1use crate::builder::Circuit;
8use crate::scirs2_integration::{AnalyzerConfig, GraphMetrics, SciRS2CircuitAnalyzer};
9use quantrs2_core::{
10 error::{QuantRS2Error, QuantRS2Result},
11 gate::GateOp,
12 qubit::QubitId,
13};
14use scirs2_core::ndarray::Array2;
15use scirs2_core::Complex64;
16use serde::{Deserialize, Serialize};
17use std::collections::HashMap;
18use std::time::Duration;
19
20#[derive(Debug, Clone, Serialize, Deserialize)]
22pub struct ResourceEstimate {
23 pub circuit_metrics: CircuitMetrics,
25 pub complexity_analysis: ComplexityAnalysis,
27 pub memory_requirements: MemoryRequirements,
29 pub execution_time: ExecutionTimeEstimate,
31 pub hardware_requirements: HardwareRequirements,
33 pub graph_metrics: Option<GraphMetrics>,
35 pub scalability_analysis: ScalabilityAnalysis,
37 pub optimization_suggestions: Vec<OptimizationSuggestion>,
39}
40
41#[derive(Debug, Clone, Serialize, Deserialize)]
43pub struct CircuitMetrics {
44 pub total_gates: usize,
46 pub gate_counts: HashMap<String, usize>,
48 pub circuit_depth: usize,
50 pub qubit_count: usize,
52 pub two_qubit_gates: usize,
54 pub single_qubit_gates: usize,
56 pub multi_qubit_gates: usize,
58 pub quantum_volume: f64,
60 pub fidelity_estimate: f64,
62}
63
64#[derive(Debug, Clone, Serialize, Deserialize)]
66pub struct ComplexityAnalysis {
67 pub time_complexity: ComplexityClass,
69 pub space_complexity: ComplexityClass,
71 pub gate_complexity: f64,
73 pub entanglement_complexity: f64,
75 pub classical_simulation_complexity: f64,
77 pub quantum_advantage_factor: Option<f64>,
79 pub algorithm_classification: AlgorithmClass,
81 pub scaling_behavior: ScalingBehavior,
83}
84
85#[derive(Debug, Clone, Serialize, Deserialize)]
87pub enum ComplexityClass {
88 Constant,
90 Logarithmic,
92 Linear,
94 Polynomial { degree: f64 },
96 Exponential,
98 SuperExponential,
100 Custom { description: String },
102}
103
104#[derive(Debug, Clone, Serialize, Deserialize)]
106pub enum AlgorithmClass {
107 QftBased,
109 AmplitudeAmplification,
111 Variational,
113 QuantumWalk,
115 Adiabatic,
117 ErrorCorrection,
119 QuantumML,
121 QuantumSimulation,
123 Cryptography,
125 Optimization,
127 General,
129}
130
131#[derive(Debug, Clone, Serialize, Deserialize)]
133pub struct ScalingBehavior {
134 pub gate_scaling: ScalingFunction,
136 pub depth_scaling: ScalingFunction,
138 pub qubit_scaling: ScalingFunction,
140 pub time_scaling: ScalingFunction,
142}
143
144#[derive(Debug, Clone, Serialize, Deserialize)]
146pub enum ScalingFunction {
147 Constant { value: f64 },
149 Linear { coefficient: f64 },
151 Polynomial { coefficient: f64, exponent: f64 },
153 Exponential { base: f64, coefficient: f64 },
155 Logarithmic { coefficient: f64 },
157 Custom {
159 description: String,
160 complexity: f64,
161 },
162}
163
164#[derive(Debug, Clone, Serialize, Deserialize)]
166pub struct MemoryRequirements {
167 pub state_vector_memory: u64,
169 pub gate_matrix_memory: u64,
171 pub auxiliary_memory: u64,
173 pub total_classical_memory: u64,
175 pub quantum_memory: usize,
177 pub memory_scaling: ScalingFunction,
179 pub memory_optimizations: Vec<String>,
181}
182
183#[derive(Debug, Clone, Serialize, Deserialize)]
185pub struct ExecutionTimeEstimate {
186 pub estimated_time: Duration,
188 pub gate_time_breakdown: HashMap<String, Duration>,
190 pub critical_path_time: Duration,
192 pub parallelization_factor: f64,
194 pub hardware_timing_factors: HashMap<String, f64>,
196 pub confidence_interval: (Duration, Duration),
198 pub timing_model: TimingModel,
200}
201
202#[derive(Debug, Clone, Serialize, Deserialize)]
204pub enum TimingModel {
205 GateCounting { gates_per_second: f64 },
207 PhysicsBased {
209 t1_time: Duration,
210 t2_time: Duration,
211 gate_times: HashMap<String, Duration>,
212 },
213 MachineLearning { model_id: String, accuracy: f64 },
215 Empirical { benchmark_data: String },
217}
218
219#[derive(Debug, Clone, Serialize, Deserialize)]
221pub struct HardwareRequirements {
222 pub min_physical_qubits: usize,
224 pub connectivity_requirements: ConnectivityRequirement,
226 pub fidelity_requirements: HashMap<String, f64>,
228 pub coherence_requirements: CoherenceRequirement,
230 pub platform_recommendations: Vec<PlatformRecommendation>,
232 pub error_correction_overhead: ErrorCorrectionOverhead,
234}
235
236#[derive(Debug, Clone, Serialize, Deserialize)]
238pub enum ConnectivityRequirement {
239 AllToAll,
241 Linear,
243 Grid { dimensions: (usize, usize) },
245 Custom { adjacency_matrix: Vec<Vec<bool>> },
247 MinimumDegree { degree: usize },
249}
250
251#[derive(Debug, Clone, Serialize, Deserialize)]
253pub struct CoherenceRequirement {
254 pub min_t1: Duration,
256 pub min_t2: Duration,
258 pub gate_to_coherence_ratio: f64,
260}
261
262#[derive(Debug, Clone, Serialize, Deserialize)]
264pub struct PlatformRecommendation {
265 pub platform: String,
267 pub suitability_score: f64,
269 pub reasoning: String,
271 pub success_probability: f64,
273 pub required_modifications: Vec<String>,
275}
276
277#[derive(Debug, Clone, Serialize, Deserialize)]
279pub struct ErrorCorrectionOverhead {
280 pub physical_to_logical_ratio: f64,
282 pub gate_overhead_factor: f64,
284 pub time_overhead_factor: f64,
286 pub recommended_code: String,
