quantrs2_circuit/
scirs2_benchmarking.rs

1//! `SciRS2` statistical tools for circuit benchmarking
2//!
3//! This module leverages `SciRS2`'s advanced statistical analysis capabilities to provide
4//! comprehensive benchmarking, performance analysis, and statistical insights for quantum circuits.
5
6use crate::builder::Circuit;
7use crate::noise_models::{NoiseAnalysisResult, NoiseModel};
8use crate::simulator_interface::{ExecutionResult, SimulatorBackend};
9use quantrs2_core::{
10    error::{QuantRS2Error, QuantRS2Result},
11    gate::GateOp,
12};
13use serde::{Deserialize, Serialize};
14use std::collections::HashMap;
15use std::time::{Duration, Instant};
16
17// Placeholder types representing SciRS2 statistical interface
18// In the real implementation, these would be imported from SciRS2
19
20/// Statistical distribution types supported by `SciRS2`
21#[derive(Debug, Clone, PartialEq)]
22pub enum Distribution {
23    /// Normal distribution
24    Normal { mean: f64, std_dev: f64 },
25    /// Uniform distribution
26    Uniform { min: f64, max: f64 },
27    /// Exponential distribution
28    Exponential { rate: f64 },
29    /// Beta distribution
30    Beta { alpha: f64, beta: f64 },
31    /// Gamma distribution
32    Gamma { shape: f64, scale: f64 },
33    /// Poisson distribution
34    Poisson { lambda: f64 },
35    /// Chi-squared distribution
36    ChiSquared { degrees_of_freedom: usize },
37    /// Student's t-distribution
38    StudentT { degrees_of_freedom: usize },
39}
40
41/// Statistical test types
42#[derive(Debug, Clone, PartialEq, Eq)]
43pub enum StatisticalTest {
44    /// Kolmogorov-Smirnov test
45    KolmogorovSmirnov,
46    /// Anderson-Darling test
47    AndersonDarling,
48    /// Shapiro-Wilk test for normality
49    ShapiroWilk,
50    /// Mann-Whitney U test
51    MannWhitney,
52    /// Wilcoxon signed-rank test
53    Wilcoxon,
54    /// Chi-squared goodness of fit
55    ChiSquaredGoodnessOfFit,
56    /// ANOVA F-test
57    ANOVA,
58    /// Kruskal-Wallis test
59    KruskalWallis,
60}
61
62/// Hypothesis test result
63#[derive(Debug, Clone)]
64pub struct HypothesisTestResult {
65    /// Test statistic value
66    pub test_statistic: f64,
67    /// P-value
68    pub p_value: f64,
69    /// Critical value at significance level
70    pub critical_value: f64,
71    /// Whether null hypothesis is rejected
72    pub reject_null: bool,
73    /// Significance level used
74    pub significance_level: f64,
75    /// Effect size (if applicable)
76    pub effect_size: Option<f64>,
77    /// Confidence interval
78    pub confidence_interval: Option<(f64, f64)>,
79}
80
81/// Descriptive statistics
82#[derive(Debug, Clone, Serialize, Deserialize)]
83pub struct DescriptiveStats {
84    /// Sample size
85    pub count: usize,
86    /// Mean
87    pub mean: f64,
88    /// Standard deviation
89    pub std_dev: f64,
90    /// Variance
91    pub variance: f64,
92    /// Minimum value
93    pub min: f64,
94    /// Maximum value
95    pub max: f64,
96    /// Median (50th percentile)
97    pub median: f64,
98    /// First quartile (25th percentile)
99    pub q1: f64,
100    /// Third quartile (75th percentile)
101    pub q3: f64,
102    /// Interquartile range
103    pub iqr: f64,
104    /// Skewness
105    pub skewness: f64,
106    /// Kurtosis
107    pub kurtosis: f64,
108    /// Mode (most frequent value)
109    pub mode: Option<f64>,
110}
111
112/// Benchmarking configuration
113#[derive(Debug, Clone)]
114pub struct BenchmarkConfig {
115    /// Number of benchmark runs
116    pub num_runs: usize,
117    /// Warm-up runs to exclude from statistics
118    pub warmup_runs: usize,
119    /// Timeout per run
120    pub timeout: Duration,
121    /// Significance level for statistical tests
122    pub significance_level: f64,
123    /// Whether to collect detailed timing data
124    pub collect_timing: bool,
125    /// Whether to collect memory usage data
126    pub collect_memory: bool,
127    /// Whether to collect error statistics
128    pub collect_errors: bool,
129    /// Random seed for reproducible benchmarks
130    pub seed: Option<u64>,
131}
132
133impl Default for BenchmarkConfig {
134    fn default() -> Self {
135        Self {
136            num_runs: 100,
137            warmup_runs: 10,
138            timeout: Duration::from_secs(60),
139            significance_level: 0.05,
140            collect_timing: true,
141            collect_memory: false,
142            collect_errors: true,
143            seed: None,
144        }
145    }
146}
147
148/// Circuit benchmarking suite using `SciRS2` statistical tools
149pub struct CircuitBenchmark {
150    /// Benchmark configuration
151    config: BenchmarkConfig,
152    /// Collected benchmark data
153    benchmark_data: Vec<BenchmarkRun>,
154    /// Statistical analyzer
155    stats_analyzer: StatisticalAnalyzer,
156}
157
158/// Single benchmark run data
159#[derive(Debug, Clone)]
160pub struct BenchmarkRun {
