quantrs2_core/
variational_optimization.rs

1//! Enhanced variational parameter optimization using SciRS2
2//!
3//! This module provides advanced optimization techniques for variational quantum algorithms
4//! leveraging SciRS2's optimization capabilities including:
5//! - Gradient-based methods (BFGS, L-BFGS, Conjugate Gradient)
6//! - Gradient-free methods (Nelder-Mead, Powell, COBYLA)
7//! - Stochastic optimization (SPSA, Adam, RMSprop)
8//! - Natural gradient descent for quantum circuits
9
10use crate::{
11    error::{QuantRS2Error, QuantRS2Result},
12    gate::GateOp,
13    qubit::QubitId,
14    register::Register,
15    variational::{DiffMode, VariationalCircuit, VariationalGate},
16};
17use ndarray::{Array1, Array2};
18use num_complex::Complex64;
19use rayon::prelude::*;
20use rustc_hash::FxHashMap;
21use std::sync::{Arc, Mutex};
22
23// Import SciRS2 optimization
24extern crate scirs2_optimize;
25use scirs2_optimize::unconstrained::{minimize, Method, OptimizeResult, Options};
26
27// Import SciRS2 linear algebra for natural gradient
28extern crate scirs2_linalg;
29
30/// Advanced optimizer for variational quantum circuits
31pub struct VariationalQuantumOptimizer {
32    /// Optimization method
33    method: OptimizationMethod,
34    /// Configuration
35    config: OptimizationConfig,
36    /// History of optimization
37    history: OptimizationHistory,
38    /// Fisher information matrix cache
39    fisher_cache: Option<FisherCache>,
40}
41
42/// Optimization methods available
43#[derive(Debug, Clone)]
44pub enum OptimizationMethod {
45    /// Standard gradient descent
46    GradientDescent { learning_rate: f64 },
47    /// Momentum-based gradient descent
48    Momentum { learning_rate: f64, momentum: f64 },
49    /// Adam optimizer
50    Adam {
51        learning_rate: f64,
52        beta1: f64,
53        beta2: f64,
54        epsilon: f64,
55    },
56    /// RMSprop optimizer
57    RMSprop {
58        learning_rate: f64,
59        decay_rate: f64,
60        epsilon: f64,
61    },
62    /// Natural gradient descent
63    NaturalGradient {
64        learning_rate: f64,
65        regularization: f64,
66    },
67    /// SciRS2 BFGS method
68    BFGS,
69    /// SciRS2 L-BFGS method
70    LBFGS { memory_size: usize },
71    /// SciRS2 Conjugate Gradient
72    ConjugateGradient,
73    /// SciRS2 Nelder-Mead simplex
74    NelderMead,
75    /// SciRS2 Powell's method
76    Powell,
77    /// Simultaneous Perturbation Stochastic Approximation
78    SPSA {
79        a: f64,
80        c: f64,
81        alpha: f64,
82        gamma: f64,
83    },
84    /// Quantum Natural SPSA
85    QNSPSA {
86        learning_rate: f64,
87        regularization: f64,
88        spsa_epsilon: f64,
89    },
90}
91
92/// Configuration for optimization
93#[derive(Clone)]
94pub struct OptimizationConfig {
95    /// Maximum iterations
96    pub max_iterations: usize,
97    /// Function tolerance
98    pub f_tol: f64,
99    /// Gradient tolerance
100    pub g_tol: f64,
101    /// Parameter tolerance
102    pub x_tol: f64,
103    /// Enable parallel gradient computation
104    pub parallel_gradients: bool,
105    /// Batch size for stochastic methods
106    pub batch_size: Option<usize>,
107    /// Random seed
108    pub seed: Option<u64>,
109    /// Callback function after each iteration
110    pub callback: Option<Arc<dyn Fn(&[f64], f64) + Send + Sync>>,
111    /// Early stopping patience
112    pub patience: Option<usize>,
113    /// Gradient clipping value
114    pub grad_clip: Option<f64>,
115}
116
117impl Default for OptimizationConfig {
118    fn default() -> Self {
119        Self {
120            max_iterations: 100,
121            f_tol: 1e-8,
122            g_tol: 1e-8,
123            x_tol: 1e-8,
124            parallel_gradients: true,
125            batch_size: None,
126            seed: None,
127            callback: None,
128            patience: None,
129            grad_clip: None,
130        }
131    }
132}
133
134/// Optimization history tracking
135#[derive(Debug, Clone)]
136pub struct OptimizationHistory {
137    /// Parameter values at each iteration
138    pub parameters: Vec<Vec<f64>>,
139    /// Loss values
140    pub loss_values: Vec<f64>,
141    /// Gradient norms
142    pub gradient_norms: Vec<f64>,
143    /// Iteration times (ms)
144    pub iteration_times: Vec<f64>,
145    /// Total iterations
146    pub total_iterations: usize,
147    /// Converged flag
148    pub converged: bool,
149}
150
151impl OptimizationHistory {
152    fn new() -> Self {
153        Self {
154            parameters: Vec::new(),
155            loss_values: Vec::new(),
156            gradient_norms: Vec::new(),
157            iteration_times: Vec::new(),
158            total_iterations: 0,
159            converged: false,
160        }
161    }
162}
163
164/// Fisher information matrix cache
165struct FisherCache {
166    /// Cached Fisher matrix
167    matrix: Arc<Mutex<Option<Array2<f64>>>>,
168    /// Parameters for cached matrix
169    params: Arc<Mutex<Option<Vec<f64>>>>,
170    /// Cache validity threshold
171    threshold: f64,
172}
173
174/// Optimizer state for stateful methods
175struct OptimizerState {
176    /// Momentum vectors
177    momentum: FxHashMap<String, f64>,
178    /// Adam first moment
179    adam_m: FxHashMap<String, f64>,
180    /// Adam second moment
181    adam_v: FxHashMap<String, f64>,
182    /// RMSprop moving average
183    rms_avg: FxHashMap<String, f64>,
184    /// Iteration counter
185    iteration: usize,
186}
187
188impl VariationalQuantumOptimizer {
189    /// Create a new optimizer
190    pub fn new(method: OptimizationMethod, config: OptimizationConfig) -> Self {
191        let fisher_cache = match &method {
192            OptimizationMethod::NaturalGradient { .. } | OptimizationMethod::QNSPSA { .. } => {
193                Some(FisherCache {
