quantrs2_core/qml/
training.rs

1//! Training utilities for quantum machine learning
2//!
3//! This module provides training loops, loss functions, and optimization
4//! strategies for quantum machine learning models.
5
6use super::{natural_gradient, quantum_fisher_information, QMLCircuit};
7use crate::{
8    error::{QuantRS2Error, QuantRS2Result},
9    gpu::{GpuBackendFactory, GpuStateVector},
10};
11use ndarray::{Array1, Array2};
12use num_complex::Complex64;
13// Note: scirs2_optimize functions would be used here if available
14use std::collections::HashMap;
15
16/// Loss functions for QML
17#[derive(Debug, Clone, Copy)]
18pub enum LossFunction {
19    /// Mean squared error
20    MSE,
21    /// Cross entropy loss
22    CrossEntropy,
23    /// Fidelity loss
24    Fidelity,
25    /// Variational loss for VQE
26    Variational,
27    /// Custom loss function
28    Custom,
29}
30
31/// Optimizer for QML models
32#[derive(Debug, Clone)]
33pub enum Optimizer {
34    /// Gradient descent
35    GradientDescent { learning_rate: f64 },
36    /// Adam optimizer
37    Adam {
38        learning_rate: f64,
39        beta1: f64,
40        beta2: f64,
41        epsilon: f64,
42    },
43    /// Natural gradient descent
44    NaturalGradient {
45        learning_rate: f64,
46        regularization: f64,
47    },
48    /// BFGS optimizer
49    BFGS,
50    /// Quantum natural gradient
51    QuantumNatural {
52        learning_rate: f64,
53        regularization: f64,
54    },
55}
56
57/// Training configuration
58#[derive(Debug, Clone)]
59pub struct TrainingConfig {
60    /// Maximum number of epochs
61    pub max_epochs: usize,
62    /// Batch size
63    pub batch_size: usize,
64    /// Convergence tolerance
65    pub tolerance: f64,
66    /// Whether to use GPU acceleration
67    pub use_gpu: bool,
68    /// Validation split ratio
69    pub validation_split: f64,
70    /// Early stopping patience
71    pub early_stopping_patience: Option<usize>,
72    /// Gradient clipping value
73    pub gradient_clip: Option<f64>,
74}
75
76impl Default for TrainingConfig {
77    fn default() -> Self {
78        Self {
79            max_epochs: 100,
80            batch_size: 32,
81            tolerance: 1e-6,
82            use_gpu: true,
83            validation_split: 0.2,
84            early_stopping_patience: Some(10),
85            gradient_clip: Some(1.0),
86        }
87    }
88}
89
90/// Training metrics
91#[derive(Debug, Clone, Default)]
92pub struct TrainingMetrics {
93    /// Loss history
94    pub loss_history: Vec<f64>,
95    /// Validation loss history
96    pub val_loss_history: Vec<f64>,
97    /// Gradient norms
98    pub gradient_norms: Vec<f64>,
99    /// Parameter history
100    pub parameter_history: Vec<Vec<f64>>,
101    /// Best validation loss
102    pub best_val_loss: f64,
103    /// Best parameters
104    pub best_parameters: Vec<f64>,
105}
106
107/// QML trainer
108pub struct QMLTrainer {
109    /// The quantum circuit
110    circuit: QMLCircuit,
111    /// Loss function
112    loss_fn: LossFunction,
113    /// Optimizer
114    optimizer: Optimizer,
115    /// Training configuration
116    config: TrainingConfig,
117    /// Training metrics
118    metrics: TrainingMetrics,
119    /// Adam optimizer state
120    adam_state: Option<AdamState>,
121}
122
123/// Adam optimizer state
124#[derive(Debug, Clone)]
125struct AdamState {
126    m: Vec<f64>, // First moment
127    v: Vec<f64>, // Second moment
128    t: usize,    // Time step
129}
130
131impl QMLTrainer {
132    /// Create a new trainer
133    pub fn new(
134        circuit: QMLCircuit,
135        loss_fn: LossFunction,
136        optimizer: Optimizer,
137        config: TrainingConfig,
138    ) -> Self {
139        let num_params = circuit.num_parameters;
140        let adam_state = match &optimizer {
141            Optimizer::Adam { .. } => Some(AdamState {
142                m: vec![0.0; num_params],
143                v: vec![0.0; num_params],
144                t: 0,
145            }),
146            _ => None,
147        };