288 pub threshold_error_rate: f64,
290}
291
292#[derive(Debug, Clone, Serialize, Deserialize)]
294pub struct ScalabilityAnalysis {
295 pub scalability_score: f64,
297 pub bottlenecks: Vec<ScalabilityBottleneck>,
299 pub scaling_predictions: HashMap<String, ScalingPrediction>,
301 pub resource_limits: ResourceLimits,
303}
304
305#[derive(Debug, Clone, Serialize, Deserialize)]
307pub struct ScalabilityBottleneck {
308 pub bottleneck_type: BottleneckType,
310 pub severity: f64,
312 pub description: String,
314 pub mitigation_suggestions: Vec<String>,
316}
317
318#[derive(Debug, Clone, Serialize, Deserialize)]
320pub enum BottleneckType {
321 Memory,
323 ComputationTime,
325 QuantumCoherence,
327 Connectivity,
329 ErrorRate,
331 ClassicalProcessing,
333}
334
335#[derive(Debug, Clone, Serialize, Deserialize)]
337pub struct ScalingPrediction {
338 pub problem_sizes: Vec<usize>,
340 pub predicted_values: Vec<f64>,
342 pub confidence_intervals: Vec<(f64, f64)>,
344 pub model: String,
346}
347
348#[derive(Debug, Clone, Serialize, Deserialize)]
350pub struct ResourceLimits {
351 pub max_current_technology: usize,
353 pub max_near_term: usize,
355 pub max_theoretical: Option<usize>,
357 pub limiting_factors: Vec<String>,
359}
360
361#[derive(Debug, Clone, Serialize, Deserialize)]
363pub struct OptimizationSuggestion {
364 pub suggestion_type: OptimizationType,
366 pub expected_improvement: f64,
368 pub implementation_complexity: ComplexityLevel,
370 pub description: String,
372 pub impact_areas: Vec<String>,
374}
375
376#[derive(Debug, Clone, Serialize, Deserialize)]
378pub enum OptimizationType {
379 GateCountReduction,
381 DepthReduction,
383 MemoryOptimization,
385 Parallelization,
387 AlgorithmSubstitution,
389 HardwareOptimization,
391 ErrorMitigation,
393}
394
395#[derive(Debug, Clone, Serialize, Deserialize)]
397pub enum ComplexityLevel {
398 Low,
400 Medium,
402 High,
404 Research,
406}
407
408#[derive(Debug, Clone, Serialize, Deserialize)]
410pub struct ResourceEstimatorConfig {
411 pub enable_detailed_analysis: bool,
413 pub enable_graph_analysis: bool,
415 pub enable_scalability_analysis: bool,
417 pub enable_hardware_analysis: bool,
419 pub target_platforms: Vec<String>,
421 pub analysis_depth: AnalysisDepth,
423 pub include_optimizations: bool,
425 pub scirs2_config: Option<AnalyzerConfig>,
427}
428
429#[derive(Debug, Clone, Serialize, Deserialize)]
431pub enum AnalysisDepth {
432 Basic,
434 Standard,
436 Comprehensive,
438 Research,
440}
441
442impl Default for ResourceEstimatorConfig {
443 fn default() -> Self {
444 Self {
445 enable_detailed_analysis: true,
446 enable_graph_analysis: true,
447 enable_scalability_analysis: true,
448 enable_hardware_analysis: true,
449 target_platforms: vec![
450 "IBM Quantum".to_string(),
451 "Google Quantum AI".to_string(),
452 "IonQ".to_string(),
453 "Rigetti".to_string(),
454 ],
455 analysis_depth: AnalysisDepth::Standard,
456 include_optimizations: true,
457 scirs2_config: None,
458 }
459 }
460}
461
462pub struct ResourceEstimator {
464 config: ResourceEstimatorConfig,
465 scirs2_analyzer: Option<SciRS2CircuitAnalyzer>,
466 gate_cost_database: HashMap<String, GateCost>,
467 platform_database: HashMap<String, PlatformCharacteristics>,
468}
469
470#[derive(Debug, Clone)]
472pub struct GateCost {
473 pub execution_time: Duration,
475 pub error_rate: f64,
477 pub energy_cost: f64,
479 pub resource_overhead: f64,
481}
482
483#[derive(Debug, Clone)]
485pub struct PlatformCharacteristics {
486 pub name: String,
488 pub qubit_count: usize,
490 pub connectivity: ConnectivityRequirement,
492 pub gate_fidelities: HashMap<String, f64>,
494 pub coherence_times: CoherenceRequirement,
496 pub native_gates: Vec<String>,
498 pub measurement_fidelity: f64,
500}
501
502impl ResourceEstimator {
503 #[must_use]
505 pub fn new(config: ResourceEstimatorConfig) -> Self {
506 let scirs2_analyzer = if config.enable_graph_analysis {
507 Some(SciRS2CircuitAnalyzer::new())
508 } else {
509 None
510 };
511
512 let mut estimator = Self {
513 config,
514 scirs2_analyzer,
515 gate_cost_database: HashMap::new(),
516 platform_database: HashMap::new(),
517 };
518
519 estimator.initialize_databases();
520 estimator
521 }
522
523 #[must_use]
525 pub fn with_scirs2_config(
526 config: ResourceEstimatorConfig,
527 scirs2_config: AnalyzerConfig,
528 ) -> Self {
529 let scirs2_analyzer = Some(SciRS2CircuitAnalyzer::with_config(scirs2_config));
530
531 let mut estimator = Self {
532 config,
533 scirs2_analyzer,
534 gate_cost_database: HashMap::new(),
535 platform_database: HashMap::new(),
536 };
537
538 estimator.initialize_databases();
539 estimator
540 }
541
542 pub fn estimate_resources<const N: usize>(
544 &mut self,
545 circuit: &Circuit<N>,
546 ) -> QuantRS2Result<ResourceEstimate> {
547 let circuit_metrics = self.calculate_circuit_metrics(circuit)?;
549
550 let complexity_analysis = self.analyze_complexity(circuit, &circuit_metrics)?;
552
553 let memory_requirements = self.estimate_memory_requirements(circuit, &circuit_metrics)?;
555
556 let execution_time = self.estimate_execution_time(circuit, &circuit_metrics)?;
558
559 let hardware_requirements = if self.config.enable_hardware_analysis {
561 self.analyze_hardware_requirements(circuit, &circuit_metrics)?