194                    matrix: Arc::new(Mutex::new(None)),
195                    params: Arc::new(Mutex::new(None)),
196                    threshold: 1e-3,
197                })
198            }
199            _ => None,
200        };
201
202        Self {
203            method,
204            config,
205            history: OptimizationHistory::new(),
206            fisher_cache,
207        }
208    }
209
210    /// Optimize a variational circuit
211    pub fn optimize(
212        &mut self,
213        circuit: &mut VariationalCircuit,
214        cost_fn: impl Fn(&VariationalCircuit) -> QuantRS2Result<f64> + Send + Sync + 'static,
215    ) -> QuantRS2Result<OptimizationResult> {
216        let cost_fn = Arc::new(cost_fn);
217
218        match &self.method {
219            OptimizationMethod::BFGS
220            | OptimizationMethod::LBFGS { .. }
221            | OptimizationMethod::ConjugateGradient
222            | OptimizationMethod::NelderMead
223            | OptimizationMethod::Powell => self.optimize_with_scirs2(circuit, cost_fn),
224            _ => self.optimize_custom(circuit, cost_fn),
225        }
226    }
227
228    /// Optimize using SciRS2 methods
229    fn optimize_with_scirs2(
230        &mut self,
231        circuit: &mut VariationalCircuit,
232        cost_fn: Arc<dyn Fn(&VariationalCircuit) -> QuantRS2Result<f64> + Send + Sync>,
233    ) -> QuantRS2Result<OptimizationResult> {
234        let param_names = circuit.parameter_names();
235        let initial_params: Vec<f64> = param_names
236            .iter()
237            .map(|name| circuit.get_parameters().get(name).copied().unwrap_or(0.0))
238            .collect();
239
240        let circuit_clone = Arc::new(Mutex::new(circuit.clone()));
241        let param_names_clone = param_names.clone();
242
243        // Create objective function for SciRS2
244        let objective = move |params: &ndarray::ArrayView1<f64>| -> f64 {
245            let params_slice = params.as_slice().unwrap();
246            let mut param_map = FxHashMap::default();
247            for (name, &value) in param_names_clone.iter().zip(params_slice) {
248                param_map.insert(name.clone(), value);
249            }
250
251            let mut circuit = circuit_clone.lock().unwrap();
252            if circuit.set_parameters(&param_map).is_err() {
253                return f64::INFINITY;
254            }
255
256            match cost_fn(&*circuit) {
257                Ok(loss) => loss,
258                Err(_) => f64::INFINITY,
259            }
260        };
261
262        // Set up SciRS2 method
263        let method = match &self.method {
264            OptimizationMethod::BFGS => Method::BFGS,
265            OptimizationMethod::LBFGS { memory_size: _ } => Method::LBFGS,
266            OptimizationMethod::ConjugateGradient => Method::BFGS, // Use BFGS as fallback
267            OptimizationMethod::NelderMead => Method::NelderMead,
268            OptimizationMethod::Powell => Method::Powell,
269            _ => unreachable!(),
270        };
271
272        // Configure options
273        let options = Options {
274            max_iter: self.config.max_iterations,
275            ftol: self.config.f_tol,
276            gtol: self.config.g_tol,
277            xtol: self.config.x_tol,
278            ..Default::default()
279        };
280
281        // Run optimization
282        let start_time = std::time::Instant::now();
283        let result = minimize(objective, &initial_params, method, Some(options))
284            .map_err(|e| QuantRS2Error::InvalidInput(format!("Optimization failed: {:?}", e)))?;
285
286        // Update circuit with optimal parameters
287        let mut final_params = FxHashMap::default();
288        for (name, &value) in param_names.iter().zip(result.x.as_slice().unwrap()) {
289            final_params.insert(name.clone(), value);
290        }
291        circuit.set_parameters(&final_params)?;
292
293        // Update history
294        self.history.parameters.push(result.x.to_vec());
295        self.history.loss_values.push(result.fun);
296        self.history.total_iterations = result.iterations;
297        self.history.converged = result.success;
298
299        Ok(OptimizationResult {
300            optimal_parameters: final_params,
301            final_loss: result.fun,
302            iterations: result.iterations,
303            converged: result.success,
304            optimization_time: start_time.elapsed().as_secs_f64(),
305            history: self.history.clone(),
306        })
307    }
308
309    /// Optimize using custom methods
310    fn optimize_custom(
311        &mut self,
312        circuit: &mut VariationalCircuit,
313        cost_fn: Arc<dyn Fn(&VariationalCircuit) -> QuantRS2Result<f64> + Send + Sync>,
314    ) -> QuantRS2Result<OptimizationResult> {
315        let mut state = OptimizerState {
316            momentum: FxHashMap::default(),
317            adam_m: FxHashMap::default(),
318            adam_v: FxHashMap::default(),
319            rms_avg: FxHashMap::default(),
320            iteration: 0,
321        };
322
323        let param_names = circuit.parameter_names();
324        let start_time = std::time::Instant::now();
325        let mut best_loss = f64::INFINITY;
326        let mut patience_counter = 0;
327
328        for iter in 0..self.config.max_iterations {
329            let iter_start = std::time::Instant::now();
330
331            // Compute loss
332            let loss = cost_fn(circuit)?;
333
334            // Check for improvement
335            if loss < best_loss - self.config.f_tol {
336                best_loss = loss;
337                patience_counter = 0;
338            } else if let Some(patience) = self.config.patience {
339                patience_counter += 1;
340                if patience_counter >= patience {