148
149        Self {
150            circuit,
151            loss_fn,
152            optimizer,
153            config,
154            metrics: TrainingMetrics::default(),
155            adam_state,
156        }
157    }
158
159    /// Train the model
160    pub fn train(
161        &mut self,
162        train_data: &[(Vec<f64>, Vec<f64>)],
163        val_data: Option<&[(Vec<f64>, Vec<f64>)]>,
164    ) -> QuantRS2Result<TrainingMetrics> {
165        // Initialize GPU if requested
166        let gpu_backend = if self.config.use_gpu {
167            Some(GpuBackendFactory::create_best_available()?)
168        } else {
169            None
170        };
171
172        let mut best_val_loss = f64::INFINITY;
173        let mut patience_counter = 0;
174
175        for epoch in 0..self.config.max_epochs {
176            // Training step
177            let train_loss = self.train_epoch(train_data, &gpu_backend)?;
178            self.metrics.loss_history.push(train_loss);
179
180            // Validation step
181            if let Some(val_data) = val_data {
182                let val_loss = self.evaluate(val_data, &gpu_backend)?;
183                self.metrics.val_loss_history.push(val_loss);
184
185                // Early stopping
186                if val_loss < best_val_loss {
187                    best_val_loss = val_loss;
188                    self.metrics.best_val_loss = val_loss;
189                    self.metrics.best_parameters = self.get_parameters();
190                    patience_counter = 0;
191                } else if let Some(patience) = self.config.early_stopping_patience {
192                    patience_counter += 1;
193                    if patience_counter >= patience {
194                        println!("Early stopping at epoch {}", epoch);
195                        break;
196                    }
197                }
198            }
199
200            // Check convergence
201            if epoch > 0 {
202                let loss_change =
203                    (self.metrics.loss_history[epoch] - self.metrics.loss_history[epoch - 1]).abs();
204                if loss_change < self.config.tolerance {
205                    println!("Converged at epoch {}", epoch);
206                    break;
207                }
208            }
209
210            // Log progress
211            if epoch % 10 == 0 {
212                println!("Epoch {}: train_loss = {:.6}", epoch, train_loss);
213                if let Some(val_loss) = self.metrics.val_loss_history.last() {
214                    println!("         val_loss = {:.6}", val_loss);
215                }
216            }
217        }
218
219        Ok(self.metrics.clone())
220    }
221
222    /// Train for one epoch
223    fn train_epoch(
224        &mut self,
225        data: &[(Vec<f64>, Vec<f64>)],
226        gpu_backend: &Option<std::sync::Arc<dyn crate::gpu::GpuBackend>>,
227    ) -> QuantRS2Result<f64> {
228        let mut epoch_loss = 0.0;
229        let num_batches = (data.len() + self.config.batch_size - 1) / self.config.batch_size;
230
231        for batch_idx in 0..num_batches {
232            let start = batch_idx * self.config.batch_size;
233            let end = (start + self.config.batch_size).min(data.len());
234            let batch = &data[start..end];
235
236            // Compute gradients for batch
237            let (loss, gradients) = self.compute_batch_gradients(batch, gpu_backend)?;
238            epoch_loss += loss;
239
240            // Apply gradient clipping if configured
241            let clipped_gradients = if let Some(clip_value) = self.config.gradient_clip {
242                self.clip_gradients(&gradients, clip_value)
243            } else {
244                gradients
245            };
246
247            // Update parameters
248            self.update_parameters(&clipped_gradients)?;
249
250            // Record gradient norm
251            let grad_norm = clipped_gradients.iter().map(|g| g * g).sum::<f64>().sqrt();
252            self.metrics.gradient_norms.push(grad_norm);
253        }
254
255        Ok(epoch_loss / num_batches as f64)
256    }
257
258    /// Compute gradients for a batch
259    fn compute_batch_gradients(
260        &self,
261        batch: &[(Vec<f64>, Vec<f64>)],
262        gpu_backend: &Option<std::sync::Arc<dyn crate::gpu::GpuBackend>>,
263    ) -> QuantRS2Result<(f64, Vec<f64>)> {
264        let mut total_loss = 0.0;
265        let mut total_gradients = vec![0.0; self.circuit.num_parameters];
266
267        for (input, target) in batch {
268            // Forward pass
269            let output = self.forward(input, gpu_backend)?;
270
271            // Compute loss
272            let loss = self.compute_loss(&output, target)?;
273            total_loss += loss;