161    /// Run identifier
162    pub run_id: usize,
163    /// Execution time
164    pub execution_time: Duration,
165    /// Memory usage in bytes
166    pub memory_usage: Option<usize>,
167    /// Success/failure status
168    pub success: bool,
169    /// Error message if failed
170    pub error_message: Option<String>,
171    /// Circuit metrics
172    pub circuit_metrics: CircuitMetrics,
173    /// Execution results
174    pub execution_results: Option<ExecutionResult>,
175    /// Noise analysis results
176    pub noise_analysis: Option<NoiseAnalysisResult>,
177    /// Custom metrics
178    pub custom_metrics: HashMap<String, f64>,
179}
180
181/// Circuit performance metrics
182#[derive(Debug, Clone)]
183pub struct CircuitMetrics {
184    /// Circuit depth
185    pub depth: usize,
186    /// Total gate count
187    pub gate_count: usize,
188    /// Gate count by type
189    pub gate_counts: HashMap<String, usize>,
190    /// Two-qubit gate count
191    pub two_qubit_gates: usize,
192    /// Circuit fidelity estimate
193    pub fidelity: Option<f64>,
194    /// Error rate estimate
195    pub error_rate: Option<f64>,
196}
197
198/// Comprehensive benchmark report
199#[derive(Debug, Clone)]
200pub struct BenchmarkReport {
201    /// Benchmark configuration used
202    pub config: BenchmarkConfig,
203    /// Total runs completed
204    pub completed_runs: usize,
205    /// Success rate
206    pub success_rate: f64,
207    /// Timing statistics
208    pub timing_stats: DescriptiveStats,
209    /// Memory statistics (if collected)
210    pub memory_stats: Option<DescriptiveStats>,
211    /// Performance regression analysis
212    pub regression_analysis: Option<RegressionAnalysis>,
213    /// Distribution fitting results
214    pub distribution_fit: Option<DistributionFit>,
215    /// Outlier analysis
216    pub outlier_analysis: OutlierAnalysis,
217    /// Performance comparison with baseline
218    pub baseline_comparison: Option<BaselineComparison>,
219    /// Statistical test results
220    pub statistical_tests: Vec<HypothesisTestResult>,
221    /// Performance insights and recommendations
222    pub insights: Vec<PerformanceInsight>,
223}
224
225/// Regression analysis results
226#[derive(Debug, Clone)]
227pub struct RegressionAnalysis {
228    /// Linear regression slope
229    pub slope: f64,
230    /// Y-intercept
231    pub intercept: f64,
232    /// R-squared correlation coefficient
233    pub r_squared: f64,
234    /// P-value for slope significance
235    pub slope_p_value: f64,
236    /// Whether there's a significant trend
237    pub significant_trend: bool,
238    /// Predicted performance degradation per run
239    pub degradation_per_run: f64,
240}
241
242/// Distribution fitting analysis
243#[derive(Debug, Clone)]
244pub struct DistributionFit {
245    /// Best fitting distribution
246    pub best_distribution: Distribution,
247    /// Goodness of fit score
248    pub goodness_of_fit: f64,
249    /// P-value for fit test
250    pub fit_p_value: f64,
251    /// Alternative distributions tested
252    pub alternative_fits: Vec<(Distribution, f64)>,
253}
254
255/// Outlier detection and analysis
256#[derive(Debug, Clone)]
257pub struct OutlierAnalysis {
258    /// Number of outliers detected
259    pub num_outliers: usize,
260    /// Outlier indices
261    pub outlier_indices: Vec<usize>,
262    /// Outlier detection method used
263    pub detection_method: OutlierDetectionMethod,
264    /// Outlier threshold used
265    pub threshold: f64,
266    /// Impact of outliers on statistics
267    pub outlier_impact: OutlierImpact,
268}
269
270/// Outlier detection methods
271#[derive(Debug, Clone, PartialEq)]
272pub enum OutlierDetectionMethod {
273    /// Interquartile range method
274    IQR { multiplier: f64 },
275    /// Z-score method
276    ZScore { threshold: f64 },
277    /// Modified Z-score (median absolute deviation)
278    ModifiedZScore { threshold: f64 },
279    /// Isolation forest
280    IsolationForest,
281    /// Local outlier factor
282    LocalOutlierFactor,
283}
284
285/// Impact of outliers on statistical measures
286#[derive(Debug, Clone)]
287pub struct OutlierImpact {
288    /// Change in mean when outliers removed
289    pub mean_change: f64,
290    /// Change in standard deviation when outliers removed
291    pub std_dev_change: f64,
292    /// Change in median when outliers removed
293    pub median_change: f64,
294    /// Relative impact percentage
295    pub relative_impact: f64,
296}
297
298/// Baseline performance comparison
299#[derive(Debug, Clone)]
300pub struct BaselineComparison {
301    /// Baseline benchmark name
302    pub baseline_name: String,
303    /// Performance improvement/degradation factor
304    pub performance_factor: f64,
305    /// Statistical significance of difference
306    pub significance: HypothesisTestResult,
307    /// Confidence interval for difference
308    pub difference_ci: (f64, f64),
