quantrs2_core/
tensor_network.rs

1//! Tensor Network representations for quantum circuits
2//!
3//! This module provides tensor network representations and operations for quantum circuits,
4//! leveraging SciRS2 for efficient tensor manipulations and contractions.
5
6use crate::{
7    error::{QuantRS2Error, QuantRS2Result},
8    gate::GateOp,
9    matrix_ops::{DenseMatrix, QuantumMatrix},
10    qubit::QubitId,
11    register::Register,
12};
13use ndarray::{Array, Array2, Array3, Array4, ArrayD, Axis, IxDyn};
14use num_complex::Complex;
15use rustc_hash::FxHashMap;
16use scirs2_linalg::svd;
17use std::collections::{HashMap, HashSet, VecDeque};
18
19/// Type alias for complex numbers
20type Complex64 = Complex<f64>;
21
22/// A tensor in the network
23#[derive(Debug, Clone)]
24pub struct Tensor {
25    /// Unique identifier for the tensor
26    pub id: usize,
27    /// The tensor data
28    pub data: ArrayD<Complex64>,
29    /// Labels for each index of the tensor
30    pub indices: Vec<String>,
31    /// Shape of the tensor
32    pub shape: Vec<usize>,
33}
34
35impl Tensor {
36    /// Create a new tensor
37    pub fn new(id: usize, data: ArrayD<Complex64>, indices: Vec<String>) -> Self {
38        let shape = data.shape().to_vec();
39        Self {
40            id,
41            data,
42            indices,
43            shape,
44        }
45    }
46
47    /// Create a tensor from a 2D array (matrix)
48    pub fn from_matrix(
49        id: usize,
50        matrix: Array2<Complex64>,
51        in_idx: String,
52        out_idx: String,
53    ) -> Self {
54        let shape = matrix.shape().to_vec();
55        let data = matrix.into_dyn();
56        Self {
57            id,
58            data,
59            indices: vec![in_idx, out_idx],
60            shape,
61        }
62    }
63
64    /// Create a qubit tensor in |0⟩ state
65    pub fn qubit_zero(id: usize, idx: String) -> Self {
66        let mut data = Array::zeros(IxDyn(&[2]));
67        data[[0]] = Complex64::new(1.0, 0.0);
68        Self {
69            id,
70            data,
71            indices: vec![idx],
72            shape: vec![2],
73        }
74    }
75
76    /// Create a qubit tensor in |1⟩ state
77    pub fn qubit_one(id: usize, idx: String) -> Self {
78        let mut data = Array::zeros(IxDyn(&[2]));
79        data[[1]] = Complex64::new(1.0, 0.0);
80        Self {
81            id,
82            data,
83            indices: vec![idx],
84            shape: vec![2],
85        }
86    }
87
88    /// Get the rank (number of indices) of the tensor
89    pub fn rank(&self) -> usize {
90        self.indices.len()
91    }
92
93    /// Contract this tensor with another over specified indices
94    pub fn contract(
95        &self,
96        other: &Tensor,
97        self_idx: &str,
98        other_idx: &str,
99    ) -> QuantRS2Result<Tensor> {
100        // Find the positions of the indices to contract
101        let self_pos = self
102            .indices
103            .iter()
104            .position(|s| s == self_idx)
105            .ok_or_else(|| {
106                QuantRS2Error::InvalidInput(format!("Index {} not found in tensor", self_idx))
107            })?;
108        let other_pos = other
109            .indices
110            .iter()
111            .position(|s| s == other_idx)
112            .ok_or_else(|| {
113                QuantRS2Error::InvalidInput(format!("Index {} not found in tensor", other_idx))
114            })?;
115
116        // Check dimensions match
117        if self.shape[self_pos] != other.shape[other_pos] {
118            return Err(QuantRS2Error::InvalidInput(format!(
119                "Cannot contract indices with different dimensions: {} vs {}",
120                self.shape[self_pos], other.shape[other_pos]
121            )));
122        }
123
124        // Perform tensor contraction using einsum-like operation
125        let contracted = self.contract_indices(&other, self_pos, other_pos)?;
126
127        // Build new index list
128        let mut new_indices = Vec::new();
129        for (i, idx) in self.indices.iter().enumerate() {
130            if i != self_pos {
131                new_indices.push(idx.clone());
132            }
133        }
134        for (i, idx) in other.indices.iter().enumerate() {
135            if i != other_pos {
136                new_indices.push(idx.clone());
137            }
138        }
139
140        Ok(Tensor::new(
141            self.id.max(other.id) + 1,
142            contracted,
143            new_indices,
144        ))
145    }
146
147    /// Perform the actual index contraction
148    fn contract_indices(
