quantrs2_core/
qpca.rs

1//! Quantum Principal Component Analysis (qPCA)
2//!
3//! This module implements quantum principal component analysis for
4//! efficient dimensionality reduction and eigenvalue estimation.
5
6use crate::error::QuantRS2Error;
7use ndarray::{Array1, Array2};
8use num_complex::Complex64;
9use std::f64::consts::PI;
10
11/// Parameters for quantum PCA
12#[derive(Debug, Clone)]
13pub struct QPCAParams {
14    /// Number of precision qubits for phase estimation
15    pub precision_qubits: usize,
16    /// Number of samples for density matrix estimation
17    pub num_samples: usize,
18    /// Threshold for eigenvalue selection
19    pub eigenvalue_threshold: f64,
20    /// Maximum number of iterations for quantum phase estimation
21    pub max_iterations: usize,
22}
23
24impl Default for QPCAParams {
25    fn default() -> Self {
26        Self {
27            precision_qubits: 8,
28            num_samples: 1000,
29            eigenvalue_threshold: 0.01,
30            max_iterations: 100,
31        }
32    }
33}
34
35/// Quantum Principal Component Analysis implementation
36pub struct QuantumPCA {
37    params: QPCAParams,
38    data_matrix: Array2<f64>,
39    density_matrix: Option<Array2<Complex64>>,
40    eigenvalues: Option<Array1<f64>>,
41    eigenvectors: Option<Array2<Complex64>>,
42}
43
44impl QuantumPCA {
45    /// Create new qPCA instance with data matrix
46    pub fn new(data: Array2<f64>, params: QPCAParams) -> Self {
47        Self {
48            params,
49            data_matrix: data,
50            density_matrix: None,
51            eigenvalues: None,
52            eigenvectors: None,
53        }
54    }
55
56    /// Compute the quantum density matrix from classical data
57    pub fn compute_density_matrix(&mut self) -> Result<&Array2<Complex64>, QuantRS2Error> {
58        let (n_samples, n_features) = (self.data_matrix.nrows(), self.data_matrix.ncols());
59
60        // Center the data
61        let mean = self
62            .data_matrix
63            .mean_axis(ndarray::Axis(0))
64            .ok_or_else(|| {
65                QuantRS2Error::UnsupportedOperation("Failed to compute mean".to_string())
66            })?;
67
68        let centered_data = &self.data_matrix - &mean;
69
70        // Compute covariance matrix
71        let cov_matrix = centered_data.t().dot(&centered_data) / (n_samples - 1) as f64;
72
73        // Convert to complex density matrix and normalize
74        let mut density = Array2::<Complex64>::zeros((n_features, n_features));
75        for i in 0..n_features {
76            for j in 0..n_features {
77                density[[i, j]] = Complex64::new(cov_matrix[[i, j]], 0.0);
78            }
79        }
80
81        // Normalize to trace 1
82        let trace: Complex64 = (0..n_features).map(|i| density[[i, i]]).sum();
83        if trace.norm() > 1e-10 {
84            density /= trace;
85        }
86
87        self.density_matrix = Some(density);
88        self.density_matrix
89            .as_ref()
90            .ok_or(QuantRS2Error::UnsupportedOperation(
91                "Failed to create density matrix".to_string(),
92            ))
93    }
94
95    /// Quantum phase estimation for eigenvalue extraction
96    pub fn quantum_phase_estimation(
97        &self,
98        unitary: &Array2<Complex64>,
99        state: &Array1<Complex64>,
100    ) -> Result<f64, QuantRS2Error> {
101        let precision = self.params.precision_qubits;
102        let _n = 1 << precision;
103
104        // Simulate quantum phase estimation
105        // In a real quantum computer, this would use controlled-U operations
106        let mut phase_estimate = 0.0;
107
108        // Apply inverse QFT and measure
109        for k in 0..precision {
110            // Simplified simulation of controlled unitary application
111            let controlled_phase = self.estimate_controlled_phase(unitary, state, 1 << k)?;
112            phase_estimate += controlled_phase * (1.0 / (1 << (precision - k - 1)) as f64);
113        }
114
115        Ok(phase_estimate)
116    }
117
118    /// Estimate phase from controlled unitary (simplified simulation)
119    fn estimate_controlled_phase(
120        &self,
121        unitary: &Array2<Complex64>,
122        state: &Array1<Complex64>,
123        power: usize,
124    ) -> Result<f64, QuantRS2Error> {
125        // Compute U^power
126        let mut u_power = unitary.clone();
127        for _ in 1..power {
128            u_power = u_power.dot(unitary);
129        }
130
131        // Apply to state and extract phase
132        let result = u_power.dot(state);
133        let inner_product: Complex64 = state
134            .iter()
135            .zip(result.iter())
136            .map(|(a, b)| a.conj() * b)
137            .sum();
138
139        Ok(inner_product.arg() / (2.0 * PI))
140    }
141
142    /// Extract principal components using quantum algorithm
143    pub fn extract_components(&mut self) -> Result<(), QuantRS2Error> {
144        // Ensure density matrix is computed
145        if self.density_matrix.is_none() {
146            self.compute_density_matrix()?;
147        }
148
149        let density = self.density_matrix.as_ref().unwrap();