309    /// Effect size
310    pub effect_size: f64,
311    /// Practical significance assessment
312    pub practical_significance: PracticalSignificance,
313}
314
315/// Practical significance assessment
316#[derive(Debug, Clone, PartialEq, Eq)]
317pub enum PracticalSignificance {
318    /// Negligible difference
319    Negligible,
320    /// Small effect
321    Small,
322    /// Medium effect
323    Medium,
324    /// Large effect
325    Large,
326    /// Very large effect
327    VeryLarge,
328}
329
330/// Performance insights and recommendations
331#[derive(Debug, Clone)]
332pub struct PerformanceInsight {
333    /// Insight category
334    pub category: InsightCategory,
335    /// Insight message
336    pub message: String,
337    /// Confidence level (0.0 to 1.0)
338    pub confidence: f64,
339    /// Supporting evidence
340    pub evidence: Vec<String>,
341    /// Recommended actions
342    pub recommendations: Vec<String>,
343}
344
345/// Performance insight categories
346#[derive(Debug, Clone, PartialEq, Eq)]
347pub enum InsightCategory {
348    /// Performance degradation detected
349    PerformanceDegradation,
350    /// Performance improvement detected
351    PerformanceImprovement,
352    /// High variability in results
353    HighVariability,
354    /// Outliers detected
355    OutliersDetected,
356    /// Memory usage concerns
357    MemoryUsage,
358    /// Error rate concerns
359    ErrorRate,
360    /// Circuit optimization opportunity
361    OptimizationOpportunity,
362}
363
364impl CircuitBenchmark {
365    /// Create a new circuit benchmark suite
366    #[must_use]
367    pub const fn new(config: BenchmarkConfig) -> Self {
368        Self {
369            config,
370            benchmark_data: Vec::new(),
371            stats_analyzer: StatisticalAnalyzer::new(),
372        }
373    }
374
375    /// Run comprehensive benchmark suite
376    pub fn run_benchmark<const N: usize>(
377        &mut self,
378        circuit: &Circuit<N>,
379        simulator: &dyn SimulatorExecutor,
380        noise_model: Option<&NoiseModel>,
381    ) -> QuantRS2Result<BenchmarkReport> {
382        self.benchmark_data.clear();
383
384        let total_runs = self.config.num_runs + self.config.warmup_runs;
385
386        for run_id in 0..total_runs {
387            let is_warmup = run_id < self.config.warmup_runs;
388
389            match self.run_single_benchmark(circuit, simulator, noise_model, run_id) {
390                Ok(run_data) => {
391                    if !is_warmup {
392                        self.benchmark_data.push(run_data);
393                    }
394                }
395                Err(e) => {
396                    if !is_warmup {
397                        // Record failed run
398                        let failed_run = BenchmarkRun {
399                            run_id,
400                            execution_time: Duration::from_millis(0),
401                            memory_usage: None,
402                            success: false,
403                            error_message: Some(e.to_string()),
404                            circuit_metrics: self.calculate_circuit_metrics(circuit),
405                            execution_results: None,
406                            noise_analysis: None,
407                            custom_metrics: HashMap::new(),
408                        };
409                        self.benchmark_data.push(failed_run);
410                    }
411                }
412            }
413        }
414
415        self.generate_benchmark_report()
416    }
417
418    /// Run a single benchmark iteration
419    fn run_single_benchmark<const N: usize>(
420        &self,
421        circuit: &Circuit<N>,
422        simulator: &dyn SimulatorExecutor,
423        noise_model: Option<&NoiseModel>,
424        run_id: usize,
425    ) -> QuantRS2Result<BenchmarkRun> {
426        let start_time = Instant::now();
427        let start_memory = if self.config.collect_memory {
428            Some(self.get_memory_usage())
429        } else {
430            None
431        };
432
433        // Simulate circuit execution (placeholder)
434        let execution_results = None; // Would call simulator.execute()
435
436        let end_time = Instant::now();
437        let end_memory = if self.config.collect_memory {
438            Some(self.get_memory_usage())
439        } else {
440            None
441        };
442
443        let execution_time = end_time - start_time;
444        let memory_usage = match (start_memory, end_memory) {
445            (Some(start), Some(end)) => Some(end.saturating_sub(start)),
446            _ => None,
447        };
448
449        // Analyze noise if model provided
450        let noise_analysis = if let Some(noise) = noise_model {
451            // Would perform noise analysis here
452            None
453        } else {
454            None
455        };
456
457        Ok(BenchmarkRun {
458            run_id,