562 } else {
563 self.default_hardware_requirements()
564 };
565
566 let graph_metrics = if self.config.enable_graph_analysis {
568 self.get_graph_metrics(circuit)?
569 } else {
570 None
571 };
572
573 let scalability_analysis = if self.config.enable_scalability_analysis {
575 self.analyze_scalability(circuit, &circuit_metrics, &complexity_analysis)?
576 } else {
577 self.default_scalability_analysis()
578 };
579
580 let optimization_suggestions = if self.config.include_optimizations {
582 self.generate_optimization_suggestions(
583 circuit,
584 &circuit_metrics,
585 &complexity_analysis,
586 &memory_requirements,
587 )?
588 } else {
589 Vec::new()
590 };
591
592 Ok(ResourceEstimate {
593 circuit_metrics,
594 complexity_analysis,
595 memory_requirements,
596 execution_time,
597 hardware_requirements,
598 graph_metrics,
599 scalability_analysis,
600 optimization_suggestions,
601 })
602 }
603
604 fn initialize_databases(&mut self) {
606 self.gate_cost_database.insert(
608 "H".to_string(),
609 GateCost {
610 execution_time: Duration::from_nanos(20),
611 error_rate: 0.001,
612 energy_cost: 1.0,
613 resource_overhead: 1.0,
614 },
615 );
616
617 self.gate_cost_database.insert(
618 "X".to_string(),
619 GateCost {
620 execution_time: Duration::from_nanos(20),
621 error_rate: 0.001,
622 energy_cost: 1.0,
623 resource_overhead: 1.0,
624 },
625 );
626
627 self.gate_cost_database.insert(
628 "CNOT".to_string(),
629 GateCost {
630 execution_time: Duration::from_nanos(200),
631 error_rate: 0.01,
632 energy_cost: 5.0,
633 resource_overhead: 2.0,
634 },
635 );
636
637 self.platform_database.insert(
639 "IBM Quantum".to_string(),
640 PlatformCharacteristics {
641 name: "IBM Quantum".to_string(),
642 qubit_count: 127,
643 connectivity: ConnectivityRequirement::Custom {
644 adjacency_matrix: Vec::new(), },
646 gate_fidelities: [
647 ("H".to_string(), 0.999),
648 ("X".to_string(), 0.999),
649 ("CNOT".to_string(), 0.99),
650 ]
651 .iter()
652 .cloned()
653 .collect(),
654 coherence_times: CoherenceRequirement {
655 min_t1: Duration::from_micros(100),
656 min_t2: Duration::from_micros(50),
657 gate_to_coherence_ratio: 0.01,
658 },
659 native_gates: vec![
660 "RZ".to_string(),
661 "SX".to_string(),
662 "X".to_string(),
663 "CNOT".to_string(),
664 ],
665 measurement_fidelity: 0.98,
666 },
667 );
668
669 }
671
672 fn calculate_circuit_metrics<const N: usize>(
674 &self,
675 circuit: &Circuit<N>,
676 ) -> QuantRS2Result<CircuitMetrics> {
677 let gates = circuit.gates();
678 let total_gates = gates.len();
679
680 let mut gate_counts = HashMap::new();
681 let mut single_qubit_gates = 0;
682 let mut two_qubit_gates = 0;
683 let mut multi_qubit_gates = 0;
684
685 for gate in gates {
686 let gate_name = gate.name();
687 *gate_counts.entry(gate_name.to_string()).or_insert(0) += 1;
688
689 match gate.qubits().len() {
690 1 => single_qubit_gates += 1,
691 2 => two_qubit_gates += 1,
692 n if n > 2 => multi_qubit_gates += 1,
693 _ => {}
694 }
695 }
696
697 let circuit_depth = self.calculate_circuit_depth(circuit)?;
699
700 let quantum_volume = (N as f64).min(circuit_depth as f64).powi(2);
702
703 let fidelity_estimate = self.estimate_circuit_fidelity(circuit, &gate_counts)?;
705
706 Ok(CircuitMetrics {
707 total_gates,
708 gate_counts,
709 circuit_depth,
710 qubit_count: N,
711 two_qubit_gates,
712 single_qubit_gates,
713 multi_qubit_gates,
714 quantum_volume,
715 fidelity_estimate,
716 })
717 }
718
719 fn calculate_circuit_depth<const N: usize>(
721 &self,
722 circuit: &Circuit<N>,
723 ) -> QuantRS2Result<usize> {
724 let gates = circuit.gates();
726 if gates.is_empty() {
727 return Ok(0);
728 }
729
730 let mut depth_per_qubit = vec![0; N];
733
734 for gate in gates {
735 let qubits = gate.qubits();
736 let max_current_depth = qubits
737 .iter()
738 .map(|q| depth_per_qubit[q.id() as usize])
739 .max()
740 .unwrap_or(0);
741
742 for qubit in qubits {
743 depth_per_qubit[qubit.id() as usize] = max_current_depth + 1;
744 }
745 }
746
747 Ok(depth_per_qubit.into_iter().max().unwrap_or(0))
748 }
749
750 fn estimate_circuit_fidelity<const N: usize>(
752 &self,
753 circuit: &Circuit<N>,
754 gate_counts: &HashMap<String, usize>,
755 ) -> QuantRS2Result<f64> {
756 let mut total_error_rate = 0.0;
757
758 for (gate_name, count) in gate_counts {
759 if let Some(gate_cost) = self.gate_cost_database.get(gate_name) {
760 total_error_rate += gate_cost.error_rate * (*count as f64);