150        let dim = density.nrows();
151
152        // Use quantum phase estimation to find eigenvalues
153        // In practice, this would be done on a quantum computer
154        let (eigenvalues, eigenvectors) = self.quantum_eigendecomposition(density)?;
155
156        // Filter by threshold
157        let mut filtered_indices: Vec<usize> = eigenvalues
158            .iter()
159            .enumerate()
160            .filter(|(_, &val)| val.abs() > self.params.eigenvalue_threshold)
161            .map(|(idx, _)| idx)
162            .collect();
163
164        // Sort by eigenvalue magnitude (descending)
165        filtered_indices.sort_by(|&a, &b| {
166            eigenvalues[b]
167                .abs()
168                .partial_cmp(&eigenvalues[a].abs())
169                .unwrap()
170        });
171
172        // Extract filtered eigenvalues and eigenvectors
173        let n_components = filtered_indices.len();
174        let mut filtered_eigenvalues = Array1::zeros(n_components);
175        let mut filtered_eigenvectors = Array2::zeros((dim, n_components));
176
177        for (new_idx, &old_idx) in filtered_indices.iter().enumerate() {
178            filtered_eigenvalues[new_idx] = eigenvalues[old_idx];
179            for i in 0..dim {
180                filtered_eigenvectors[[i, new_idx]] = eigenvectors[[i, old_idx]];
181            }
182        }
183
184        self.eigenvalues = Some(filtered_eigenvalues);
185        self.eigenvectors = Some(filtered_eigenvectors);
186
187        Ok(())
188    }
189
190    /// Quantum eigendecomposition (simulated)
191    fn quantum_eigendecomposition(
192        &self,
193        matrix: &Array2<Complex64>,
194    ) -> Result<(Array1<f64>, Array2<Complex64>), QuantRS2Error> {
195        // In a real implementation, this would use quantum phase estimation
196        // For now, we use a simplified eigendecomposition approach
197
198        // Ensure matrix is Hermitian
199        let hermitian = (matrix + &matrix.t().mapv(|x| x.conj())) / Complex64::new(2.0, 0.0);
200
201        // Convert to real symmetric matrix if possible
202        let is_real = hermitian.iter().all(|x| x.im.abs() < 1e-10);
203
204        if is_real {
205            let n = hermitian.nrows();
206            let real_matrix = hermitian.mapv(|x| x.re);
207
208            // Use power iteration method for finding dominant eigenvalues
209            // This is a simplified approach - in practice use proper eigensolvers
210            let mut eigenvalues = Vec::with_capacity(n);
211            let mut eigenvectors = Array2::<Complex64>::zeros((n, n));
212
213            // For demonstration, we'll just extract a few principal components
214            let num_components = n.min(self.params.precision_qubits);
215
216            for comp in 0..num_components {
217                // Power iteration for finding dominant eigenvector
218                let mut v = Array1::from_vec(vec![1.0 / (n as f64).sqrt(); n]);
219                let mut eigenvalue = 0.0;
220
221                for _ in 0..self.params.max_iterations {
222                    let av = real_matrix.dot(&v);
223                    eigenvalue = v.dot(&av);
224                    let norm = av.dot(&av).sqrt();
225                    if norm > 1e-10 {
226                        v = av / norm;
227                    }
228                }
229
230                eigenvalues.push(eigenvalue);
231                for i in 0..n {
232                    eigenvectors[[i, comp]] = Complex64::new(v[i], 0.0);
233                }
234            }
235
236            // Fill remaining with zeros
237            eigenvalues.extend(vec![0.0; n - num_components]);
238
239            Ok((Array1::from_vec(eigenvalues), eigenvectors))
240        } else {
241            // For complex Hermitian matrices, we need specialized algorithms
242            // This is a placeholder - in practice, use quantum phase estimation
243            Err(QuantRS2Error::UnsupportedOperation(
244                "Complex eigendecomposition not yet implemented".to_string(),
245            ))
246        }
247    }
248
249    /// Project data onto principal components
250    pub fn transform(&self, data: &Array2<f64>) -> Result<Array2<f64>, QuantRS2Error> {
251        let eigenvectors =
252            self.eigenvectors
253                .as_ref()
254                .ok_or(QuantRS2Error::UnsupportedOperation(
255                    "Components not yet extracted".to_string(),
256                ))?;
257
258        // Center the data
259        let mean = self
260            .data_matrix
261            .mean_axis(ndarray::Axis(0))
262            .ok_or_else(|| {
263                QuantRS2Error::UnsupportedOperation("Failed to compute mean".to_string())
264            })?;
265
266        let centered_data = data - &mean;
267
268        // Project onto principal components
269        let n_components = eigenvectors.ncols();
270        let n_samples = centered_data.nrows();
271        let mut transformed = Array2::zeros((n_samples, n_components));
272
273        for i in 0..n_samples {
274            for j in 0..n_components {
275                let mut sum = 0.0;