459            execution_time,
460            memory_usage,
461            success: true,
462            error_message: None,
463            circuit_metrics: self.calculate_circuit_metrics(circuit),
464            execution_results,
465            noise_analysis,
466            custom_metrics: HashMap::new(),
467        })
468    }
469
470    /// Calculate circuit metrics
471    fn calculate_circuit_metrics<const N: usize>(&self, circuit: &Circuit<N>) -> CircuitMetrics {
472        let gate_count = circuit.gates().len();
473        let mut gate_counts = HashMap::new();
474        let mut two_qubit_gates = 0;
475
476        for gate in circuit.gates() {
477            let gate_name = gate.name();
478            *gate_counts.entry(gate_name.to_string()).or_insert(0) += 1;
479
480            if gate.qubits().len() == 2 {
481                two_qubit_gates += 1;
482            }
483        }
484
485        CircuitMetrics {
486            depth: gate_count, // Simplified depth calculation
487            gate_count,
488            gate_counts,
489            two_qubit_gates,
490            fidelity: None,
491            error_rate: None,
492        }
493    }
494
495    /// Get current memory usage (placeholder)
496    const fn get_memory_usage(&self) -> usize {
497        // In real implementation, this would use system APIs to get memory usage
498        0
499    }
500
501    /// Generate comprehensive benchmark report
502    fn generate_benchmark_report(&self) -> QuantRS2Result<BenchmarkReport> {
503        let completed_runs = self.benchmark_data.len();
504        let successful_runs: Vec<_> = self
505            .benchmark_data
506            .iter()
507            .filter(|run| run.success)
508            .collect();
509
510        let success_rate = successful_runs.len() as f64 / completed_runs as f64;
511
512        // Extract timing data
513        let timing_data: Vec<f64> = successful_runs
514            .iter()
515            .map(|run| run.execution_time.as_secs_f64())
516            .collect();
517
518        let timing_stats = self
519            .stats_analyzer
520            .calculate_descriptive_stats(&timing_data)?;
521
522        // Extract memory data if available
523        let memory_stats = if self.config.collect_memory {
524            let memory_data: Vec<f64> = successful_runs
525                .iter()
526                .filter_map(|run| run.memory_usage.map(|m| m as f64))
527                .collect();
528
529            if memory_data.is_empty() {
530                None
531            } else {
532                Some(
533                    self.stats_analyzer
534                        .calculate_descriptive_stats(&memory_data)?,
535                )
536            }
537        } else {
538            None
539        };
540
541        // Perform regression analysis to detect performance trends
542        let regression_analysis = self
543            .stats_analyzer
544            .perform_regression_analysis(&timing_data)?;
545
546        // Fit distributions to timing data
547        let distribution_fit = self.stats_analyzer.fit_distributions(&timing_data)?;
548
549        // Detect outliers
550        let outlier_analysis = self.stats_analyzer.detect_outliers(
551            &timing_data,
552            OutlierDetectionMethod::IQR { multiplier: 1.5 },
553        )?;
554
555        // Generate insights
556        let insights = self.generate_performance_insights(
557            &timing_stats,
558            &regression_analysis,
559            &outlier_analysis,
560            success_rate,
561        );
562
563        Ok(BenchmarkReport {
564            config: self.config.clone(),
565            completed_runs,
566            success_rate,
567            timing_stats,
568            memory_stats,
569            regression_analysis: Some(regression_analysis),
570            distribution_fit: Some(distribution_fit),
571            outlier_analysis,
572            baseline_comparison: None,
573            statistical_tests: Vec::new(),
574            insights,
575        })
576    }
577
578    /// Generate performance insights based on statistical analysis
579    fn generate_performance_insights(
580        &self,
581        timing_stats: &DescriptiveStats,
582        regression: &RegressionAnalysis,
583        outliers: &OutlierAnalysis,
584        success_rate: f64,
585    ) -> Vec<PerformanceInsight> {
586        let mut insights = Vec::new();
587
588        // Check for performance degradation
589        if regression.significant_trend && regression.slope > 0.0 {
590            insights.push(PerformanceInsight {
591                category: InsightCategory::PerformanceDegradation,
592                message: format!(
593                    "Significant performance degradation detected: {:.4} seconds per run increase",
594                    regression.degradation_per_run
595                ),
596                confidence: 1.0 - regression.slope_p_value,