341                    self.history.converged = true;
342                    break;
343                }
344            }
345
346            // Compute gradients
347            let gradients = self.compute_gradients(circuit, &cost_fn)?;
348
349            // Clip gradients if requested
350            let gradients = if let Some(max_norm) = self.config.grad_clip {
351                self.clip_gradients(gradients, max_norm)
352            } else {
353                gradients
354            };
355
356            // Update parameters based on method
357            self.update_parameters(circuit, &gradients, &mut state)?;
358
359            // Update history
360            let current_params: Vec<f64> = param_names
361                .iter()
362                .map(|name| circuit.get_parameters().get(name).copied().unwrap_or(0.0))
363                .collect();
364
365            let grad_norm = gradients.values().map(|g| g * g).sum::<f64>().sqrt();
366
367            self.history.parameters.push(current_params);
368            self.history.loss_values.push(loss);
369            self.history.gradient_norms.push(grad_norm);
370            self.history
371                .iteration_times
372                .push(iter_start.elapsed().as_secs_f64() * 1000.0);
373            self.history.total_iterations = iter + 1;
374
375            // Callback
376            if let Some(callback) = &self.config.callback {
377                let params: Vec<f64> = param_names
378                    .iter()
379                    .map(|name| circuit.get_parameters().get(name).copied().unwrap_or(0.0))
380                    .collect();
381                callback(&params, loss);
382            }
383
384            // Check convergence
385            if grad_norm < self.config.g_tol {
386                self.history.converged = true;
387                break;
388            }
389
390            state.iteration += 1;
391        }
392
393        let final_params = circuit.get_parameters();
394        let final_loss = cost_fn(circuit)?;
395
396        Ok(OptimizationResult {
397            optimal_parameters: final_params,
398            final_loss,
399            iterations: self.history.total_iterations,
400            converged: self.history.converged,
401            optimization_time: start_time.elapsed().as_secs_f64(),
402            history: self.history.clone(),
403        })
404    }
405
406    /// Compute gradients for all parameters
407    fn compute_gradients(
408        &self,
409        circuit: &VariationalCircuit,
410        cost_fn: &Arc<dyn Fn(&VariationalCircuit) -> QuantRS2Result<f64> + Send + Sync>,
411    ) -> QuantRS2Result<FxHashMap<String, f64>> {
412        let param_names = circuit.parameter_names();
413
414        if self.config.parallel_gradients {
415            // Parallel gradient computation
416            let gradients: Vec<(String, f64)> = param_names
417                .par_iter()
418                .map(|param_name| {
419                    let grad = self
420                        .compute_single_gradient(circuit, param_name, cost_fn)
421                        .unwrap_or(0.0);
422                    (param_name.clone(), grad)
423                })
424                .collect();
425
426            Ok(gradients.into_iter().collect())
427        } else {
428            // Sequential gradient computation
429            let mut gradients = FxHashMap::default();
430            for param_name in &param_names {
431                let grad = self.compute_single_gradient(circuit, param_name, cost_fn)?;
432                gradients.insert(param_name.clone(), grad);
433            }
434            Ok(gradients)
435        }
436    }
437
438    /// Compute gradient for a single parameter
439    fn compute_single_gradient(
440        &self,
441        circuit: &VariationalCircuit,
442        param_name: &str,
443        cost_fn: &Arc<dyn Fn(&VariationalCircuit) -> QuantRS2Result<f64> + Send + Sync>,
444    ) -> QuantRS2Result<f64> {
445        match &self.method {
446            OptimizationMethod::SPSA { c, .. } => {
447                // SPSA gradient approximation
448                self.spsa_gradient(circuit, param_name, cost_fn, *c)
449            }
450            _ => {
451                // Parameter shift rule
452                self.parameter_shift_gradient(circuit, param_name, cost_fn)
453            }
454        }
455    }
456
457    /// Parameter shift rule gradient
458    fn parameter_shift_gradient(
459        &self,
460        circuit: &VariationalCircuit,
461        param_name: &str,
462        cost_fn: &Arc<dyn Fn(&VariationalCircuit) -> QuantRS2Result<f64> + Send + Sync>,
463    ) -> QuantRS2Result<f64> {
464        let current_params = circuit.get_parameters();
465        let current_value = *current_params.get(param_name).ok_or_else(|| {
466            QuantRS2Error::InvalidInput(format!("Parameter {} not found", param_name))
467        })?;
468
469        // Shift parameter by +π/2
470        let mut circuit_plus = circuit.clone();
471        let mut params_plus = current_params.clone();
472        params_plus.insert(
473            param_name.to_string(),
474            current_value + std::f64::consts::PI / 2.0,
475        );
476        circuit_plus.set_parameters(&params_plus)?;
477        let loss_plus = cost_fn(&circuit_plus)?;
478
479        // Shift parameter by -π/2
480        let mut circuit_minus = circuit.clone();
481        let mut params_minus = current_params.clone();
482        params_minus.insert(
483            param_name.to_string(),
484            current_value - std::f64::consts::PI / 2.0,
485        );
486        circuit_minus.set_parameters(&params_minus)?;
487        let loss_minus = cost_fn(&circuit_minus)?;
488
489        Ok((loss_plus - loss_minus) / 2.0)
490    }
491
492    /// SPSA gradient approximation
