quantrs2_circuit/
qc_co_optimization.rs

1//! Quantum-Classical Co-optimization Framework
2//!
3//! This module provides tools for optimizing hybrid quantum-classical algorithms
4//! where quantum circuits and classical processing are interleaved and optimized together.
5
6use crate::builder::Circuit;
7use quantrs2_core::{
8    error::{QuantRS2Error, QuantRS2Result},
9    qubit::QubitId,
10};
11use scirs2_core::Complex64;
12use std::collections::HashMap;
13
14/// A hybrid quantum-classical optimization problem
15///
16/// This combines quantum circuits with classical processing steps,
17/// allowing for co-optimization of both quantum parameters and classical algorithms.
18#[derive(Debug, Clone)]
19pub struct HybridOptimizationProblem<const N: usize> {
20    /// Quantum circuit components
21    pub quantum_circuits: Vec<ParameterizedQuantumComponent<N>>,
22    /// Classical processing steps
23    pub classical_steps: Vec<ClassicalProcessingStep>,
24    /// Data flow between quantum and classical components
25    pub data_flow: DataFlowGraph,
26    /// Global optimization parameters
27    pub global_parameters: Vec<f64>,
28    /// Objective function for optimization
29    pub objective: ObjectiveFunction,
30}
31
32/// A parameterized quantum circuit component
33#[derive(Debug, Clone)]
34pub struct ParameterizedQuantumComponent<const N: usize> {
35    /// The quantum circuit
36    pub circuit: Circuit<N>,
37    /// Parameter indices in the global parameter vector
38    pub parameter_indices: Vec<usize>,
39    /// Input data from classical components
40    pub classical_inputs: Vec<String>,
41    /// Output measurements to classical components
42    pub quantum_outputs: Vec<String>,
43    /// Component identifier
44    pub id: String,
45}
46
47/// A classical processing step in the hybrid algorithm
48#[derive(Debug, Clone)]
49pub struct ClassicalProcessingStep {
50    /// Step identifier
51    pub id: String,
52    /// Type of classical processing
53    pub step_type: ClassicalStepType,
54    /// Input data sources
55    pub inputs: Vec<String>,
56    /// Output data destinations
57    pub outputs: Vec<String>,
58    /// Parameters for this processing step
59    pub parameters: HashMap<String, f64>,
60}
61
62/// Types of classical processing steps
63#[derive(Debug, Clone, PartialEq, Eq)]
64pub enum ClassicalStepType {
65    /// Linear algebra operations
66    LinearAlgebra(LinearAlgebraOp),
67    /// Machine learning model inference
68    MachineLearning(MLModelType),
69    /// Optimization subroutine
70    Optimization(OptimizationMethod),
71    /// Data preprocessing
72    DataProcessing(DataProcessingOp),
73    /// Control flow decision
74    ControlFlow(ControlFlowType),
75    /// Parameter update rule
76    ParameterUpdate(UpdateRule),
77    /// Custom processing function
78    Custom(String),
79}
80
81/// Linear algebra operations
82#[derive(Debug, Clone, PartialEq, Eq)]
83pub enum LinearAlgebraOp {
84    MatrixMultiplication,
85    Eigendecomposition,
86    SVD,
87    LeastSquares,
88    LinearSolve,
89    TensorContraction,
90}
91
92/// Machine learning model types
93#[derive(Debug, Clone, PartialEq, Eq)]
94pub enum MLModelType {
95    NeuralNetwork,
96    SupportVectorMachine,
97    RandomForest,
98    GaussianProcess,
99    LinearRegression,
100    LogisticRegression,
101}
102
103/// Optimization methods for classical subroutines
104#[derive(Debug, Clone, PartialEq, Eq)]
105pub enum OptimizationMethod {
106    GradientDescent,
107    BFGS,
108    NelderMead,
109    SimulatedAnnealing,
110    GeneticAlgorithm,
111    BayesianOptimization,
112}
113
114/// Data preprocessing operations
115#[derive(Debug, Clone, PartialEq, Eq)]
116pub enum DataProcessingOp {
117    Normalization,
118    Standardization,
119    PCA,
120    FeatureSelection,
121    DataAugmentation,
122    OutlierRemoval,
123}
124
125/// Control flow types
126#[derive(Debug, Clone, PartialEq, Eq)]
127pub enum ControlFlowType {
128    Conditional,
129    Loop,
130    Parallel,
131    Adaptive,
132}
133
134/// Parameter update rules
135#[derive(Debug, Clone, PartialEq, Eq)]
136pub enum UpdateRule {
137    GradientBased,
138    MomentumBased,
139    AdamOptimizer,
140    AdaGrad,
141    RMSProp,
142    Custom(String),
143}
144
145/// Data flow graph representing connections between components
146#[derive(Debug, Clone)]
147pub struct DataFlowGraph {
148    /// Nodes in the graph (component IDs)