274
275            // Compute gradients (placeholder - would use parameter shift rule)
276            let gradients = vec![0.0; self.circuit.num_parameters]; // Placeholder
277
278            // Accumulate gradients
279            for (i, &grad) in gradients.iter().enumerate() {
280                total_gradients[i] += grad;
281            }
282        }
283
284        // Average over batch
285        let batch_size = batch.len() as f64;
286        total_loss /= batch_size;
287        for grad in &mut total_gradients {
288            *grad /= batch_size;
289        }
290
291        Ok((total_loss, total_gradients))
292    }
293
294    /// Forward pass through the circuit
295    fn forward(
296        &self,
297        input: &[f64],
298        gpu_backend: &Option<std::sync::Arc<dyn crate::gpu::GpuBackend>>,
299    ) -> QuantRS2Result<Vec<f64>> {
300        // This is a placeholder implementation
301        // In practice, would:
302        // 1. Encode input data
303        // 2. Apply circuit gates
304        // 3. Measure or compute expectation values
305        // 4. Return output
306
307        Ok(vec![0.5; input.len()])
308    }
309
310    /// Compute loss
311    fn compute_loss(&self, output: &[f64], target: &[f64]) -> QuantRS2Result<f64> {
312        if output.len() != target.len() {
313            return Err(QuantRS2Error::InvalidInput(
314                "Output and target dimensions mismatch".to_string(),
315            ));
316        }
317
318        match self.loss_fn {
319            LossFunction::MSE => {
320                let mse = output
321                    .iter()
322                    .zip(target.iter())
323                    .map(|(o, t)| (o - t).powi(2))
324                    .sum::<f64>()
325                    / output.len() as f64;
326                Ok(mse)
327            }
328            LossFunction::CrossEntropy => {
329                let epsilon = 1e-10;
330                let ce = -output
331                    .iter()
332                    .zip(target.iter())
333                    .map(|(o, t)| t * (o + epsilon).ln())
334                    .sum::<f64>()
335                    / output.len() as f64;
336                Ok(ce)
337            }
338            _ => Ok(0.0), // Placeholder for other loss functions
339        }
340    }
341
342    /// Update parameters using the optimizer
343    fn update_parameters(&mut self, gradients: &[f64]) -> QuantRS2Result<()> {
344        let current_params = self.get_parameters();
345        let new_params = match &mut self.optimizer {
346            Optimizer::GradientDescent { learning_rate } => current_params
347                .iter()
348                .zip(gradients.iter())
349                .map(|(p, g)| p - *learning_rate * g)
350                .collect(),
351
352            Optimizer::Adam {
353                learning_rate,
354                beta1,
355                beta2,
356                epsilon,
357            } => {
358                if let Some(state) = &mut self.adam_state {
359                    state.t += 1;
360                    let t = state.t as f64;
361
362                    let mut new_params = vec![0.0; current_params.len()];
363                    for i in 0..current_params.len() {
364                        // Update biased first moment estimate
365                        state.m[i] = *beta1 * state.m[i] + (1.0 - *beta1) * gradients[i];
366
367                        // Update biased second raw moment estimate
368                        state.v[i] = *beta2 * state.v[i] + (1.0 - *beta2) * gradients[i].powi(2);
369
370                        // Compute bias-corrected first moment estimate
371                        let m_hat = state.m[i] / (1.0 - beta1.powf(t));
372
373                        // Compute bias-corrected second raw moment estimate
374                        let v_hat = state.v[i] / (1.0 - beta2.powf(t));
375
376                        // Update parameters
377                        new_params[i] =
378                            current_params[i] - *learning_rate * m_hat / (v_hat.sqrt() + *epsilon);
379                    }
380                    new_params
381                } else {
382                    current_params
383                }
384            }
385
386            Optimizer::QuantumNatural {
387                learning_rate,
388                regularization,
389            } => {
390                // Compute quantum Fisher information
391                let state = Array1::zeros(1 << self.circuit.config.num_qubits);
392                let fisher = quantum_fisher_information(&self.circuit, &state)?;
393
394                // Compute natural gradient
395                natural_gradient(gradients, &fisher, *regularization)?