597                evidence: vec![
598                    format!("Linear trend slope: {:.6}", regression.slope),
599                    format!("R-squared: {:.4}", regression.r_squared),
600                    format!("P-value: {:.4}", regression.slope_p_value),
601                ],
602                recommendations: vec![
603                    "Investigate potential memory leaks".to_string(),
604                    "Check for resource contention".to_string(),
605                    "Profile execution to identify bottlenecks".to_string(),
606                ],
607            });
608        }
609
610        // Check for high variability
611        let coefficient_of_variation = timing_stats.std_dev / timing_stats.mean;
612        if coefficient_of_variation > 0.2 {
613            insights.push(PerformanceInsight {
614                category: InsightCategory::HighVariability,
615                message: format!(
616                    "High performance variability detected: CV = {:.2}%",
617                    coefficient_of_variation * 100.0
618                ),
619                confidence: 0.8,
620                evidence: vec![
621                    format!("Standard deviation: {:.4} seconds", timing_stats.std_dev),
622                    format!("Mean: {:.4} seconds", timing_stats.mean),
623                    format!(
624                        "Coefficient of variation: {:.2}%",
625                        coefficient_of_variation * 100.0
626                    ),
627                ],
628                recommendations: vec![
629                    "Increase warm-up runs to stabilize performance".to_string(),
630                    "Check for system load variations".to_string(),
631                    "Consider running benchmarks in isolated environment".to_string(),
632                ],
633            });
634        }
635
636        // Check for outliers
637        if outliers.num_outliers > 0 {
638            let outlier_percentage =
639                outliers.num_outliers as f64 / timing_stats.count as f64 * 100.0;
640            insights.push(PerformanceInsight {
641                category: InsightCategory::OutliersDetected,
642                message: format!(
643                    "Performance outliers detected: {} outliers ({:.1}% of runs)",
644                    outliers.num_outliers, outlier_percentage
645                ),
646                confidence: 0.9,
647                evidence: vec![
648                    format!("Number of outliers: {}", outliers.num_outliers),
649                    format!("Outlier percentage: {:.1}%", outlier_percentage),
650                    format!("Detection method: {:?}", outliers.detection_method),
651                ],
652                recommendations: vec![
653                    "Investigate causes of outlier runs".to_string(),
654                    "Consider removing outliers from performance metrics".to_string(),
655                    "Check for system interruptions during benchmarking".to_string(),
656                ],
657            });
658        }
659
660        // Check success rate
661        if success_rate < 0.95 {
662            insights.push(PerformanceInsight {
663                category: InsightCategory::ErrorRate,
664                message: format!("Low success rate detected: {:.1}%", success_rate * 100.0),
665                confidence: 1.0,
666                evidence: vec![
667                    format!("Success rate: {:.1}%", success_rate * 100.0),
668                    format!(
669                        "Failed runs: {}",
670                        timing_stats.count - (timing_stats.count as f64 * success_rate) as usize
671                    ),
672                ],
673                recommendations: vec![
674                    "Investigate failure causes".to_string(),
675                    "Check circuit validity and simulator compatibility".to_string(),
676                    "Increase timeout limits if timeouts are occurring".to_string(),
677                ],
678            });
679        }
680
681        insights
682    }
683
684    /// Compare with baseline benchmark
685    pub fn compare_with_baseline(
686        &self,
687        baseline: &BenchmarkReport,
688    ) -> QuantRS2Result<BaselineComparison> {
689        if self.benchmark_data.is_empty() {
690            return Err(QuantRS2Error::InvalidInput(
691                "No benchmark data available for comparison".to_string(),
692            ));
693        }
694
695        let current_timing: Vec<f64> = self
696            .benchmark_data
697            .iter()
698            .filter(|run| run.success)
699            .map(|run| run.execution_time.as_secs_f64())
700            .collect();
701
702        let baseline_mean = baseline.timing_stats.mean;
703        let current_mean = self
704            .stats_analyzer
705            .calculate_descriptive_stats(&current_timing)?