149    pub nodes: Vec<String>,
150    /// Edges representing data flow (source, target, `data_type`)
151    pub edges: Vec<(String, String, DataType)>,
152    /// Execution order constraints
153    pub execution_order: Vec<Vec<String>>,
154}
155
156/// Types of data flowing between components
157#[derive(Debug, Clone, PartialEq)]
158pub enum DataType {
159    /// Quantum measurement results
160    Measurements(Vec<f64>),
161    /// Probability distributions
162    Probabilities(Vec<f64>),
163    /// Classical vectors/matrices
164    Matrix(Vec<Vec<f64>>),
165    /// Scalar values
166    Scalar(f64),
167    /// Parameter vectors
168    Parameters(Vec<f64>),
169    /// Boolean control signals
170    Control(bool),
171    /// Custom data format
172    Custom(String),
173}
174
175/// Objective function for hybrid optimization
176#[derive(Debug, Clone)]
177pub struct ObjectiveFunction {
178    /// Function type
179    pub function_type: ObjectiveFunctionType,
180    /// Target value (for minimization/maximization)
181    pub target: Option<f64>,
182    /// Weights for multi-objective optimization
183    pub weights: Vec<f64>,
184    /// Regularization terms
185    pub regularization: Vec<RegularizationTerm>,
186}
187
188/// Types of objective functions
189#[derive(Debug, Clone, PartialEq)]
190pub enum ObjectiveFunctionType {
191    /// Minimize expectation value
192    ExpectationValue,
193    /// Maximize fidelity
194    Fidelity,
195    /// Minimize cost function
196    CostFunction,
197    /// Multi-objective optimization
198    MultiObjective(Vec<Self>),
199    /// Custom objective
200    Custom(String),
201}
202
203/// Regularization terms for the objective function
204#[derive(Debug, Clone)]
205pub struct RegularizationTerm {
206    /// Type of regularization
207    pub reg_type: RegularizationType,
208    /// Regularization strength
209    pub strength: f64,
210    /// Parameters to regularize
211    pub parameter_indices: Vec<usize>,
212}
213
214/// Types of regularization
215#[derive(Debug, Clone, PartialEq, Eq)]
216pub enum RegularizationType {
217    L1,
218    L2,
219    ElasticNet,
220    TotalVariation,
221    Sparsity,
222    Smoothness,
223}
224
225/// Hybrid optimization result
226#[derive(Debug, Clone)]
227pub struct HybridOptimizationResult {
228    /// Optimal parameters
229    pub optimal_parameters: Vec<f64>,
230    /// Optimal objective value
231    pub optimal_value: f64,
232    /// Number of iterations
233    pub iterations: usize,
234    /// Convergence status
235    pub converged: bool,
236    /// Execution history
237    pub history: OptimizationHistory,
238    /// Final quantum state information
239    pub quantum_info: QuantumStateInfo,
240}
241
242/// Optimization history tracking
243#[derive(Debug, Clone)]
244pub struct OptimizationHistory {
245    /// Objective values over iterations
246    pub objective_values: Vec<f64>,
247    /// Parameter values over iterations
248    pub parameter_history: Vec<Vec<f64>>,
249    /// Gradient norms
250    pub gradient_norms: Vec<f64>,
251    /// Step sizes used
252    pub step_sizes: Vec<f64>,
253    /// Timing information
254    pub execution_times: Vec<f64>,
255}
256
257/// Information about final quantum states
258#[derive(Debug, Clone)]
259pub struct QuantumStateInfo {
260    /// Final quantum states for each circuit
261    pub final_states: HashMap<String, Vec<Complex64>>,
262    /// Measurement statistics
263    pub measurement_stats: HashMap<String, MeasurementStatistics>,
264    /// Entanglement measures
265    pub entanglement_info: HashMap<String, EntanglementInfo>,
266}
267
268/// Statistics from quantum measurements
269#[derive(Debug, Clone)]
270pub struct MeasurementStatistics {
271    /// Mean values
272    pub means: Vec<f64>,
273    /// Standard deviations
274    pub std_devs: Vec<f64>,
275    /// Correlations between measurements
276    pub correlations: Vec<Vec<f64>>,
277    /// Number of shots used
278    pub num_shots: usize,
279}
280
281/// Entanglement information
282#[derive(Debug, Clone)]
283pub struct EntanglementInfo {
284    /// Von Neumann entropy
285    pub von_neumann_entropy: f64,
286    /// Mutual information matrix
287    pub mutual_information: Vec<Vec<f64>>,
288    /// Entanglement spectrum
289    pub entanglement_spectrum: Vec<f64>,
290}
291
292/// Hybrid optimizer for quantum-classical co-optimization
293pub struct HybridOptimizer {
294    /// Optimization algorithm