149        &self,
150        other: &Tensor,
151        self_idx: usize,
152        other_idx: usize,
153    ) -> QuantRS2Result<ArrayD<Complex64>> {
154        // Reshape tensors for matrix multiplication
155        let self_shape = self.data.shape();
156        let other_shape = other.data.shape();
157
158        // Calculate dimensions for reshaping
159        let mut self_left_dims = 1;
160        let mut self_right_dims = 1;
161        for i in 0..self_idx {
162            self_left_dims *= self_shape[i];
163        }
164        for i in (self_idx + 1)..self_shape.len() {
165            self_right_dims *= self_shape[i];
166        }
167
168        let mut other_left_dims = 1;
169        let mut other_right_dims = 1;
170        for i in 0..other_idx {
171            other_left_dims *= other_shape[i];
172        }
173        for i in (other_idx + 1)..other_shape.len() {
174            other_right_dims *= other_shape[i];
175        }
176
177        let contract_dim = self_shape[self_idx];
178
179        // Reshape to matrices
180        let self_mat = self
181            .data
182            .view()
183            .into_shape((self_left_dims, contract_dim * self_right_dims))
184            .map_err(|e| QuantRS2Error::InvalidInput(format!("Shape error: {}", e)))?
185            .to_owned();
186        let other_mat = other
187            .data
188            .view()
189            .into_shape((other_left_dims * contract_dim, other_right_dims))
190            .map_err(|e| QuantRS2Error::InvalidInput(format!("Shape error: {}", e)))?
191            .to_owned();
192
193        // Perform contraction via matrix multiplication
194        let result_mat: Array2<Complex64> = Array2::zeros((
195            self_left_dims * self_right_dims,
196            other_left_dims * other_right_dims,
197        ));
198
199        // This is a simplified contraction - a full implementation would be more efficient
200        let mut result_vec = Vec::new();
201        for i in 0..self_left_dims {
202            for j in 0..self_right_dims {
203                for k in 0..other_left_dims {
204                    for l in 0..other_right_dims {
205                        let mut sum = Complex64::new(0.0, 0.0);
206                        for c in 0..contract_dim {
207                            let self_idx =
208                                i * contract_dim * self_right_dims + c * self_right_dims + j;
209                            let other_idx =
210                                k * contract_dim * other_right_dims + c * other_right_dims + l;
211                            sum += self_mat[[i, c * self_right_dims + j]]
212                                * other_mat[[k * contract_dim + c, l]];
213                        }
214                        result_vec.push(sum);
215                    }
216                }
217            }
218        }
219
220        // Build result shape
221        let mut result_shape = Vec::new();
222        for i in 0..self_idx {
223            result_shape.push(self_shape[i]);
224        }
225        for i in (self_idx + 1)..self_shape.len() {
226            result_shape.push(self_shape[i]);
227        }
228        for i in 0..other_idx {
229            result_shape.push(other_shape[i]);
230        }
231        for i in (other_idx + 1)..other_shape.len() {
232            result_shape.push(other_shape[i]);
233        }
234
235        ArrayD::from_shape_vec(IxDyn(&result_shape), result_vec)
236            .map_err(|e| QuantRS2Error::InvalidInput(format!("Shape error: {}", e)))
237    }
238
239    /// Apply SVD decomposition to split tensor along specified index
240    pub fn svd_decompose(
241        &self,
242        idx: usize,
243        max_rank: Option<usize>,
244    ) -> QuantRS2Result<(Tensor, Tensor)> {
245        if idx >= self.rank() {
246            return Err(QuantRS2Error::InvalidInput(format!(
247                "Index {} out of bounds for tensor with rank {}",
248                idx,
249                self.rank()
250            )));
251        }
252
253        // Reshape tensor into matrix
254        let shape = self.data.shape();
255        let mut left_dim = 1;
256        let mut right_dim = 1;
257
258        for i in 0..=idx {
259            left_dim *= shape[i];
260        }
261        for i in (idx + 1)..shape.len() {
262            right_dim *= shape[i];
263        }
264
265        // Convert to matrix
266        let matrix = self
267            .data
268            .view()
269            .into_shape((left_dim, right_dim))
270            .map_err(|e| QuantRS2Error::InvalidInput(format!("Shape error: {}", e)))?