706            .mean;
707
708        let performance_factor = current_mean / baseline_mean;
709
710        // Perform statistical test for significance
711        let significance = self.stats_analyzer.mann_whitney_test(
712            &current_timing,
713            &[baseline_mean], // Simplified - would use actual baseline data
714            self.config.significance_level,
715        )?;
716
717        // Calculate effect size (Cohen's d)
718        let effect_size = (current_mean - baseline_mean) / baseline.timing_stats.std_dev;
719
720        // Assess practical significance
721        let practical_significance = match effect_size.abs() {
722            x if x < 0.2 => PracticalSignificance::Negligible,
723            x if x < 0.5 => PracticalSignificance::Small,
724            x if x < 0.8 => PracticalSignificance::Medium,
725            x if x < 1.2 => PracticalSignificance::Large,
726            _ => PracticalSignificance::VeryLarge,
727        };
728
729        Ok(BaselineComparison {
730            baseline_name: "baseline".to_string(),
731            performance_factor,
732            significance,
733            difference_ci: (0.0, 0.0), // Would calculate proper CI
734            effect_size,
735            practical_significance,
736        })
737    }
738}
739
740/// Statistical analyzer using `SciRS2` capabilities
741pub struct StatisticalAnalyzer;
742
743impl StatisticalAnalyzer {
744    /// Create a new statistical analyzer
745    #[must_use]
746    pub const fn new() -> Self {
747        Self
748    }
749
750    /// Calculate descriptive statistics
751    pub fn calculate_descriptive_stats(&self, data: &[f64]) -> QuantRS2Result<DescriptiveStats> {
752        if data.is_empty() {
753            return Err(QuantRS2Error::InvalidInput("Empty data".to_string()));
754        }
755
756        let mut sorted_data = data.to_vec();
757        sorted_data.sort_by(|a, b| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal));
758
759        let count = data.len();
760        let mean = data.iter().sum::<f64>() / count as f64;
761        let variance = data.iter().map(|x| (x - mean).powi(2)).sum::<f64>() / count as f64;
762        let std_dev = variance.sqrt();
763        let min = sorted_data[0];
764        let max = sorted_data[count - 1];
765
766        let median = if count % 2 == 0 {
767            f64::midpoint(sorted_data[count / 2 - 1], sorted_data[count / 2])
768        } else {
769            sorted_data[count / 2]
770        };
771
772        let q1 = self.percentile(&sorted_data, 0.25);
773        let q3 = self.percentile(&sorted_data, 0.75);
774        let iqr = q3 - q1;
775
776        // Calculate skewness and kurtosis
777        let skewness = self.calculate_skewness(data, mean, std_dev);
778        let kurtosis = self.calculate_kurtosis(data, mean, std_dev);
779
780        Ok(DescriptiveStats {
781            count,
782            mean,
783            std_dev,
784            variance,
785            min,
786            max,
787            median,
788            q1,
789            q3,
790            iqr,
791            skewness,
792            kurtosis,
793            mode: None, // Would implement mode calculation
794        })
795    }
796
797    /// Calculate percentile
798    fn percentile(&self, sorted_data: &[f64], p: f64) -> f64 {
799        let index = (p * (sorted_data.len() - 1) as f64).round() as usize;
800        sorted_data[index.min(sorted_data.len() - 1)]
801    }
802
803    /// Calculate skewness
804    fn calculate_skewness(&self, data: &[f64], mean: f64, std_dev: f64) -> f64 {
805        let n = data.len() as f64;
806        let skew_sum = data
807            .iter()
808            .map(|x| ((x - mean) / std_dev).powi(3))
809            .sum::<f64>();
810        skew_sum / n
811    }
812
813    /// Calculate kurtosis
814    fn calculate_kurtosis(&self, data: &[f64], mean: f64, std_dev: f64) -> f64 {
815        let n = data.len() as f64;
816        let kurt_sum = data
817            .iter()
818            .map(|x| ((x - mean) / std_dev).powi(4))
819            .sum::<f64>();
820        kurt_sum / n - 3.0 // Excess kurtosis
821    }
822
823    /// Perform linear regression analysis
824    pub fn perform_regression_analysis(&self, data: &[f64]) -> QuantRS2Result<RegressionAnalysis> {
825        if data.len() < 3 {
826            return Err(QuantRS2Error::InvalidInput(
827                "Insufficient data for regression".to_string(),
828            ));
829        }
830
831        let n = data.len() as f64;
832        let x_values: Vec<f64> = (0..data.len()).map(|i| i as f64).collect();
833
834        let x_mean = x_values.iter().sum::<f64>() / n;
835        let y_mean = data.iter().sum::<f64>() / n;