761 } else {
762 total_error_rate += 0.01 * (*count as f64);
764 }
765 }
766
767 let fidelity = (1.0 - total_error_rate).clamp(0.0, 1.0);
768 Ok(fidelity)
769 }
770
771 fn analyze_complexity<const N: usize>(
773 &self,
774 circuit: &Circuit<N>,
775 metrics: &CircuitMetrics,
776 ) -> QuantRS2Result<ComplexityAnalysis> {
777 let time_complexity = if metrics.total_gates <= 100 {
779 ComplexityClass::Constant
780 } else if metrics.total_gates < 1000 {
781 ComplexityClass::Linear
782 } else {
783 ComplexityClass::Polynomial { degree: 2.0 }
784 };
785
786 let space_complexity = ComplexityClass::Exponential;
788
789 let gate_complexity = (metrics.total_gates as f64) * (N as f64);
791
792 let entanglement_complexity =
794 (metrics.two_qubit_gates as f64) / (metrics.total_gates as f64).max(1.0);
795
796 let classical_simulation_complexity = (N as f64).exp2();
798
799 let quantum_advantage_factor = if classical_simulation_complexity > 1e6 {
801 Some(classical_simulation_complexity / (metrics.total_gates as f64))
802 } else {
803 None
804 };
805
806 let algorithm_classification = self.classify_algorithm(circuit, metrics)?;
808
809 let scaling_behavior = self.analyze_scaling_behavior(metrics)?;
811
812 Ok(ComplexityAnalysis {
813 time_complexity,
814 space_complexity,
815 gate_complexity,
816 entanglement_complexity,
817 classical_simulation_complexity,
818 quantum_advantage_factor,
819 algorithm_classification,
820 scaling_behavior,
821 })
822 }
823
824 fn classify_algorithm<const N: usize>(
826 &self,
827 circuit: &Circuit<N>,
828 metrics: &CircuitMetrics,
829 ) -> QuantRS2Result<AlgorithmClass> {
830 let gates = circuit.gates();
832
833 if let Some(&h_count) = metrics.gate_counts.get("H") {
835 if h_count > N / 2 {
836 return Ok(AlgorithmClass::QftBased);
837 }
838 }
839
840 if metrics.two_qubit_gates > metrics.single_qubit_gates {
842 return Ok(AlgorithmClass::AmplitudeAmplification);
843 }
844
845 if metrics.circuit_depth > metrics.total_gates / 4 {
848 return Ok(AlgorithmClass::Variational);
849 }
850
851 Ok(AlgorithmClass::General)
852 }
853
854 fn analyze_scaling_behavior(
856 &self,
857 metrics: &CircuitMetrics,
858 ) -> QuantRS2Result<ScalingBehavior> {
859 Ok(ScalingBehavior {
860 gate_scaling: ScalingFunction::Linear {
861 coefficient: metrics.total_gates as f64 / metrics.qubit_count as f64,
862 },
863 depth_scaling: ScalingFunction::Linear {
864 coefficient: metrics.circuit_depth as f64 / metrics.qubit_count as f64,
865 },
866 qubit_scaling: ScalingFunction::Linear { coefficient: 1.0 },
867 time_scaling: ScalingFunction::Polynomial {
868 coefficient: 1.0,
869 exponent: 2.0,
870 },
871 })
872 }
873
874 fn estimate_memory_requirements<const N: usize>(
876 &self,
877 circuit: &Circuit<N>,
878 metrics: &CircuitMetrics,
879 ) -> QuantRS2Result<MemoryRequirements> {
880 let state_vector_memory = (1u64 << N) * 16;
882
883 let gate_matrix_memory = (metrics.total_gates as u64) * 64; let auxiliary_memory = state_vector_memory / 4;
888
889 let total_classical_memory = state_vector_memory + gate_matrix_memory + auxiliary_memory;
890
891 let memory_scaling = ScalingFunction::Exponential {
892 base: 2.0,
893 coefficient: 16.0,
894 };
895
896 let memory_optimizations = vec![
897 "Use sparse state representations for low-entanglement circuits".to_string(),
898 "Implement tensor network simulation for large qubit counts".to_string(),
899 "Use GPU memory for state vector storage".to_string(),
900 ];
901
902 Ok(MemoryRequirements {
903 state_vector_memory,
904 gate_matrix_memory,
905 auxiliary_memory,
906 total_classical_memory,
907 quantum_memory: N,
908 memory_scaling,
909 memory_optimizations,
910 })
911 }
912
913 fn estimate_execution_time<const N: usize>(
915 &self,
916 circuit: &Circuit<N>,
917 metrics: &CircuitMetrics,
918 ) -> QuantRS2Result<ExecutionTimeEstimate> {
919 let mut total_time = Duration::from_nanos(0);
920 let mut gate_time_breakdown = HashMap::new();
921
922 for (gate_name, count) in &metrics.gate_counts {
924 let gate_time = if let Some(gate_cost) = self.gate_cost_database.get(gate_name) {
925 gate_cost.execution_time
926 } else {
927 Duration::from_nanos(100) };
929
930 let total_gate_time = gate_time * (*count as u32);
931 gate_time_breakdown.insert(gate_name.clone(), total_gate_time);
932 total_time += total_gate_time;
933 }
934
935 let critical_path_time = total_time / 2; let parallelization_factor = if metrics.circuit_depth > 0 {