271            .to_owned();
272
273        // Perform SVD using SciRS2
274        let real_matrix = matrix.mapv(|c| c.re);
275        let (u, s, vt) = svd(&real_matrix.view(), false)
276            .map_err(|e| QuantRS2Error::ComputationError(format!("SVD failed: {:?}", e)))?;
277
278        // Determine rank to keep
279        let rank = if let Some(max_r) = max_rank {
280            max_r.min(s.len())
281        } else {
282            s.len()
283        };
284
285        // Truncate based on rank
286        let u_trunc = u.slice(ndarray::s![.., ..rank]).to_owned();
287        let s_trunc = s.slice(ndarray::s![..rank]).to_owned();
288        let vt_trunc = vt.slice(ndarray::s![..rank, ..]).to_owned();
289
290        // Create S matrix
291        let mut s_mat = Array2::zeros((rank, rank));
292        for i in 0..rank {
293            s_mat[[i, i]] = Complex64::new(s_trunc[i].sqrt(), 0.0);
294        }
295
296        // Multiply U * sqrt(S) and sqrt(S) * V^T
297        let left_data = u_trunc.mapv(|x| Complex64::new(x, 0.0)).dot(&s_mat);
298        let right_data = s_mat.dot(&vt_trunc.mapv(|x| Complex64::new(x, 0.0)));
299
300        // Create new tensors with appropriate shapes and indices
301        let mut left_indices = self.indices[..=idx].to_vec();
302        left_indices.push(format!("bond_{}", self.id));
303
304        let mut right_indices = vec![format!("bond_{}", self.id)];
305        right_indices.extend_from_slice(&self.indices[(idx + 1)..]);
306
307        let left_tensor = Tensor::new(self.id * 2, left_data.into_dyn(), left_indices);
308
309        let right_tensor = Tensor::new(self.id * 2 + 1, right_data.into_dyn(), right_indices);
310
311        Ok((left_tensor, right_tensor))
312    }
313}
314
315/// Edge in the tensor network
316#[derive(Debug, Clone, PartialEq, Eq, Hash)]
317pub struct TensorEdge {
318    /// First tensor ID
319    pub tensor1: usize,
320    /// Index on first tensor
321    pub index1: String,
322    /// Second tensor ID
323    pub tensor2: usize,
324    /// Index on second tensor
325    pub index2: String,
326}
327
328/// Tensor network representation
329#[derive(Debug)]
330pub struct TensorNetwork {
331    /// Tensors in the network
332    pub tensors: HashMap<usize, Tensor>,
333    /// Edges connecting tensors
334    pub edges: Vec<TensorEdge>,
335    /// Open indices (not connected to other tensors)
336    pub open_indices: HashMap<usize, Vec<String>>,
337    /// Next available tensor ID
338    next_id: usize,
339}
340
341impl TensorNetwork {
342    /// Create a new empty tensor network
343    pub fn new() -> Self {
344        Self {
345            tensors: HashMap::new(),
346            edges: Vec::new(),
347            open_indices: HashMap::new(),
348            next_id: 0,
349        }
350    }
351
352    /// Add a tensor to the network
353    pub fn add_tensor(&mut self, tensor: Tensor) -> usize {
354        let id = tensor.id;
355        self.open_indices.insert(id, tensor.indices.clone());
356        self.tensors.insert(id, tensor);
357        self.next_id = self.next_id.max(id + 1);
358        id
359    }
360
361    /// Connect two tensor indices
362    pub fn connect(
363        &mut self,
364        tensor1: usize,
365        index1: String,
366        tensor2: usize,
367        index2: String,
368    ) -> QuantRS2Result<()> {
369        // Verify tensors exist
370        if !self.tensors.contains_key(&tensor1) {
371            return Err(QuantRS2Error::InvalidInput(format!(
372                "Tensor {} not found",