295    pub algorithm: HybridOptimizationAlgorithm,
296    /// Maximum iterations
297    pub max_iterations: usize,
298    /// Convergence tolerance
299    pub tolerance: f64,
300    /// Learning rate schedule
301    pub learning_rate_schedule: LearningRateSchedule,
302    /// Parallelization settings
303    pub parallelization: ParallelizationConfig,
304}
305
306/// Hybrid optimization algorithms
307#[derive(Debug, Clone, PartialEq, Eq)]
308pub enum HybridOptimizationAlgorithm {
309    /// Coordinate descent (alternate quantum and classical optimization)
310    CoordinateDescent,
311    /// Simultaneous optimization of all parameters
312    SimultaneousOptimization,
313    /// Hierarchical optimization (coarse-to-fine)
314    HierarchicalOptimization,
315    /// Adaptive algorithm selection
316    AdaptiveOptimization,
317    /// Custom algorithm
318    Custom(String),
319}
320
321/// Learning rate schedules
322#[derive(Debug, Clone)]
323pub struct LearningRateSchedule {
324    /// Initial learning rate
325    pub initial_rate: f64,
326    /// Schedule type
327    pub schedule_type: ScheduleType,
328    /// Schedule parameters
329    pub parameters: HashMap<String, f64>,
330}
331
332/// Types of learning rate schedules
333#[derive(Debug, Clone, PartialEq, Eq)]
334pub enum ScheduleType {
335    Constant,
336    LinearDecay,
337    ExponentialDecay,
338    StepDecay,
339    CosineAnnealing,
340    Adaptive,
341}
342
343/// Parallelization configuration
344#[derive(Debug, Clone)]
345pub struct ParallelizationConfig {
346    /// Number of parallel quantum circuit evaluations
347    pub quantum_parallelism: usize,
348    /// Number of parallel classical processing threads
349    pub classical_parallelism: usize,
350    /// Enable asynchronous execution
351    pub asynchronous: bool,
352    /// Load balancing strategy
353    pub load_balancing: LoadBalancingStrategy,
354}
355
356/// Load balancing strategies
357#[derive(Debug, Clone, PartialEq, Eq)]
358pub enum LoadBalancingStrategy {
359    RoundRobin,
360    WorkStealing,
361    Dynamic,
362    Static,
363}
364
365impl<const N: usize> HybridOptimizationProblem<N> {
366    /// Create a new hybrid optimization problem
367    #[must_use]
368    pub fn new() -> Self {
369        Self {
370            quantum_circuits: Vec::new(),
371            classical_steps: Vec::new(),
372            data_flow: DataFlowGraph {
373                nodes: Vec::new(),
374                edges: Vec::new(),
375                execution_order: Vec::new(),
376            },
377            global_parameters: Vec::new(),
378            objective: ObjectiveFunction {
379                function_type: ObjectiveFunctionType::ExpectationValue,
380                target: None,
381                weights: vec![1.0],
382                regularization: Vec::new(),
383            },
384        }
385    }
386
387    /// Add a quantum circuit component
388    pub fn add_quantum_component(
389        &mut self,
390        id: String,
391        circuit: Circuit<N>,
392        parameter_indices: Vec<usize>,
393    ) -> QuantRS2Result<()> {
394        // Validate parameter indices
395        for &idx in &parameter_indices {
396            if idx >= self.global_parameters.len() {
397                return Err(QuantRS2Error::InvalidInput(format!(
398                    "Parameter index {} out of range (total parameters: {})",
399                    idx,
400                    self.global_parameters.len()
401                )));
402            }
403        }
404
405        let component = ParameterizedQuantumComponent {
406            circuit,
407            parameter_indices,
408            classical_inputs: Vec::new(),
409            quantum_outputs: Vec::new(),
410            id: id.clone(),
411        };
412
413        self.quantum_circuits.push(component);
414        self.data_flow.nodes.push(id);
415        Ok(())
416    }
417
418    /// Add a classical processing step
419    pub fn add_classical_step(
420        &mut self,
421        id: String,
422        step_type: ClassicalStepType,
423        inputs: Vec<String>,
424        outputs: Vec<String>,
425    ) -> QuantRS2Result<()> {
426        let step = ClassicalProcessingStep {
427            id: id.clone(),
428            step_type,
429            inputs,
430            outputs,
431            parameters: HashMap::new(),
432        };
433
434        self.classical_steps.push(step);