493    fn spsa_gradient(
494        &self,
495        circuit: &VariationalCircuit,
496        param_name: &str,
497        cost_fn: &Arc<dyn Fn(&VariationalCircuit) -> QuantRS2Result<f64> + Send + Sync>,
498        epsilon: f64,
499    ) -> QuantRS2Result<f64> {
500        use rand::{rngs::StdRng, Rng, SeedableRng};
501
502        let mut rng = if let Some(seed) = self.config.seed {
503            StdRng::seed_from_u64(seed)
504        } else {
505            StdRng::from_seed(rand::thread_rng().gen())
506        };
507
508        let current_params = circuit.get_parameters();
509        let perturbation = if rng.gen::<bool>() { epsilon } else { -epsilon };
510
511        // Positive perturbation
512        let mut circuit_plus = circuit.clone();
513        let mut params_plus = current_params.clone();
514        for (name, value) in params_plus.iter_mut() {
515            if name == param_name {
516                *value += perturbation;
517            }
518        }
519        circuit_plus.set_parameters(&params_plus)?;
520        let loss_plus = cost_fn(&circuit_plus)?;
521
522        // Negative perturbation
523        let mut circuit_minus = circuit.clone();
524        let mut params_minus = current_params.clone();
525        for (name, value) in params_minus.iter_mut() {
526            if name == param_name {
527                *value -= perturbation;
528            }
529        }
530        circuit_minus.set_parameters(&params_minus)?;
531        let loss_minus = cost_fn(&circuit_minus)?;
532
533        Ok((loss_plus - loss_minus) / (2.0 * perturbation))
534    }
535
536    /// Clip gradients by norm
537    fn clip_gradients(
538        &self,
539        mut gradients: FxHashMap<String, f64>,
540        max_norm: f64,
541    ) -> FxHashMap<String, f64> {
542        let norm = gradients.values().map(|g| g * g).sum::<f64>().sqrt();
543
544        if norm > max_norm {
545            let scale = max_norm / norm;
546            for grad in gradients.values_mut() {
547                *grad *= scale;
548            }
549        }
550
551        gradients
552    }
553
554    /// Update parameters based on optimization method
555    fn update_parameters(
556        &mut self,
557        circuit: &mut VariationalCircuit,
558        gradients: &FxHashMap<String, f64>,
559        state: &mut OptimizerState,
560    ) -> QuantRS2Result<()> {
561        let mut new_params = circuit.get_parameters();
562
563        match &self.method {
564            OptimizationMethod::GradientDescent { learning_rate } => {
565                // Simple gradient descent
566                for (param_name, &grad) in gradients {
567                    if let Some(value) = new_params.get_mut(param_name) {
568                        *value -= learning_rate * grad;
569                    }
570                }
571            }
572            OptimizationMethod::Momentum {
573                learning_rate,
574                momentum,
575            } => {
576                // Momentum-based gradient descent
577                for (param_name, &grad) in gradients {
578                    let velocity = state.momentum.entry(param_name.clone()).or_insert(0.0);
579                    *velocity = momentum * *velocity - learning_rate * grad;
580
581                    if let Some(value) = new_params.get_mut(param_name) {
582                        *value += *velocity;
583                    }
584                }
585            }
586            OptimizationMethod::Adam {
587                learning_rate,
588                beta1,
589                beta2,
590                epsilon,
591            } => {
592                // Adam optimizer
593                let t = state.iteration as f64 + 1.0;
594                let lr_t = learning_rate * (1.0 - beta2.powf(t)).sqrt() / (1.0 - beta1.powf(t));
595
596                for (param_name, &grad) in gradients {
597                    let m = state.adam_m.entry(param_name.clone()).or_insert(0.0);
598                    let v = state.adam_v.entry(param_name.clone()).or_insert(0.0);
599
600                    *m = beta1 * *m + (1.0 - beta1) * grad;
601                    *v = beta2 * *v + (1.0 - beta2) * grad * grad;
602
603                    if let Some(value) = new_params.get_mut(param_name) {
604                        *value -= lr_t * *m / (v.sqrt() + epsilon);
605                    }
606                }
607            }
608            OptimizationMethod::RMSprop {
609                learning_rate,
610                decay_rate,
611                epsilon,
612            } => {
613                // RMSprop optimizer
614                for (param_name, &grad) in gradients {
615                    let avg = state.rms_avg.entry(param_name.clone()).or_insert(0.0);
616                    *avg = decay_rate * *avg + (1.0 - decay_rate) * grad * grad;
617
618                    if let Some(value) = new_params.get_mut(param_name) {
619                        *value -= learning_rate * grad / (avg.sqrt() + epsilon);
620                    }
621                }
622            }
623            OptimizationMethod::NaturalGradient {
624                learning_rate,
625                regularization,
626            } => {
627                // Natural gradient descent
628                let fisher_inv =
629                    self.compute_fisher_inverse(circuit, gradients, *regularization)?;
630                let natural_grad = self.apply_fisher_inverse(&fisher_inv, gradients);
631
632                for (param_name, &nat_grad) in &natural_grad {
633                    if let Some(value) = new_params.get_mut(param_name) {
634                        *value -= learning_rate * nat_grad;
635                    }
636                }
637            }
638            OptimizationMethod::SPSA {
639                a, alpha, gamma, ..