373                tensor1
374            )));
375        }
376        if !self.tensors.contains_key(&tensor2) {
377            return Err(QuantRS2Error::InvalidInput(format!(
378                "Tensor {} not found",
379                tensor2
380            )));
381        }
382
383        // Verify indices exist and match dimensions
384        let t1 = &self.tensors[&tensor1];
385        let t2 = &self.tensors[&tensor2];
386
387        let idx1_pos = t1
388            .indices
389            .iter()
390            .position(|s| s == &index1)
391            .ok_or_else(|| {
392                QuantRS2Error::InvalidInput(format!(
393                    "Index {} not found in tensor {}",
394                    index1, tensor1
395                ))
396            })?;
397        let idx2_pos = t2
398            .indices
399            .iter()
400            .position(|s| s == &index2)
401            .ok_or_else(|| {
402                QuantRS2Error::InvalidInput(format!(
403                    "Index {} not found in tensor {}",
404                    index2, tensor2
405                ))
406            })?;
407
408        if t1.shape[idx1_pos] != t2.shape[idx2_pos] {
409            return Err(QuantRS2Error::InvalidInput(format!(
410                "Connected indices must have same dimension: {} vs {}",
411                t1.shape[idx1_pos], t2.shape[idx2_pos]
412            )));
413        }
414
415        // Add edge
416        self.edges.push(TensorEdge {
417            tensor1,
418            index1: index1.clone(),
419            tensor2,
420            index2: index2.clone(),
421        });
422
423        // Remove from open indices
424        if let Some(indices) = self.open_indices.get_mut(&tensor1) {
425            indices.retain(|s| s != &index1);
426        }
427        if let Some(indices) = self.open_indices.get_mut(&tensor2) {
428            indices.retain(|s| s != &index2);
429        }
430
431        Ok(())
432    }
433
434    /// Find optimal contraction order using greedy algorithm
435    pub fn find_contraction_order(&self) -> Vec<(usize, usize)> {
436        // Simple greedy algorithm: contract pairs that minimize intermediate tensor size
437        let mut remaining_tensors: HashSet<_> = self.tensors.keys().cloned().collect();
438        let mut order = Vec::new();
439
440        // Build adjacency list
441        let mut adjacency: HashMap<usize, Vec<usize>> = HashMap::new();
442        for edge in &self.edges {
443            adjacency
444                .entry(edge.tensor1)
445                .or_insert_with(Vec::new)
446                .push(edge.tensor2);
447            adjacency
448                .entry(edge.tensor2)
449                .or_insert_with(Vec::new)
450                .push(edge.tensor1);
451        }
452
453        while remaining_tensors.len() > 1 {
454            let mut best_pair = None;
455            let mut min_cost = usize::MAX;
456
457            // Consider all pairs of connected tensors
458            for &t1 in &remaining_tensors {
459                if let Some(neighbors) = adjacency.get(&t1) {
460                    for &t2 in neighbors {
461                        if t2 > t1 && remaining_tensors.contains(&t2) {
462                            // Estimate cost as product of remaining dimensions
463                            let cost = self.estimate_contraction_cost(t1, t2);
464                            if cost < min_cost {
465                                min_cost = cost;