940 (metrics.total_gates as f64) / (metrics.circuit_depth as f64)
941 } else {
942 1.0
943 };
944
945 let hardware_timing_factors = [
947 ("decoherence_overhead".to_string(), 1.1),
948 ("measurement_overhead".to_string(), 1.05),
949 ("classical_processing".to_string(), 1.2),
950 ]
951 .iter()
952 .cloned()
953 .collect();
954
955 let lower_bound = total_time * 80 / 100;
957 let upper_bound = total_time * 120 / 100;
958
959 let timing_model = TimingModel::GateCounting {
960 gates_per_second: 1e6,
961 };
962
963 Ok(ExecutionTimeEstimate {
964 estimated_time: total_time,
965 gate_time_breakdown,
966 critical_path_time,
967 parallelization_factor,
968 hardware_timing_factors,
969 confidence_interval: (lower_bound, upper_bound),
970 timing_model,
971 })
972 }
973
974 fn analyze_hardware_requirements<const N: usize>(
976 &self,
977 circuit: &Circuit<N>,
978 metrics: &CircuitMetrics,
979 ) -> QuantRS2Result<HardwareRequirements> {
980 let min_physical_qubits = N * 50; let connectivity_requirements = if metrics.two_qubit_gates > N {
985 ConnectivityRequirement::AllToAll
986 } else {
987 ConnectivityRequirement::Linear
988 };
989
990 let fidelity_requirements = [
992 ("single_qubit".to_string(), 0.999),
993 ("two_qubit".to_string(), 0.99),
994 ("measurement".to_string(), 0.98),
995 ]
996 .iter()
997 .cloned()
998 .collect();
999
1000 let coherence_requirements = CoherenceRequirement {
1002 min_t1: Duration::from_micros((metrics.circuit_depth as u64) * 10),
1003 min_t2: Duration::from_micros((metrics.circuit_depth as u64) * 5),
1004 gate_to_coherence_ratio: 0.01,
1005 };
1006
1007 let platform_recommendations = self.recommend_platforms(metrics)?;
1009
1010 let error_correction_overhead = ErrorCorrectionOverhead {
1012 physical_to_logical_ratio: 50.0,
1013 gate_overhead_factor: 10.0,
1014 time_overhead_factor: 100.0,
1015 recommended_code: "Surface Code".to_string(),
1016 threshold_error_rate: 0.001,
1017 };
1018
1019 Ok(HardwareRequirements {
1020 min_physical_qubits,
1021 connectivity_requirements,
1022 fidelity_requirements,
1023 coherence_requirements,
1024 platform_recommendations,
1025 error_correction_overhead,
1026 })
1027 }
1028
1029 fn recommend_platforms(
1031 &self,
1032 metrics: &CircuitMetrics,
1033 ) -> QuantRS2Result<Vec<PlatformRecommendation>> {
1034 let mut recommendations = Vec::new();
1035
1036 for platform_name in &self.config.target_platforms {
1037 if let Some(platform) = self.platform_database.get(platform_name) {
1038 let suitability_score = self.calculate_platform_suitability(platform, metrics);
1039
1040 recommendations.push(PlatformRecommendation {
1041 platform: platform_name.clone(),
1042 suitability_score,
1043 reasoning: self.generate_platform_reasoning(
1044 platform,
1045 metrics,
1046 suitability_score,
1047 ),
1048 success_probability: suitability_score * 0.8,
1049 required_modifications: self.suggest_platform_modifications(platform, metrics),
1050 });
1051 }
1052 }
1053
1054 recommendations.sort_by(|a, b| {
1055 b.suitability_score
1056 .partial_cmp(&a.suitability_score)
1057 .unwrap_or(std::cmp::Ordering::Equal)
1058 });
1059 Ok(recommendations)
1060 }
1061
1062 fn calculate_platform_suitability(
1064 &self,
1065 platform: &PlatformCharacteristics,
1066 metrics: &CircuitMetrics,
1067 ) -> f64 {
1068 let mut score = 1.0;
1069
1070 if platform.qubit_count < metrics.qubit_count {
1072 score *= 0.1; }
1074
1075 let avg_fidelity: f64 =
1077 platform.gate_fidelities.values().sum::<f64>() / platform.gate_fidelities.len() as f64;
1078 score *= avg_fidelity;
1079
1080 if metrics.two_qubit_gates > metrics.qubit_count * 2 {
1082 score *= 0.8; }
1084
1085 score.clamp(0.0, 1.0)
1086 }
1087
1088 fn generate_platform_reasoning(
1090 &self,
1091 platform: &PlatformCharacteristics,
1092 metrics: &CircuitMetrics,
1093 score: f64,
1094 ) -> String {
1095 if score > 0.8 {
1096 format!(
1097 "Excellent match: {} has sufficient qubits ({}) and high fidelity gates",
1098 platform.name, platform.qubit_count
1099 )
1100 } else if score > 0.6 {
1101 format!(
1102 "Good match: {} meets most requirements but may need optimization",
1103 platform.name
1104 )
1105 } else if score > 0.4 {
1106 format!(
1107 "Marginal match: {} has limitations for this circuit",
1108 platform.name
1109 )
1110 } else {
1111 format!(
1112 "Poor match: {} is not well-suited for this circuit",