836
837        let numerator: f64 = x_values
838            .iter()
839            .zip(data.iter())
840            .map(|(x, y)| (x - x_mean) * (y - y_mean))
841            .sum();
842
843        let denominator: f64 = x_values.iter().map(|x| (x - x_mean).powi(2)).sum();
844
845        let slope = numerator / denominator;
846        let intercept = slope.mul_add(-x_mean, y_mean);
847
848        // Calculate R-squared
849        let ss_tot: f64 = data.iter().map(|y| (y - y_mean).powi(2)).sum();
850        let ss_res: f64 = x_values
851            .iter()
852            .zip(data.iter())
853            .map(|(x, y)| {
854                let predicted = slope * x + intercept;
855                (y - predicted).powi(2)
856            })
857            .sum();
858
859        let r_squared = 1.0 - (ss_res / ss_tot);
860
861        // Calculate p-value for slope (simplified)
862        let slope_p_value = if slope.abs() > 0.001 { 0.05 } else { 0.5 };
863        let significant_trend = slope_p_value < 0.05;
864
865        Ok(RegressionAnalysis {
866            slope,
867            intercept,
868            r_squared,
869            slope_p_value,
870            significant_trend,
871            degradation_per_run: slope,
872        })
873    }
874
875    /// Fit probability distributions to data
876    pub fn fit_distributions(&self, data: &[f64]) -> QuantRS2Result<DistributionFit> {
877        let stats = self.calculate_descriptive_stats(data)?;
878
879        // Fit normal distribution
880        let normal_dist = Distribution::Normal {
881            mean: stats.mean,
882            std_dev: stats.std_dev,
883        };
884
885        // Simple goodness of fit (would use proper statistical tests in SciRS2)
886        let goodness_of_fit = 0.8; // Placeholder
887        let fit_p_value = 0.3; // Placeholder
888
889        Ok(DistributionFit {
890            best_distribution: normal_dist,
891            goodness_of_fit,
892            fit_p_value,
893            alternative_fits: Vec::new(),
894        })
895    }
896
897    /// Detect outliers using specified method
898    pub fn detect_outliers(
899        &self,
900        data: &[f64],
901        method: OutlierDetectionMethod,
902    ) -> QuantRS2Result<OutlierAnalysis> {
903        let outlier_indices = match method {
904            OutlierDetectionMethod::IQR { multiplier } => {
905                self.detect_outliers_iqr(data, multiplier)?
906            }
907            OutlierDetectionMethod::ZScore { threshold } => {
908                self.detect_outliers_zscore(data, threshold)?
909            }
910            _ => Vec::new(), // Other methods would be implemented
911        };
912
913        let num_outliers = outlier_indices.len();
914
915        // Calculate outlier impact
916        let outlier_impact = if num_outliers > 0 {
917            self.calculate_outlier_impact(data, &outlier_indices)?
918        } else {
919            OutlierImpact {
920                mean_change: 0.0,
921                std_dev_change: 0.0,
922                median_change: 0.0,
923                relative_impact: 0.0,
924            }
925        };
926
927        Ok(OutlierAnalysis {
928            num_outliers,
929            outlier_indices,
930            detection_method: method,
931            threshold: 1.5, // Would depend on method
932            outlier_impact,
933        })
934    }
935
936    /// Detect outliers using IQR method
937    fn detect_outliers_iqr(&self, data: &[f64], multiplier: f64) -> QuantRS2Result<Vec<usize>> {
938        let stats = self.calculate_descriptive_stats(data)?;
939        let lower_bound = multiplier.mul_add(-stats.iqr, stats.q1);
940        let upper_bound = multiplier.mul_add(stats.iqr, stats.q3);
941
942        Ok(data
943            .iter()
944            .enumerate()
945            .filter_map(|(i, &value)| {
946                if value < lower_bound || value > upper_bound {
947                    Some(i)
948                } else {
949                    None
950                }
951            })
952            .collect())
953    }
954
955    /// Detect outliers using Z-score method
956    fn detect_outliers_zscore(&self, data: &[f64], threshold: f64) -> QuantRS2Result<Vec<usize>> {
957        let stats = self.calculate_descriptive_stats(data)?;
958
959        Ok(data
960            .iter()
961            .enumerate()
962            .filter_map(|(i, &value)| {
963                let z_score = (value - stats.mean) / stats.std_dev;
964                if z_score.abs() > threshold {
965                    Some(i)
966                } else {
967                    None
968                }
969            })
970            .collect())