466                                best_pair = Some((t1, t2));
467                            }
468                        }
469                    }
470                }
471            }
472
473            if let Some((t1, t2)) = best_pair {
474                order.push((t1, t2));
475                remaining_tensors.remove(&t1);
476                remaining_tensors.remove(&t2);
477
478                // Add a virtual tensor representing the contraction result
479                let virtual_id = self.next_id + order.len();
480                remaining_tensors.insert(virtual_id);
481
482                // Update adjacency for virtual tensor
483                let mut virtual_neighbors = HashSet::new();
484                if let Some(n1) = adjacency.get(&t1) {
485                    virtual_neighbors.extend(
486                        n1.iter()
487                            .filter(|&&n| n != t2 && remaining_tensors.contains(&n)),
488                    );
489                }
490                if let Some(n2) = adjacency.get(&t2) {
491                    virtual_neighbors.extend(
492                        n2.iter()
493                            .filter(|&&n| n != t1 && remaining_tensors.contains(&n)),
494                    );
495                }
496                adjacency.insert(virtual_id, virtual_neighbors.into_iter().collect());
497            } else {
498                break;
499            }
500        }
501
502        order
503    }
504
505    /// Estimate the computational cost of contracting two tensors
506    fn estimate_contraction_cost(&self, t1: usize, t2: usize) -> usize {
507        // Cost is roughly the product of all dimensions in the result
508        // This is a simplified estimate
509        1000 // Placeholder
510    }
511
512    /// Contract the entire network to a single tensor
513    pub fn contract_all(&mut self) -> QuantRS2Result<Tensor> {
514        if self.tensors.is_empty() {
515            return Err(QuantRS2Error::InvalidInput(
516                "Cannot contract empty tensor network".into(),
517            ));
518        }
519
520        if self.tensors.len() == 1 {
521            return Ok(self.tensors.values().next().unwrap().clone());
522        }
523
524        // Find contraction order
525        let order = self.find_contraction_order();
526
527        // Execute contractions
528        let mut tensor_map = self.tensors.clone();
529        let mut next_id = self.next_id;
530
531        for (t1_id, t2_id) in order {
532            // Find the edge connecting these tensors
533            let edge = self
534                .edges
535                .iter()
536                .find(|e| {
537                    (e.tensor1 == t1_id && e.tensor2 == t2_id)
538                        || (e.tensor1 == t2_id && e.tensor2 == t1_id)
539                })
540                .ok_or_else(|| QuantRS2Error::InvalidInput("Tensors not connected".into()))?;
541
542            let t1 = tensor_map
543                .remove(&t1_id)
544                .ok_or_else(|| QuantRS2Error::InvalidInput("Tensor not found".into()))?;
545            let t2 = tensor_map
546                .remove(&t2_id)
547                .ok_or_else(|| QuantRS2Error::InvalidInput("Tensor not found".into()))?;
548
549            // Contract tensors
550            let contracted = if edge.tensor1 == t1_id {
551                t1.contract(&t2, &edge.index1, &edge.index2)?
552            } else {
553                t1.contract(&t2, &edge.index2, &edge.index1)?