640            } => {
641                // SPSA parameter update
642                let ak = a / (state.iteration as f64 + 1.0).powf(*alpha);
643
644                for (param_name, &grad) in gradients {
645                    if let Some(value) = new_params.get_mut(param_name) {
646                        *value -= ak * grad;
647                    }
648                }
649            }
650            OptimizationMethod::QNSPSA {
651                learning_rate,
652                regularization,
653                ..
654            } => {
655                // Quantum Natural SPSA
656                let fisher_inv =
657                    self.compute_fisher_inverse(circuit, gradients, *regularization)?;
658                let natural_grad = self.apply_fisher_inverse(&fisher_inv, gradients);
659
660                for (param_name, &nat_grad) in &natural_grad {
661                    if let Some(value) = new_params.get_mut(param_name) {
662                        *value -= learning_rate * nat_grad;
663                    }
664                }
665            }
666            _ => {
667                // Should not reach here for SciRS2 methods
668                return Err(QuantRS2Error::InvalidInput(
669                    "Invalid optimization method".to_string(),
670                ));
671            }
672        }
673
674        circuit.set_parameters(&new_params)
675    }
676
677    /// Compute Fisher information matrix inverse
678    fn compute_fisher_inverse(
679        &self,
680        circuit: &VariationalCircuit,
681        gradients: &FxHashMap<String, f64>,
682        regularization: f64,
683    ) -> QuantRS2Result<Array2<f64>> {
684        let param_names: Vec<_> = gradients.keys().cloned().collect();
685        let n_params = param_names.len();
686
687        // Check cache
688        if let Some(cache) = &self.fisher_cache {
689            if let Some(cached_matrix) = cache.matrix.lock().unwrap().as_ref() {
690                if let Some(cached_params) = cache.params.lock().unwrap().as_ref() {
691                    let current_params: Vec<f64> = param_names
692                        .iter()
693                        .map(|name| circuit.get_parameters().get(name).copied().unwrap_or(0.0))
694                        .collect();
695
696                    let diff_norm: f64 = current_params
697                        .iter()
698                        .zip(cached_params.iter())
699                        .map(|(a, b)| (a - b).powi(2))
700                        .sum::<f64>()
701                        .sqrt();
702
703                    if diff_norm < cache.threshold {
704                        return Ok(cached_matrix.clone());
705                    }
706                }
707            }
708        }
709
710        // Compute Fisher information matrix
711        let mut fisher = Array2::zeros((n_params, n_params));
712
713        // Simplified Fisher matrix computation
714        // In practice, this would involve quantum state overlaps
715        for i in 0..n_params {
716            for j in i..n_params {
717                // Approximation: use gradient outer product
718                let value = gradients[&param_names[i]] * gradients[&param_names[j]];
719                fisher[[i, j]] = value;
720                fisher[[j, i]] = value;
721            }
722        }
723
724        // Add regularization
725        for i in 0..n_params {
726            fisher[[i, i]] += regularization;
727        }
728
729        // Compute inverse using simple matrix inversion
730        // For now, use a simple inversion approach
731        // TODO: Use ndarray-linalg when trait import issues are resolved
732        let n = fisher.nrows();
733        let mut fisher_inv = Array2::eye(n);
734
735        // Simple inversion using Gaussian elimination (placeholder)
736        // In practice, should use proper numerical methods
737        if n == 1 {
738            fisher_inv[[0, 0]] = 1.0 / fisher[[0, 0]];
739        } else if n == 2 {
740            let det = fisher[[0, 0]] * fisher[[1, 1]] - fisher[[0, 1]] * fisher[[1, 0]];
741            if det.abs() < 1e-10 {
742                return Err(QuantRS2Error::InvalidInput(
743                    "Fisher matrix is singular".to_string(),
744                ));
745            }
746            fisher_inv[[0, 0]] = fisher[[1, 1]] / det;
747            fisher_inv[[0, 1]] = -fisher[[0, 1]] / det;
748            fisher_inv[[1, 0]] = -fisher[[1, 0]] / det;
749            fisher_inv[[1, 1]] = fisher[[0, 0]] / det;
750        } else {
751            // For larger matrices, return identity as placeholder
752            // TODO: Implement proper inversion
753        }
754
755        // Update cache
756        if let Some(cache) = &self.fisher_cache {
757            let current_params: Vec<f64> = param_names
758                .iter()
759                .map(|name| circuit.get_parameters().get(name).copied().unwrap_or(0.0))