971    }
972
973    /// Calculate impact of outliers on statistics
974    fn calculate_outlier_impact(
975        &self,
976        data: &[f64],
977        outlier_indices: &[usize],
978    ) -> QuantRS2Result<OutlierImpact> {
979        let original_stats = self.calculate_descriptive_stats(data)?;
980
981        // Create data without outliers
982        let filtered_data: Vec<f64> = data
983            .iter()
984            .enumerate()
985            .filter_map(|(i, &value)| {
986                if outlier_indices.contains(&i) {
987                    None
988                } else {
989                    Some(value)
990                }
991            })
992            .collect();
993
994        let filtered_stats = self.calculate_descriptive_stats(&filtered_data)?;
995
996        let mean_change = (original_stats.mean - filtered_stats.mean).abs();
997        let std_dev_change = (original_stats.std_dev - filtered_stats.std_dev).abs();
998        let median_change = (original_stats.median - filtered_stats.median).abs();
999        let relative_impact = mean_change / original_stats.mean * 100.0;
1000
1001        Ok(OutlierImpact {
1002            mean_change,
1003            std_dev_change,
1004            median_change,
1005            relative_impact,
1006        })
1007    }
1008
1009    /// Perform Mann-Whitney U test
1010    pub fn mann_whitney_test(
1011        &self,
1012        sample1: &[f64],
1013        sample2: &[f64],
1014        significance_level: f64,
1015    ) -> QuantRS2Result<HypothesisTestResult> {
1016        // Simplified implementation - would use SciRS2's statistical functions
1017        let test_statistic = 0.0; // Placeholder
1018        let p_value = 0.1; // Placeholder
1019        let critical_value = 1.96; // Placeholder
1020        let reject_null = p_value < significance_level;
1021
1022        Ok(HypothesisTestResult {
1023            test_statistic,
1024            p_value,
1025            critical_value,
1026            reject_null,
1027            significance_level,
1028            effect_size: None,
1029            confidence_interval: None,
1030        })
1031    }
1032}
1033
1034/// Trait for simulator execution (placeholder)
1035pub trait SimulatorExecutor {
1036    fn execute(&self, circuit: &dyn std::any::Any) -> QuantRS2Result<ExecutionResult>;
1037}
1038
1039impl Default for StatisticalAnalyzer {
1040    fn default() -> Self {
1041        Self::new()
1042    }
1043}
1044
1045#[cfg(test)]
1046mod tests {
1047    use super::*;
1048
1049    #[test]
1050    fn test_descriptive_stats() {
1051        let analyzer = StatisticalAnalyzer::new();
1052        let data = vec![1.0, 2.0, 3.0, 4.0, 5.0];
1053
1054        let stats = analyzer
1055            .calculate_descriptive_stats(&data)
1056            .expect("calculate_descriptive_stats should succeed");
1057        assert_eq!(stats.mean, 3.0);
1058        assert_eq!(stats.median, 3.0);
1059        assert_eq!(stats.min, 1.0);
1060        assert_eq!(stats.max, 5.0);
1061    }
1062
1063    #[test]
1064    fn test_outlier_detection_iqr() {
1065        let analyzer = StatisticalAnalyzer::new();
1066        let data = vec![1.0, 2.0, 3.0, 4.0, 5.0, 100.0]; // 100.0 is an outlier
1067
1068        let outliers = analyzer
1069            .detect_outliers_iqr(&data, 1.5)
1070            .expect("outlier detection should succeed");
1071        assert_eq!(outliers.len(), 1);
1072        assert_eq!(outliers[0], 5); // Index of 100.0
1073    }
1074
1075    #[test]
1076    fn test_regression_analysis() {
1077        let analyzer = StatisticalAnalyzer::new();
1078        let data = vec![1.0, 2.0, 3.0, 4.0, 5.0]; // Perfect linear trend
1079
1080        let regression = analyzer
1081            .perform_regression_analysis(&data)
1082            .expect("perform_regression_analysis should succeed");
1083        assert!((regression.slope - 1.0).abs() < 1e-10);
1084        assert!((regression.r_squared - 1.0).abs() < 1e-10);
1085    }
1086
1087    #[test]
1088    fn test_benchmark_config() {
1089        let config = BenchmarkConfig::default();
1090        assert_eq!(config.num_runs, 100);
1091        assert_eq!(config.warmup_runs, 10);
1092        assert_eq!(config.significance_level, 0.05);
1093    }
1094
1095    #[test]
1096    fn test_distribution_creation() {
1097        let normal = Distribution::Normal {
1098            mean: 0.0,
1099            std_dev: 1.0,
1100        };
1101        match normal {
1102            Distribution::Normal { mean, std_dev } => {
1103                assert_eq!(mean, 0.0);
1104                assert_eq!(std_dev, 1.0);
1105            }
1106            _ => panic!("Wrong distribution type"),
1107        }
1108    }
1109}