554            };
555
556            // Add result back
557            let mut new_tensor = contracted;
558            new_tensor.id = next_id;
559            tensor_map.insert(next_id, new_tensor);
560            next_id += 1;
561        }
562
563        // Return the final tensor
564        tensor_map
565            .into_values()
566            .next()
567            .ok_or_else(|| QuantRS2Error::InvalidInput("Contraction failed".into()))
568    }
569
570    /// Apply Matrix Product State (MPS) decomposition
571    pub fn to_mps(&self, max_bond_dim: Option<usize>) -> QuantRS2Result<Vec<Tensor>> {
572        // This would decompose the network into a chain of tensors
573        // For now, return a placeholder
574        Ok(vec![])
575    }
576
577    /// Apply Matrix Product Operator (MPO) representation
578    pub fn apply_mpo(&mut self, mpo: &[Tensor], qubits: &[usize]) -> QuantRS2Result<()> {
579        // Apply an MPO to specified qubits
580        Ok(())
581    }
582}
583
584/// Builder for quantum circuits as tensor networks
585pub struct TensorNetworkBuilder {
586    network: TensorNetwork,
587    qubit_indices: HashMap<usize, String>,
588    current_indices: HashMap<usize, String>,
589}
590
591impl TensorNetworkBuilder {
592    /// Create a new tensor network builder for n qubits
593    pub fn new(num_qubits: usize) -> Self {
594        let mut network = TensorNetwork::new();
595        let mut qubit_indices = HashMap::new();
596        let mut current_indices = HashMap::new();
597
598        // Initialize qubits in |0⟩ state
599        for i in 0..num_qubits {
600            let idx = format!("q{}_0", i);
601            let tensor = Tensor::qubit_zero(i, idx.clone());
602            network.add_tensor(tensor);
603            qubit_indices.insert(i, idx.clone());
604            current_indices.insert(i, idx);
605        }
606
607        Self {
608            network,
609            qubit_indices,
610            current_indices,
611        }
612    }
613
614    /// Apply a single-qubit gate
615    pub fn apply_single_qubit_gate(
616        &mut self,
617        gate: &dyn GateOp,
618        qubit: usize,
619    ) -> QuantRS2Result<()> {
620        let matrix_vec = gate.matrix()?;
621        let matrix = Array2::from_shape_vec((2, 2), matrix_vec)
622            .map_err(|e| QuantRS2Error::InvalidInput(format!("Shape error: {}", e)))?;
623
624        // Create gate tensor
625        let in_idx = self.current_indices[&qubit].clone();
626        let out_idx = format!("q{}_{}", qubit, self.network.next_id);
627        let gate_tensor = Tensor::from_matrix(
628            self.network.next_id,
629            matrix,
630            in_idx.clone(),
631            out_idx.clone(),
632        );
633
634        // Add to network
635        let gate_id = self.network.add_tensor(gate_tensor);
636
637        // Connect to previous tensor on this qubit
638        if let Some(prev_tensor) = self.find_tensor_with_index(&in_idx) {
639            self.network
640                .connect(prev_tensor, in_idx.clone(), gate_id, in_idx)?;
641        }
642
643        // Update current index
644        self.current_indices.insert(qubit, out_idx);
645
646        Ok(())
647    }
648
649    /// Apply a two-qubit gate
650    pub fn apply_two_qubit_gate(
651        &mut self,
652        gate: &dyn GateOp,
653        qubit1: usize,
654        qubit2: usize,
655    ) -> QuantRS2Result<()> {
656        let matrix_vec = gate.matrix()?;
657        let matrix = Array2::from_shape_vec((4, 4), matrix_vec)
658            .map_err(|e| QuantRS2Error::InvalidInput(format!("Shape error: {}", e)))?;
659
660        // Reshape to rank-4 tensor
661        let tensor_data = matrix
662            .into_shape((2, 2, 2, 2))
663            .map_err(|e| QuantRS2Error::InvalidInput(format!("Shape error: {}", e)))?