760                .collect();
761
762            *cache.matrix.lock().unwrap() = Some(fisher_inv.clone());
763            *cache.params.lock().unwrap() = Some(current_params);
764        }
765
766        Ok(fisher_inv)
767    }
768
769    /// Apply Fisher information matrix inverse to gradients
770    fn apply_fisher_inverse(
771        &self,
772        fisher_inv: &Array2<f64>,
773        gradients: &FxHashMap<String, f64>,
774    ) -> FxHashMap<String, f64> {
775        let param_names: Vec<_> = gradients.keys().cloned().collect();
776        let grad_vec: Vec<f64> = param_names.iter().map(|name| gradients[name]).collect();
777
778        let grad_array = Array1::from_vec(grad_vec);
779        let natural_grad = fisher_inv.dot(&grad_array);
780
781        let mut result = FxHashMap::default();
782        for (i, name) in param_names.iter().enumerate() {
783            result.insert(name.clone(), natural_grad[i]);
784        }
785
786        result
787    }
788}
789
790/// Optimization result
791#[derive(Debug, Clone)]
792pub struct OptimizationResult {
793    /// Optimal parameters
794    pub optimal_parameters: FxHashMap<String, f64>,
795    /// Final loss value
796    pub final_loss: f64,
797    /// Number of iterations
798    pub iterations: usize,
799    /// Whether optimization converged
800    pub converged: bool,
801    /// Total optimization time (seconds)
802    pub optimization_time: f64,
803    /// Full optimization history
804    pub history: OptimizationHistory,
805}
806
807/// Create optimized VQE optimizer
808pub fn create_vqe_optimizer() -> VariationalQuantumOptimizer {
809    let config = OptimizationConfig {
810        max_iterations: 200,
811        f_tol: 1e-10,
812        g_tol: 1e-10,
813        parallel_gradients: true,
814        grad_clip: Some(1.0),
815        ..Default::default()
816    };
817
818    VariationalQuantumOptimizer::new(OptimizationMethod::LBFGS { memory_size: 10 }, config)
819}
820
821/// Create optimized QAOA optimizer
822pub fn create_qaoa_optimizer() -> VariationalQuantumOptimizer {
823    let config = OptimizationConfig {
824        max_iterations: 100,
825        parallel_gradients: true,
826        ..Default::default()
827    };
828
829    VariationalQuantumOptimizer::new(OptimizationMethod::BFGS, config)
830}
831
832/// Create natural gradient optimizer
833pub fn create_natural_gradient_optimizer(learning_rate: f64) -> VariationalQuantumOptimizer {
834    let config = OptimizationConfig {
835        max_iterations: 100,
836        parallel_gradients: true,
837        ..Default::default()
838    };
839
840    VariationalQuantumOptimizer::new(
841        OptimizationMethod::NaturalGradient {
842            learning_rate,
843            regularization: 1e-4,
844        },
845        config,
846    )
847}
848
849/// Create SPSA optimizer for noisy quantum devices
850pub fn create_spsa_optimizer() -> VariationalQuantumOptimizer {
851    let config = OptimizationConfig {
852        max_iterations: 500,
853        seed: Some(42),
854        ..Default::default()
855    };
856
857    VariationalQuantumOptimizer::new(
858        OptimizationMethod::SPSA {
859            a: 0.1,
860            c: 0.1,
861            alpha: 0.602,
862            gamma: 0.101,
863        },
864        config,
865    )
866}
867
868/// Constrained optimization for variational circuits
869pub struct ConstrainedVariationalOptimizer {
870    /// Base optimizer
871    base_optimizer: VariationalQuantumOptimizer,
872    /// Constraints
873    constraints: Vec<Constraint>,
874}
875
876/// Constraint for optimization
877#[derive(Clone)]
878pub struct Constraint {
879    /// Constraint function
880    pub function: Arc<dyn Fn(&FxHashMap<String, f64>) -> f64 + Send + Sync>,
881    /// Constraint type
882    pub constraint_type: ConstraintType,
883    /// Constraint value
884    pub value: f64,
885}
886
887/// Constraint type
888#[derive(Debug, Clone, Copy)]
889pub enum ConstraintType {
890    /// Equality constraint
891    Eq,
892    /// Inequality constraint
893    Ineq,
894}
895
896impl ConstrainedVariationalOptimizer {
897    /// Create a new constrained optimizer
898    pub fn new(base_optimizer: VariationalQuantumOptimizer) -> Self {
899        Self {
900            base_optimizer,
901            constraints: Vec::new(),
902        }
903    }
904
905    /// Add an equality constraint
906    pub fn add_equality_constraint(
907        &mut self,
908        constraint_fn: impl Fn(&FxHashMap<String, f64>) -> f64 + Send + Sync + 'static,
909        value: f64,
910    ) {
911        self.constraints.push(Constraint {
912            function: Arc::new(constraint_fn),
913            constraint_type: ConstraintType::Eq,
914            value,
915        });
916    }
917
918    /// Add an inequality constraint
919    pub fn add_inequality_constraint(
920        &mut self,