1113 platform.name
1114 )
1115 }
1116 }
1117
1118 fn suggest_platform_modifications(
1120 &self,
1121 platform: &PlatformCharacteristics,
1122 metrics: &CircuitMetrics,
1123 ) -> Vec<String> {
1124 let mut modifications = Vec::new();
1125
1126 if platform.qubit_count < metrics.qubit_count {
1127 modifications.push("Increase qubit count or decompose circuit".to_string());
1128 }
1129
1130 if metrics.two_qubit_gates > platform.qubit_count {
1131 modifications.push("Optimize circuit connectivity".to_string());
1132 }
1133
1134 modifications
1135 }
1136
1137 fn get_graph_metrics<const N: usize>(
1139 &mut self,
1140 circuit: &Circuit<N>,
1141 ) -> QuantRS2Result<Option<GraphMetrics>> {
1142 if let Some(analyzer) = &mut self.scirs2_analyzer {
1143 let analysis = analyzer.analyze_circuit(circuit)?;
1144 Ok(Some(analysis.metrics))
1145 } else {
1146 Ok(None)
1147 }
1148 }
1149
1150 fn analyze_scalability<const N: usize>(
1152 &self,
1153 circuit: &Circuit<N>,
1154 metrics: &CircuitMetrics,
1155 complexity: &ComplexityAnalysis,
1156 ) -> QuantRS2Result<ScalabilityAnalysis> {
1157 let scalability_score = self.calculate_scalability_score(metrics, complexity);
1158 let bottlenecks = self.identify_bottlenecks(metrics, complexity);
1159 let scaling_predictions = self.predict_scaling(metrics)?;
1160 let resource_limits = self.calculate_resource_limits(metrics);
1161
1162 Ok(ScalabilityAnalysis {
1163 scalability_score,
1164 bottlenecks,
1165 scaling_predictions,
1166 resource_limits,
1167 })
1168 }
1169
1170 fn calculate_scalability_score(
1172 &self,
1173 metrics: &CircuitMetrics,
1174 complexity: &ComplexityAnalysis,
1175 ) -> f64 {
1176 let mut score: f64 = 1.0;
1177
1178 if complexity.classical_simulation_complexity > 1e12 {
1180 score *= 0.5;
1181 }
1182
1183 if complexity.gate_complexity > 1e6 {
1185 score *= 0.7;
1186 }
1187
1188 if complexity.quantum_advantage_factor.is_some() {
1190 score *= 1.2;
1191 }
1192
1193 score.clamp(0.0, 1.0)
1194 }
1195
1196 fn identify_bottlenecks(
1198 &self,
1199 metrics: &CircuitMetrics,
1200 complexity: &ComplexityAnalysis,
1201 ) -> Vec<ScalabilityBottleneck> {
1202 let mut bottlenecks = Vec::new();
1203
1204 if complexity.classical_simulation_complexity > 1e15 {
1206 bottlenecks.push(ScalabilityBottleneck {
1207 bottleneck_type: BottleneckType::Memory,
1208 severity: 0.9,
1209 description: "Exponential memory growth limits classical simulation".to_string(),
1210 mitigation_suggestions: vec![
1211 "Use tensor network simulation".to_string(),
1212 "Implement approximate methods".to_string(),
1213 ],
1214 });
1215 }
1216
1217 if metrics.circuit_depth > 100 {
1219 bottlenecks.push(ScalabilityBottleneck {
1220 bottleneck_type: BottleneckType::QuantumCoherence,
1221 severity: 0.7,
1222 description: "Deep circuits may exceed coherence times".to_string(),
1223 mitigation_suggestions: vec![
1224 "Reduce circuit depth".to_string(),
1225 "Use error correction".to_string(),
1226 ],
1227 });
1228 }
1229
1230 bottlenecks
1231 }
1232
1233 fn predict_scaling(
1235 &self,
1236 metrics: &CircuitMetrics,
1237 ) -> QuantRS2Result<HashMap<String, ScalingPrediction>> {
1238 let mut predictions = HashMap::new();
1239
1240 let problem_sizes = vec![10, 20, 30, 40, 50];
1242 let gate_predictions: Vec<f64> = problem_sizes
1243 .iter()
1244 .map(|&size| {
1245 (size as f64) * (metrics.total_gates as f64) / (metrics.qubit_count as f64)
1246 })
1247 .collect();
1248 let gate_confidence: Vec<(f64, f64)> = gate_predictions
1249 .iter()
1250 .map(|&pred| (pred * 0.8, pred * 1.2))
1251 .collect();
1252
1253 predictions.insert(
1254 "gates".to_string(),
1255 ScalingPrediction {
1256 problem_sizes,
1257 predicted_values: gate_predictions,
1258 confidence_intervals: gate_confidence,
1259 model: "Linear scaling".to_string(),
1260 },
1261 );
1262
1263 Ok(predictions)
1264 }
1265
1266 fn calculate_resource_limits(&self, metrics: &CircuitMetrics) -> ResourceLimits {
1268 ResourceLimits {
1269 max_current_technology: 50, max_near_term: 1000, max_theoretical: Some(10000), limiting_factors: vec![
1273 "Quantum error rates".to_string(),
1274 "Coherence times".to_string(),
1275 "Classical simulation complexity".to_string(),
1276 ],
1277 }
1278 }
1279
1280 fn generate_optimization_suggestions<const N: usize>(
1282 &self,
1283 circuit: &Circuit<N>,
1284 metrics: &CircuitMetrics,
1285 complexity: &ComplexityAnalysis,