664            .into_dyn();
665
666        // Create indices
667        let in1_idx = self.current_indices[&qubit1].clone();
668        let in2_idx = self.current_indices[&qubit2].clone();
669        let out1_idx = format!("q{}_{}", qubit1, self.network.next_id);
670        let out2_idx = format!("q{}_{}", qubit2, self.network.next_id);
671
672        let gate_tensor = Tensor::new(
673            self.network.next_id,
674            tensor_data,
675            vec![
676                in1_idx.clone(),
677                in2_idx.clone(),
678                out1_idx.clone(),
679                out2_idx.clone(),
680            ],
681        );
682
683        // Add to network
684        let gate_id = self.network.add_tensor(gate_tensor);
685
686        // Connect to previous tensors
687        if let Some(prev1) = self.find_tensor_with_index(&in1_idx) {
688            self.network
689                .connect(prev1, in1_idx.clone(), gate_id, in1_idx)?;
690        }
691        if let Some(prev2) = self.find_tensor_with_index(&in2_idx) {
692            self.network
693                .connect(prev2, in2_idx.clone(), gate_id, in2_idx)?;
694        }
695
696        // Update current indices
697        self.current_indices.insert(qubit1, out1_idx);
698        self.current_indices.insert(qubit2, out2_idx);
699
700        Ok(())
701    }
702
703    /// Find tensor that has the given index as output
704    fn find_tensor_with_index(&self, index: &str) -> Option<usize> {
705        for (id, tensor) in &self.network.tensors {
706            if tensor.indices.iter().any(|idx| idx == index) {
707                return Some(*id);
708            }
709        }
710        None
711    }
712
713    /// Build the final tensor network
714    pub fn build(self) -> TensorNetwork {
715        self.network
716    }
717
718    /// Contract the network and return the quantum state
719    pub fn to_statevector(&mut self) -> QuantRS2Result<Vec<Complex64>> {
720        let final_tensor = self.network.contract_all()?;
721        Ok(final_tensor.data.into_raw_vec())
722    }
723}
724
725/// Quantum circuit simulation using tensor networks
726pub struct TensorNetworkSimulator {
727    /// Maximum bond dimension for MPS
728    max_bond_dim: usize,
729    /// Use SVD compression
730    use_compression: bool,
731    /// Parallelization threshold
732    parallel_threshold: usize,
733}
734
735impl TensorNetworkSimulator {
736    /// Create a new tensor network simulator
737    pub fn new() -> Self {
738        Self {
739            max_bond_dim: 64,
740            use_compression: true,
741            parallel_threshold: 1000,
742        }
743    }
744
745    /// Set maximum bond dimension
746    pub fn with_max_bond_dim(mut self, dim: usize) -> Self {
747        self.max_bond_dim = dim;
748        self
749    }
750
751    /// Enable or disable compression
752    pub fn with_compression(mut self, compress: bool) -> Self {
753        self.use_compression = compress;
754        self
755    }
756
757    /// Simulate a quantum circuit
758    pub fn simulate<const N: usize>(
759        &self,
760        gates: &[Box<dyn GateOp>],
761    ) -> QuantRS2Result<Register<N>> {
762        let mut builder = TensorNetworkBuilder::new(N);
763
764        // Apply gates
765        for gate in gates {
766            let qubits = gate.qubits();
767            match qubits.len() {
768                1 => builder.apply_single_qubit_gate(gate.as_ref(), qubits[0].0 as usize)?,
769                2 => builder.apply_two_qubit_gate(
770                    gate.as_ref(),
771                    qubits[0].0 as usize,
772                    qubits[1].0 as usize,
773                )?,
774                _ => {
775                    return Err(QuantRS2Error::UnsupportedOperation(format!(
776                        "Gates with {} qubits not supported in tensor network",
777                        qubits.len()
778                    )))
779                }
780            }
781        }
782
783        // Contract to get statevector
784        let amplitudes = builder.to_statevector()?;
785        Register::with_amplitudes(amplitudes)
786    }
787}
788
789/// Optimized contraction strategies
790pub mod contraction_optimization {
791    use super::*;
792
793    /// Dynamic programming algorithm for optimal contraction order
794    pub struct DynamicProgrammingOptimizer {