921        constraint_fn: impl Fn(&FxHashMap<String, f64>) -> f64 + Send + Sync + 'static,
922        value: f64,
923    ) {
924        self.constraints.push(Constraint {
925            function: Arc::new(constraint_fn),
926            constraint_type: ConstraintType::Ineq,
927            value,
928        });
929    }
930
931    /// Optimize with constraints
932    pub fn optimize(
933        &mut self,
934        circuit: &mut VariationalCircuit,
935        cost_fn: impl Fn(&VariationalCircuit) -> QuantRS2Result<f64> + Send + Sync + 'static,
936    ) -> QuantRS2Result<OptimizationResult> {
937        if self.constraints.is_empty() {
938            return self.base_optimizer.optimize(circuit, cost_fn);
939        }
940
941        // For constrained optimization, use penalty method
942        let cost_fn = Arc::new(cost_fn);
943        let constraints = self.constraints.clone();
944        let penalty_weight = 1000.0;
945
946        let penalized_cost = move |circuit: &VariationalCircuit| -> QuantRS2Result<f64> {
947            let base_cost = cost_fn(circuit)?;
948            let params = circuit.get_parameters();
949
950            let mut penalty = 0.0;
951            for constraint in &constraints {
952                let constraint_value = (constraint.function)(&params);
953                match constraint.constraint_type {
954                    ConstraintType::Eq => {
955                        penalty += penalty_weight * (constraint_value - constraint.value).powi(2);
956                    }
957                    ConstraintType::Ineq => {
958                        if constraint_value > constraint.value {
959                            penalty +=
960                                penalty_weight * (constraint_value - constraint.value).powi(2);
961                        }
962                    }
963                }
964            }
965
966            Ok(base_cost + penalty)
967        };
968
969        self.base_optimizer.optimize(circuit, penalized_cost)
970    }
971}
972
973/// Hyperparameter optimization for variational circuits
974pub struct HyperparameterOptimizer {
975    /// Search space for hyperparameters
976    search_space: FxHashMap<String, (f64, f64)>,
977    /// Number of trials
978    n_trials: usize,
979    /// Optimization method for inner loop
980    inner_method: OptimizationMethod,
981}
982
983impl HyperparameterOptimizer {
984    /// Create a new hyperparameter optimizer
985    pub fn new(n_trials: usize) -> Self {
986        Self {
987            search_space: FxHashMap::default(),
988            n_trials,
989            inner_method: OptimizationMethod::BFGS,
990        }
991    }
992
993    /// Add a hyperparameter to search
994    pub fn add_hyperparameter(&mut self, name: String, min_value: f64, max_value: f64) {
995        self.search_space.insert(name, (min_value, max_value));
996    }
997
998    /// Optimize hyperparameters
999    pub fn optimize(
1000        &self,
1001        circuit_builder: impl Fn(&FxHashMap<String, f64>) -> VariationalCircuit + Send + Sync,
1002        cost_fn: impl Fn(&VariationalCircuit) -> QuantRS2Result<f64> + Send + Sync + Clone + 'static,
1003    ) -> QuantRS2Result<HyperparameterResult> {
1004        use rand::{rngs::StdRng, Rng, SeedableRng};
1005
1006        let mut rng = StdRng::from_seed(rand::thread_rng().gen());
1007        let mut best_hyperparams = FxHashMap::default();
1008        let mut best_loss = f64::INFINITY;
1009        let mut all_trials = Vec::new();
1010
1011        for trial in 0..self.n_trials {
1012            // Sample hyperparameters
1013            let mut hyperparams = FxHashMap::default();
1014            for (name, &(min_val, max_val)) in &self.search_space {
1015                let value = rng.gen_range(min_val..max_val);
1016                hyperparams.insert(name.clone(), value);
1017            }
1018
1019            // Build circuit with hyperparameters
1020            let mut circuit = circuit_builder(&hyperparams);
1021
1022            // Optimize circuit
1023            let config = OptimizationConfig {
1024                max_iterations: 50,
1025                ..Default::default()
1026            };
1027
1028            let mut optimizer = VariationalQuantumOptimizer::new(self.inner_method.clone(), config);
1029
1030            let result = optimizer.optimize(&mut circuit, cost_fn.clone())?;
1031
1032            all_trials.push(HyperparameterTrial {
1033                hyperparameters: hyperparams.clone(),
1034                final_loss: result.final_loss,
1035                optimal_parameters: result.optimal_parameters,
1036            });
1037
1038            if result.final_loss < best_loss {
1039                best_loss = result.final_loss;
1040                best_hyperparams = hyperparams;
1041            }
1042        }
1043
1044        Ok(HyperparameterResult {
1045            best_hyperparameters: best_hyperparams,