435        self.data_flow.nodes.push(id);
436        Ok(())
437    }
438
439    /// Add data flow edge between components
440    pub fn add_data_flow(
441        &mut self,
442        source: String,
443        target: String,
444        data_type: DataType,
445    ) -> QuantRS2Result<()> {
446        // Validate that source and target exist
447        if !self.data_flow.nodes.contains(&source) {
448            return Err(QuantRS2Error::InvalidInput(format!(
449                "Source component '{source}' not found"
450            )));
451        }
452        if !self.data_flow.nodes.contains(&target) {
453            return Err(QuantRS2Error::InvalidInput(format!(
454                "Target component '{target}' not found"
455            )));
456        }
457
458        self.data_flow.edges.push((source, target, data_type));
459        Ok(())
460    }
461
462    /// Set global parameters
463    pub fn set_global_parameters(&mut self, parameters: Vec<f64>) {
464        self.global_parameters = parameters;
465    }
466
467    /// Add regularization term
468    pub fn add_regularization(
469        &mut self,
470        reg_type: RegularizationType,
471        strength: f64,
472        parameter_indices: Vec<usize>,
473    ) -> QuantRS2Result<()> {
474        // Validate parameter indices
475        for &idx in &parameter_indices {
476            if idx >= self.global_parameters.len() {
477                return Err(QuantRS2Error::InvalidInput(format!(
478                    "Parameter index {idx} out of range"
479                )));
480            }
481        }
482
483        self.objective.regularization.push(RegularizationTerm {
484            reg_type,
485            strength,
486            parameter_indices,
487        });
488
489        Ok(())
490    }
491
492    /// Validate the optimization problem
493    pub fn validate(&self) -> QuantRS2Result<()> {
494        // Check that all components are connected properly
495        for edge in &self.data_flow.edges {
496            let (source, target, _) = edge;
497            if !self.data_flow.nodes.contains(source) {
498                return Err(QuantRS2Error::InvalidInput(format!(
499                    "Data flow edge references non-existent source '{source}'"
500                )));
501            }
502            if !self.data_flow.nodes.contains(target) {
503                return Err(QuantRS2Error::InvalidInput(format!(
504                    "Data flow edge references non-existent target '{target}'"
505                )));
506            }
507        }
508
509        // Check for circular dependencies
510        if self.has_circular_dependencies()? {
511            return Err(QuantRS2Error::InvalidInput(
512                "Circular dependencies detected in data flow graph".to_string(),
513            ));
514        }
515
516        Ok(())
517    }
518
519    /// Check for circular dependencies in the data flow graph
520    fn has_circular_dependencies(&self) -> QuantRS2Result<bool> {
521        // Simplified cycle detection - a full implementation would use DFS
522        // For now, just check if any node has a self-loop
523        for (source, target, _) in &self.data_flow.edges {
524            if source == target {
525                return Ok(true);
526            }
527        }
528        Ok(false)
529    }
530}
531
532impl Default for HybridOptimizationProblem<4> {
533    fn default() -> Self {
534        Self::new()
535    }
536}
537
538impl HybridOptimizer {
539    /// Create a new hybrid optimizer
540    #[must_use]
541    pub fn new(algorithm: HybridOptimizationAlgorithm) -> Self {
542        Self {
543            algorithm,
544            max_iterations: 1000,
545            tolerance: 1e-6,
546            learning_rate_schedule: LearningRateSchedule {
547                initial_rate: 0.01,
548                schedule_type: ScheduleType::Constant,
549                parameters: HashMap::new(),
550            },
551            parallelization: ParallelizationConfig {
552                quantum_parallelism: 1,
553                classical_parallelism: 1,
554                asynchronous: false,
555                load_balancing: LoadBalancingStrategy::RoundRobin,
556            },
557        }
558    }
559
560    /// Optimize a hybrid quantum-classical problem
561    pub fn optimize<const N: usize>(
562        &self,
563        problem: &mut HybridOptimizationProblem<N>,
