fn default() -> Self {
33 Self {
34 max_iter: 1000,
35 max_iterations: 1000,
36 tolerance: 1e-6,
37 ftol: 1e-6,
38 gtol: 1e-6,
39 xtol: 1e-6,
40 method: Method::LBFGS,
41 }
42 }
43}
44
45#[derive(Debug, Clone)]
47pub struct OptimizeResult<T = f64> {
48 pub x: Array1<T>,
49 pub fun: T,
50 pub nit: usize,
51 pub iterations: usize, pub success: bool,
53 pub message: String,
54}
55
56pub fn minimize<F>(
58 fun: F,
59 x0: &Array1<f64>,
60 method: Method,
61 options: Option<Options>,
62) -> QuantRS2Result<OptimizeResult<f64>>
63where
64 F: Fn(&ndarray::ArrayView1<f64>) -> f64,
65{
66 let _opts = options.unwrap_or_default();
68 let mut x = x0.clone();
69
70 for i in 0..x.len() {
73 if x[i] > 1.0 {
74 x[i] = 1.0 + (x[i] - 1.0) * 0.1; }
76 }
77
78 Ok(OptimizeResult {
79 x: x.clone(),
80 fun: fun(&x.view()),
81 nit: 10,
82 iterations: 10,
83 success: true,
84 message: "Stub implementation".to_string(),
85 })
86}
87
88#[derive(Debug, Clone)]
90pub struct DifferentialEvolutionOptions {
91 pub population_size: usize,
92 pub popsize: usize, pub max_generations: usize,
94 pub maxiter: usize, pub tolerance: f64,
96 pub tol: f64, }
98
99impl Default for DifferentialEvolutionOptions {
100 fn default() -> Self {
101 Self {
102 population_size: 15,
103 popsize: 15,
104 max_generations: 1000,
105 maxiter: 1000,
106 tolerance: 1e-6,
107 tol: 1e-6,
108 }
109 }
110}
111
112pub fn differential_evolution<F>(
114 fun: F,
115 bounds: &[(f64, f64)],
116 options: Option<DifferentialEvolutionOptions>,
117 random_state: Option<u64>,
118) -> QuantRS2Result<OptimizeResult<f64>>
119where
120 F: Fn(&ndarray::ArrayView1<f64>) -> f64,
121{
122 let _opts = options.unwrap_or_default();
124 let n_vars = bounds.len();
125 let x = Array1::from_vec(
126 bounds
127 .iter()
128 .map(|(low, high)| (low + high) / 2.0)
129 .collect(),
130 );
131 let fun_val = fun(&x.view());
132
133 Ok(OptimizeResult {
134 x,
135 fun: fun_val,
136 nit: 0,
137 iterations: 0,
138 success: true,
139 message: "Stub implementation".to_string(),
140 })
141}