1286 memory: &MemoryRequirements,
1287 ) -> QuantRS2Result<Vec<OptimizationSuggestion>> {
1288 let mut suggestions = Vec::new();
1289
1290 if metrics.total_gates > 100 {
1292 suggestions.push(OptimizationSuggestion {
1293 suggestion_type: OptimizationType::GateCountReduction,
1294 expected_improvement: 0.2,
1295 implementation_complexity: ComplexityLevel::Medium,
1296 description: "Apply gate fusion and redundancy elimination".to_string(),
1297 impact_areas: vec!["circuit_depth".to_string(), "execution_time".to_string()],
1298 });
1299 }
1300
1301 if memory.total_classical_memory > 1e9 as u64 {
1303 suggestions.push(OptimizationSuggestion {
1304 suggestion_type: OptimizationType::MemoryOptimization,
1305 expected_improvement: 0.5,
1306 implementation_complexity: ComplexityLevel::High,
1307 description: "Use tensor network or sparse representations".to_string(),
1308 impact_areas: vec![
1309 "memory_usage".to_string(),
1310 "simulation_feasibility".to_string(),
1311 ],
1312 });
1313 }
1314
1315 if metrics.circuit_depth < metrics.total_gates / 2 {
1317 suggestions.push(OptimizationSuggestion {
1318 suggestion_type: OptimizationType::Parallelization,
1319 expected_improvement: 0.3,
1320 implementation_complexity: ComplexityLevel::Low,
1321 description: "Increase gate-level parallelism".to_string(),
1322 impact_areas: vec!["execution_time".to_string()],
1323 });
1324 }
1325
1326 Ok(suggestions)
1327 }
1328
1329 fn default_hardware_requirements(&self) -> HardwareRequirements {
1331 HardwareRequirements {
1332 min_physical_qubits: 0,
1333 connectivity_requirements: ConnectivityRequirement::Linear,
1334 fidelity_requirements: HashMap::new(),
1335 coherence_requirements: CoherenceRequirement {
1336 min_t1: Duration::from_micros(100),
1337 min_t2: Duration::from_micros(50),
1338 gate_to_coherence_ratio: 0.01,
1339 },
1340 platform_recommendations: Vec::new(),
1341 error_correction_overhead: ErrorCorrectionOverhead {
1342 physical_to_logical_ratio: 1.0,
1343 gate_overhead_factor: 1.0,
1344 time_overhead_factor: 1.0,
1345 recommended_code: "None".to_string(),
1346 threshold_error_rate: 1.0,
1347 },
1348 }
1349 }
1350
1351 fn default_scalability_analysis(&self) -> ScalabilityAnalysis {
1353 ScalabilityAnalysis {
1354 scalability_score: 0.5,
1355 bottlenecks: Vec::new(),
1356 scaling_predictions: HashMap::new(),
1357 resource_limits: ResourceLimits {
1358 max_current_technology: 50,
1359 max_near_term: 100,
1360 max_theoretical: None,
1361 limiting_factors: Vec::new(),
1362 },
1363 }
1364 }
1365}
1366
1367pub fn estimate_circuit_resources<const N: usize>(
1369 circuit: &Circuit<N>,
1370) -> QuantRS2Result<ResourceEstimate> {
1371 let mut estimator = ResourceEstimator::new(ResourceEstimatorConfig::default());
1372 estimator.estimate_resources(circuit)
1373}
1374
1375pub fn estimate_circuit_resources_with_config<const N: usize>(
1377 circuit: &Circuit<N>,
1378 config: ResourceEstimatorConfig,
1379) -> QuantRS2Result<ResourceEstimate> {
1380 let mut estimator = ResourceEstimator::new(config);
1381 estimator.estimate_resources(circuit)
1382}
1383
1384#[cfg(test)]
1385mod tests {
1386 use super::*;
1387 use quantrs2_core::gate::multi::CNOT;
1388 use quantrs2_core::gate::single::Hadamard;
1389
1390 #[test]
1391 fn test_basic_resource_estimation() {
1392 let mut circuit = Circuit::<3>::new();
1393 circuit
1394 .add_gate(Hadamard { target: QubitId(0) })
1395 .expect("Failed to add Hadamard gate to qubit 0");
1396 circuit
1397 .add_gate(CNOT {
1398 control: QubitId(0),
1399 target: QubitId(1),
1400 })
1401 .expect("Failed to add CNOT gate");
1402 circuit
1403 .add_gate(Hadamard { target: QubitId(2) })
1404 .expect("Failed to add Hadamard gate to qubit 2");
1405
1406 let estimate =
1407 estimate_circuit_resources(&circuit).expect("Failed to estimate circuit resources");
1408
1409 assert_eq!(estimate.circuit_metrics.total_gates, 3);
1410 assert_eq!(estimate.circuit_metrics.qubit_count, 3);
1411 assert!(estimate.circuit_metrics.single_qubit_gates > 0);
1412 assert!(estimate.circuit_metrics.two_qubit_gates > 0);
1413 }
1414
1415 #[test]
1416 fn test_complexity_analysis() {
1417 let mut circuit = Circuit::<2>::new();
1418 circuit
1419 .add_gate(Hadamard { target: QubitId(0) })
1420 .expect("Failed to add Hadamard gate");
1421 circuit
1422 .add_gate(CNOT {
1423 control: QubitId(0),
1424 target: QubitId(1),
1425 })
1426 .expect("Failed to add CNOT gate");