396            }
397
398            _ => current_params, // Placeholder for other optimizers
399        };
400
401        self.circuit.set_parameters(&new_params)?;
402        self.metrics.parameter_history.push(new_params);
403
404        Ok(())
405    }
406
407    /// Clip gradients
408    fn clip_gradients(&self, gradients: &[f64], clip_value: f64) -> Vec<f64> {
409        let norm = gradients.iter().map(|g| g * g).sum::<f64>().sqrt();
410
411        if norm > clip_value {
412            gradients.iter().map(|g| g * clip_value / norm).collect()
413        } else {
414            gradients.to_vec()
415        }
416    }
417
418    /// Evaluate on a dataset
419    fn evaluate(
420        &self,
421        data: &[(Vec<f64>, Vec<f64>)],
422        gpu_backend: &Option<std::sync::Arc<dyn crate::gpu::GpuBackend>>,
423    ) -> QuantRS2Result<f64> {
424        let mut total_loss = 0.0;
425
426        for (input, target) in data {
427            let output = self.forward(input, gpu_backend)?;
428            let loss = self.compute_loss(&output, target)?;
429            total_loss += loss;
430        }
431
432        Ok(total_loss / data.len() as f64)
433    }
434
435    /// Get current parameters
436    fn get_parameters(&self) -> Vec<f64> {
437        self.circuit.parameters().iter().map(|p| p.value).collect()
438    }
439}
440
441/// Hyperparameter optimization for QML
442pub struct HyperparameterOptimizer {
443    /// Search space
444    search_space: HashMap<String, (f64, f64)>,
445    /// Number of trials
446    num_trials: usize,
447    /// Optimization strategy
448    strategy: HPOStrategy,
449}
450
451#[derive(Debug, Clone, Copy)]
452pub enum HPOStrategy {
453    /// Random search
454    Random,
455    /// Grid search
456    Grid,
457    /// Bayesian optimization
458    Bayesian,
459}
460
461impl HyperparameterOptimizer {
462    /// Create a new hyperparameter optimizer
463    pub fn new(
464        search_space: HashMap<String, (f64, f64)>,
465        num_trials: usize,
466        strategy: HPOStrategy,
467    ) -> Self {
468        Self {
469            search_space,
470            num_trials,
471            strategy,
472        }
473    }
474
475    /// Run hyperparameter optimization
476    pub fn optimize<F>(&self, objective: F) -> QuantRS2Result<HashMap<String, f64>>
477    where
478        F: Fn(&HashMap<String, f64>) -> QuantRS2Result<f64>,
479    {
480        // Placeholder implementation
481        // Would implement actual HPO strategies here
482        Ok(HashMap::new())
483    }
484}
485
486#[cfg(test)]
487mod tests {
488    use super::*;
489    use crate::qml::QMLConfig;
490
491    #[test]
492    fn test_trainer_creation() {
493        let config = QMLConfig::default();
494        let circuit = QMLCircuit::new(config);
495
496        let trainer = QMLTrainer::new(
497            circuit,
498            LossFunction::MSE,
499            Optimizer::Adam {
500                learning_rate: 0.01,
501                beta1: 0.9,
502                beta2: 0.999,
503                epsilon: 1e-8,
504            },
505            TrainingConfig::default(),
506        );
507
508        assert_eq!(trainer.metrics.loss_history.len(), 0);
509    }
510
511    #[test]
512    fn test_gradient_clipping() {
513        let config = QMLConfig::default();
514        let circuit = QMLCircuit::new(config);
515        let trainer = QMLTrainer::new(
516            circuit,
517            LossFunction::MSE,
518            Optimizer::GradientDescent { learning_rate: 0.1 },
519            TrainingConfig::default(),
520        );
521
522        let gradients = vec![3.0, 4.0]; // Norm = 5
523        let clipped = trainer.clip_gradients(&gradients, 1.0);
524
525        let norm = clipped.iter().map(|g| g * g).sum::<f64>().sqrt();
526        assert!((norm - 1.0).abs() < 1e-10);
527    }
528
529    #[test]
530    fn test_loss_computation() {
531        let config = QMLConfig::default();
532        let circuit = QMLCircuit::new(config);
533        let trainer = QMLTrainer::new(
534            circuit,
535            LossFunction::MSE,
536            Optimizer::GradientDescent { learning_rate: 0.1 },
537            TrainingConfig::default(),
538        );
539
540        let output = vec![0.0, 0.5, 1.0];
541        let target = vec![0.0, 0.0, 1.0];
542
543        let loss = trainer.compute_loss(&output, &target).unwrap();
544        assert!((loss - 0.25 / 3.0).abs() < 1e-10); // MSE = (0 + 0.25 + 0) / 3
545    }
546}