276                for k in 0..centered_data.ncols() {
277                    sum += centered_data[[i, k]] * eigenvectors[[k, j]].re;
278                }
279                transformed[[i, j]] = sum;
280            }
281        }
282
283        Ok(transformed)
284    }
285
286    /// Get explained variance ratio for each component
287    pub fn explained_variance_ratio(&self) -> Result<Array1<f64>, QuantRS2Error> {
288        let eigenvalues = self
289            .eigenvalues
290            .as_ref()
291            .ok_or(QuantRS2Error::UnsupportedOperation(
292                "Components not yet extracted".to_string(),
293            ))?;
294
295        let total_variance: f64 = eigenvalues.sum();
296        if total_variance.abs() < 1e-10 {
297            return Err(QuantRS2Error::UnsupportedOperation(
298                "Total variance is zero".to_string(),
299            ));
300        }
301
302        Ok(eigenvalues / total_variance)
303    }
304
305    /// Get the number of components
306    pub fn n_components(&self) -> Option<usize> {
307        self.eigenvalues.as_ref().map(|e| e.len())
308    }
309
310    /// Get eigenvalues
311    pub fn eigenvalues(&self) -> Option<&Array1<f64>> {
312        self.eigenvalues.as_ref()
313    }
314
315    /// Get eigenvectors
316    pub fn eigenvectors(&self) -> Option<&Array2<Complex64>> {
317        self.eigenvectors.as_ref()
318    }
319}
320
321/// Quantum-inspired PCA using density matrix formulation
322pub struct DensityMatrixPCA {
323    params: QPCAParams,
324    pub trace_threshold: f64,
325}
326
327impl DensityMatrixPCA {
328    /// Create new density matrix PCA
329    pub fn new(params: QPCAParams) -> Self {
330        Self {
331            params,
332            trace_threshold: 0.95, // Capture 95% of trace
333        }
334    }
335
336    /// Compute low-rank approximation using quantum-inspired method
337    pub fn fit_transform(
338        &self,
339        data: &Array2<f64>,
340    ) -> Result<(Array2<f64>, Array1<f64>), QuantRS2Error> {
341        let mut qpca = QuantumPCA::new(data.clone(), self.params.clone());
342
343        // Compute density matrix and extract components
344        qpca.compute_density_matrix()?;
345        qpca.extract_components()?;
346
347        // Find number of components to retain based on trace threshold
348        let explained_variance = qpca.explained_variance_ratio()?;
349        let mut cumsum = 0.0;
350        let mut n_components_retain = 0;
351
352        for (i, &var) in explained_variance.iter().enumerate() {
353            cumsum += var;
354            n_components_retain = i + 1;
355            if cumsum >= self.trace_threshold {
356                break;
357            }
358        }
359
360        // Transform data
361        let transformed = qpca.transform(data)?;
362
363        // Return only the retained components
364        let retained_transform = transformed
365            .slice(ndarray::s![.., ..n_components_retain])
366            .to_owned();
367        let retained_variance = explained_variance
368            .slice(ndarray::s![..n_components_retain])
369            .to_owned();
370
371        Ok((retained_transform, retained_variance))
372    }
373}
374
375#[cfg(test)]
376mod tests {
377    use super::*;
378    use ndarray::Array2;
379
380    #[test]
381    fn test_qpca_basic() {
382        // Create simple test data
383        let data = Array2::from_shape_vec(
384            (5, 3),
385            vec![
386                1.0, 2.0, 3.0, 2.0, 4.0, 6.0, 3.0, 6.0, 9.0, 4.0, 8.0, 12.0, 5.0, 10.0, 15.0,
387            ],
388        )
389        .unwrap();
390
391        let params = QPCAParams::default();
392        let mut qpca = QuantumPCA::new(data.clone(), params);
393
394        // Compute density matrix
395        let density = qpca.compute_density_matrix().unwrap();
396        assert_eq!(density.shape(), &[3, 3]);
397
398        // Extract components
399        qpca.extract_components().unwrap();
400
401        let eigenvalues = qpca.eigenvalues().unwrap();
402        assert!(!eigenvalues.is_empty());
403
404        // Check that eigenvalues are sorted in descending order
405        for i in 1..eigenvalues.len() {
406            assert!(eigenvalues[i - 1] >= eigenvalues[i]);
407        }
408    }
409
410    #[test]
411    fn test_density_matrix_pca() {
412        // Create test data with clear principal components
413        let mut data = Array2::zeros((10, 4));
414        for i in 0..10 {
415            data[[i, 0]] = i as f64;
416            data[[i, 1]] = 2.0 * i as f64;
417            data[[i, 2]] = 0.1 * ((i * 7) % 10) as f64 / 10.0;
418            data[[i, 3]] = 0.1 * ((i * 13) % 10) as f64 / 10.0;
419        }
420
421        let params = QPCAParams::default();
422        let pca = DensityMatrixPCA::new(params);
423
424        let (transformed, variance) = pca.fit_transform(&data).unwrap();
425
426        // Should retain at least one component
427        assert!(transformed.ncols() >= 1);
428        assert!(transformed.ncols() <= data.ncols());
429        // Variance should be normalized
430        assert!(variance.sum() <= 1.0 + 1e-6);
431    }
432}