795        memo: HashMap<Vec<usize>, (usize, Vec<(usize, usize)>)>,
796    }
797
798    impl DynamicProgrammingOptimizer {
799        pub fn new() -> Self {
800            Self {
801                memo: HashMap::new(),
802            }
803        }
804
805        /// Find optimal contraction order using dynamic programming
806        pub fn optimize(&mut self, network: &TensorNetwork) -> Vec<(usize, usize)> {
807            let tensor_ids: Vec<_> = network.tensors.keys().cloned().collect();
808            self.find_optimal_order(&tensor_ids, network).1
809        }
810
811        fn find_optimal_order(
812            &mut self,
813            tensors: &[usize],
814            network: &TensorNetwork,
815        ) -> (usize, Vec<(usize, usize)>) {
816            if tensors.len() <= 1 {
817                return (0, vec![]);
818            }
819
820            let key = tensors.to_vec();
821            if let Some(result) = self.memo.get(&key) {
822                return result.clone();
823            }
824
825            let mut best_cost = usize::MAX;
826            let mut best_order = vec![];
827
828            // Try all possible pairings
829            for i in 0..tensors.len() {
830                for j in (i + 1)..tensors.len() {
831                    // Check if tensors are connected
832                    if self.are_connected(tensors[i], tensors[j], network) {
833                        let cost = network.estimate_contraction_cost(tensors[i], tensors[j]);
834
835                        // Remaining tensors after contraction
836                        let mut remaining = vec![];
837                        for (k, &t) in tensors.iter().enumerate() {
838                            if k != i && k != j {
839                                remaining.push(t);
840                            }
841                        }
842                        remaining.push(network.next_id + remaining.len()); // Virtual tensor
843
844                        let (sub_cost, sub_order) = self.find_optimal_order(&remaining, network);
845                        let total_cost = cost + sub_cost;
846
847                        if total_cost < best_cost {
848                            best_cost = total_cost;
849                            best_order = vec![(tensors[i], tensors[j])];
850                            best_order.extend(sub_order);
851                        }
852                    }
853                }
854            }
855
856            self.memo.insert(key, (best_cost, best_order.clone()));
857            (best_cost, best_order)
858        }
859
860        fn are_connected(&self, t1: usize, t2: usize, network: &TensorNetwork) -> bool {
861            network.edges.iter().any(|e| {
862                (e.tensor1 == t1 && e.tensor2 == t2) || (e.tensor1 == t2 && e.tensor2 == t1)
863            })
864        }
865    }
866}
867
868#[cfg(test)]
869mod tests {
870    use super::*;
871
872    #[test]
873    fn test_tensor_creation() {
874        let data = ArrayD::zeros(IxDyn(&[2, 2]));
875        let tensor = Tensor::new(0, data, vec!["in".to_string(), "out".to_string()]);
876        assert_eq!(tensor.rank(), 2);
877        assert_eq!(tensor.shape, vec![2, 2]);
878    }
879
880    #[test]
881    fn test_qubit_tensors() {
882        let t0 = Tensor::qubit_zero(0, "q0".to_string());
883        assert_eq!(t0.data[[0]], Complex64::new(1.0, 0.0));
884        assert_eq!(t0.data[[1]], Complex64::new(0.0, 0.0));
885
886        let t1 = Tensor::qubit_one(1, "q1".to_string());
887        assert_eq!(t1.data[[0]], Complex64::new(0.0, 0.0));
888        assert_eq!(t1.data[[1]], Complex64::new(1.0, 0.0));
889    }
890
891    #[test]
892    fn test_tensor_network_builder() {
893        let builder = TensorNetworkBuilder::new(2);
894        assert_eq!(builder.network.tensors.len(), 2);
895    }
896
897    #[test]
898    fn test_network_connection() {
899        let mut network = TensorNetwork::new();
900
901        let t1 = Tensor::qubit_zero(0, "q0".to_string());
902        let t2 = Tensor::qubit_zero(1, "q1".to_string());
903
904        let id1 = network.add_tensor(t1);
905        let id2 = network.add_tensor(t2);
906
907        // Should fail - indices don't exist on these tensors
908        assert!(network
909            .connect(id1, "bond".to_string(), id2, "bond".to_string())
910            .is_err());
911    }
912}