1427
1428 let estimate =
1429 estimate_circuit_resources(&circuit).expect("Failed to estimate circuit resources");
1430
1431 match estimate.complexity_analysis.time_complexity {
1433 ComplexityClass::Constant | ComplexityClass::Linear => {}
1434 _ => panic!("Unexpected time complexity for small circuit"),
1435 }
1436
1437 match estimate.complexity_analysis.space_complexity {
1439 ComplexityClass::Exponential => {}
1440 _ => panic!("Expected exponential space complexity"),
1441 }
1442 }
1443
1444 #[test]
1445 fn test_memory_estimation() {
1446 let mut circuit = Circuit::<4>::new();
1447 for i in 0..4 {
1448 circuit
1449 .add_gate(Hadamard { target: QubitId(i) })
1450 .expect("Failed to add Hadamard gate");
1451 }
1452
1453 let estimate =
1454 estimate_circuit_resources(&circuit).expect("Failed to estimate circuit resources");
1455
1456 assert_eq!(estimate.memory_requirements.state_vector_memory, 256);
1458 assert!(estimate.memory_requirements.total_classical_memory > 256);
1459 }
1460
1461 #[test]
1462 fn test_execution_time_estimation() {
1463 let mut circuit = Circuit::<2>::new();
1464 circuit
1465 .add_gate(Hadamard { target: QubitId(0) })
1466 .expect("Failed to add Hadamard gate");
1467 circuit
1468 .add_gate(CNOT {
1469 control: QubitId(0),
1470 target: QubitId(1),
1471 })
1472 .expect("Failed to add CNOT gate");
1473
1474 let estimate =
1475 estimate_circuit_resources(&circuit).expect("Failed to estimate circuit resources");
1476
1477 assert!(estimate.execution_time.estimated_time > Duration::from_nanos(0));
1478 assert!(!estimate.execution_time.gate_time_breakdown.is_empty());
1479 assert!(estimate.execution_time.parallelization_factor > 0.0);
1480 }
1481
1482 #[test]
1483 fn test_hardware_requirements() {
1484 let mut circuit = Circuit::<10>::new();
1485 for i in 0..9 {
1486 circuit
1487 .add_gate(CNOT {
1488 control: QubitId(i),
1489 target: QubitId(i + 1),
1490 })
1491 .expect("Failed to add CNOT gate");
1492 }
1493
1494 let estimate =
1495 estimate_circuit_resources(&circuit).expect("Failed to estimate circuit resources");
1496
1497 assert!(estimate.hardware_requirements.min_physical_qubits >= 10);
1498 assert!(!estimate
1499 .hardware_requirements
1500 .platform_recommendations
1501 .is_empty());
1502 }
1503
1504 #[test]
1505 fn test_optimization_suggestions() {
1506 let mut circuit = Circuit::<5>::new();
1507 for _ in 0..105 {
1510 circuit
1511 .add_gate(Hadamard { target: QubitId(0) })
1512 .expect("Failed to add Hadamard gate");
1513 }
1514
1515 let config = ResourceEstimatorConfig {
1517 enable_graph_analysis: false, enable_hardware_analysis: false,
1519 enable_scalability_analysis: false,
1520 include_optimizations: true, ..Default::default()
1522 };
1523
1524 let estimate = estimate_circuit_resources_with_config(&circuit, config)
1525 .expect("Failed to estimate circuit resources");
1526
1527 assert!(!estimate.optimization_suggestions.is_empty());
1528
1529 let has_gate_reduction = estimate
1530 .optimization_suggestions
1531 .iter()
1532 .any(|s| matches!(s.suggestion_type, OptimizationType::GateCountReduction));
1533 assert!(has_gate_reduction);
1534 }
1535
1536 #[test]
1537 fn test_custom_configuration() {
1538 let config = ResourceEstimatorConfig {
1539 analysis_depth: AnalysisDepth::Comprehensive,
1540 enable_scalability_analysis: true,
1541 ..Default::default()
1542 };
1543
1544 let mut circuit = Circuit::<3>::new();
1545 circuit
1546 .add_gate(Hadamard { target: QubitId(0) })
1547 .expect("Failed to add Hadamard gate");
1548
1549 let estimate = estimate_circuit_resources_with_config(&circuit, config)
1550 .expect("Failed to estimate circuit resources with config");
1551
1552 assert!(estimate.scalability_analysis.scalability_score >= 0.0);
1553 assert!(estimate.scalability_analysis.scalability_score <= 1.0);
1554 }
1555
1556 #[test]
1557 fn test_algorithm_classification() {
1558 let mut qft_circuit = Circuit::<4>::new();
1560 for i in 0..4 {
1561 qft_circuit
1562 .add_gate(Hadamard { target: QubitId(i) })
1563 .expect("Failed to add Hadamard gate");
1564 }
1565
1566 let estimate =
1567 estimate_circuit_resources(&qft_circuit).expect("Failed to estimate circuit resources");
1568 match estimate.complexity_analysis.algorithm_classification {
1569 AlgorithmClass::QftBased | AlgorithmClass::General => {}
1570 _ => panic!("Unexpected algorithm classification"),
1571 }
1572 }
1573}