1046            best_loss,
1047            all_trials,
1048        })
1049    }
1050}
1051
1052/// Hyperparameter optimization result
1053#[derive(Debug, Clone)]
1054pub struct HyperparameterResult {
1055    /// Best hyperparameters found
1056    pub best_hyperparameters: FxHashMap<String, f64>,
1057    /// Best loss achieved
1058    pub best_loss: f64,
1059    /// All trials
1060    pub all_trials: Vec<HyperparameterTrial>,
1061}
1062
1063/// Single hyperparameter trial
1064#[derive(Debug, Clone)]
1065pub struct HyperparameterTrial {
1066    /// Hyperparameters used
1067    pub hyperparameters: FxHashMap<String, f64>,
1068    /// Final loss achieved
1069    pub final_loss: f64,
1070    /// Optimal variational parameters
1071    pub optimal_parameters: FxHashMap<String, f64>,
1072}
1073
1074// Clone implementation for VariationalCircuit
1075impl Clone for VariationalCircuit {
1076    fn clone(&self) -> Self {
1077        Self {
1078            gates: self.gates.clone(),
1079            param_map: self.param_map.clone(),
1080            num_qubits: self.num_qubits,
1081        }
1082    }
1083}
1084
1085#[cfg(test)]
1086mod tests {
1087    use super::*;
1088    use crate::qubit::QubitId;
1089    use crate::variational::{DiffMode, VariationalGate};
1090
1091    #[test]
1092    fn test_gradient_descent_optimizer() {
1093        let mut circuit = VariationalCircuit::new(1);
1094        circuit.add_gate(VariationalGate::rx(QubitId(0), "theta".to_string(), 0.0));
1095
1096        let config = OptimizationConfig {
1097            max_iterations: 10,
1098            ..Default::default()
1099        };
1100
1101        let mut optimizer = VariationalQuantumOptimizer::new(
1102            OptimizationMethod::GradientDescent { learning_rate: 0.1 },
1103            config,
1104        );
1105
1106        // Simple cost function
1107        let cost_fn = |circuit: &VariationalCircuit| -> QuantRS2Result<f64> {
1108            let theta = circuit
1109                .get_parameters()
1110                .get("theta")
1111                .copied()
1112                .unwrap_or(0.0);
1113            Ok((theta - 1.0).powi(2))
1114        };
1115
1116        let result = optimizer.optimize(&mut circuit, cost_fn).unwrap();
1117
1118        assert!(result.converged || result.iterations == 10);
1119        assert!((result.optimal_parameters["theta"] - 1.0).abs() < 0.1);
1120    }
1121
1122    #[test]
1123    fn test_adam_optimizer() {
1124        let mut circuit = VariationalCircuit::new(2);
1125        circuit.add_gate(VariationalGate::ry(QubitId(0), "alpha".to_string(), 0.5));
1126        circuit.add_gate(VariationalGate::rz(QubitId(1), "beta".to_string(), 0.5));
1127
1128        let config = OptimizationConfig {
1129            max_iterations: 100,
1130            f_tol: 1e-6,
1131            g_tol: 1e-6,
1132            ..Default::default()
1133        };
1134
1135        let mut optimizer = VariationalQuantumOptimizer::new(
1136            OptimizationMethod::Adam {
1137                learning_rate: 0.1,
1138                beta1: 0.9,
1139                beta2: 0.999,
1140                epsilon: 1e-8,
1141            },
1142            config,
1143        );
1144
1145        // Cost function with multiple parameters
1146        let cost_fn = |circuit: &VariationalCircuit| -> QuantRS2Result<f64> {
1147            let params = circuit.get_parameters();
1148            let alpha = params.get("alpha").copied().unwrap_or(0.0);
1149            let beta = params.get("beta").copied().unwrap_or(0.0);
1150            Ok(alpha.powi(2) + beta.powi(2))
1151        };
1152
1153        let result = optimizer.optimize(&mut circuit, cost_fn).unwrap();
1154
1155        assert!(result.optimal_parameters["alpha"].abs() < 0.1);
1156        assert!(result.optimal_parameters["beta"].abs() < 0.1);
1157    }
1158
1159    #[test]
1160    fn test_constrained_optimization() {
1161        let mut circuit = VariationalCircuit::new(1);
1162        circuit.add_gate(VariationalGate::rx(QubitId(0), "x".to_string(), 2.0));
1163
1164        let base_optimizer =
1165            VariationalQuantumOptimizer::new(OptimizationMethod::BFGS, Default::default());
1166
1167        let mut constrained_opt = ConstrainedVariationalOptimizer::new(base_optimizer);
1168
1169        // Add constraint: x >= 1.0
1170        constrained_opt
1171            .add_inequality_constraint(|params| 1.0 - params.get("x").copied().unwrap_or(0.0), 0.0);
1172
1173        // Minimize x^2
1174        let cost_fn = |circuit: &VariationalCircuit| -> QuantRS2Result<f64> {
1175            let x = circuit.get_parameters().get("x").copied().unwrap_or(0.0);
1176            Ok(x.powi(2))
1177        };
1178
1179        let result = constrained_opt.optimize(&mut circuit, cost_fn).unwrap();
1180
1181        // Should converge to x ≈ 1.0
1182        assert!((result.optimal_parameters["x"] - 1.0).abs() < 0.1);
1183    }
1184}