564    ) -> QuantRS2Result<HybridOptimizationResult> {
565        // Validate the problem first
566        problem.validate()?;
567
568        // Initialize optimization history
569        let mut history = OptimizationHistory {
570            objective_values: Vec::new(),
571            parameter_history: Vec::new(),
572            gradient_norms: Vec::new(),
573            step_sizes: Vec::new(),
574            execution_times: Vec::new(),
575        };
576
577        let mut current_parameters = problem.global_parameters.clone();
578        let mut best_parameters = current_parameters.clone();
579        let mut best_value = f64::INFINITY;
580
581        // Main optimization loop
582        for iteration in 0..self.max_iterations {
583            let start_time = std::time::Instant::now();
584
585            // Evaluate objective function
586            let current_value = self.evaluate_objective(problem, &current_parameters)?;
587
588            if current_value < best_value {
589                best_value = current_value;
590                best_parameters.clone_from(&current_parameters);
591            }
592
593            // Store history
594            history.objective_values.push(current_value);
595            history.parameter_history.push(current_parameters.clone());
596
597            // Compute gradients (simplified)
598            let gradients = self.compute_gradients(problem, &current_parameters)?;
599            let gradient_norm = gradients.iter().map(|g| g * g).sum::<f64>().sqrt();
600            history.gradient_norms.push(gradient_norm);
601
602            // Check convergence
603            if gradient_norm < self.tolerance {
604                let execution_time = start_time.elapsed().as_secs_f64();
605                history.execution_times.push(execution_time);
606
607                return Ok(HybridOptimizationResult {
608                    optimal_parameters: best_parameters,
609                    optimal_value: best_value,
610                    iterations: iteration + 1,
611                    converged: true,
612                    history,
613                    quantum_info: self.extract_quantum_info(problem)?,
614                });
615            }
616
617            // Update parameters
618            let learning_rate = self.get_learning_rate(iteration);
619            for (i, gradient) in gradients.iter().enumerate() {
620                current_parameters[i] -= learning_rate * gradient;
621            }
622
623            let step_size = learning_rate * gradient_norm;
624            history.step_sizes.push(step_size);
625
626            let execution_time = start_time.elapsed().as_secs_f64();
627            history.execution_times.push(execution_time);
628        }
629
630        // Maximum iterations reached
631        Ok(HybridOptimizationResult {
632            optimal_parameters: best_parameters,
633            optimal_value: best_value,
634            iterations: self.max_iterations,
635            converged: false,
636            history,
637            quantum_info: self.extract_quantum_info(problem)?,
638        })
639    }
640
641    /// Evaluate the objective function (simplified)
642    const fn evaluate_objective<const N: usize>(
643        &self,
644        _problem: &HybridOptimizationProblem<N>,
645        _parameters: &[f64],
646    ) -> QuantRS2Result<f64> {
647        // This is a placeholder - real implementation would:
648        // 1. Execute quantum circuits with current parameters
649        // 2. Run classical processing steps
650        // 3. Combine results according to objective function
651        // 4. Apply regularization terms
652
653        // For now, return a dummy value
654        Ok(1.0)
655    }
656
657    /// Compute gradients (simplified)
658    fn compute_gradients<const N: usize>(
659        &self,
660        problem: &HybridOptimizationProblem<N>,
661        _parameters: &[f64],
662    ) -> QuantRS2Result<Vec<f64>> {
663        // This is a placeholder - real implementation would use:
664        // 1. Parameter shift rule for quantum gradients
665        // 2. Automatic differentiation for classical components
666        // 3. Chain rule for hybrid components
667
668        // For now, return dummy gradients
669        Ok(vec![0.001; problem.global_parameters.len()])
670    }
671
672    /// Get learning rate for current iteration
673    fn get_learning_rate(&self, iteration: usize) -> f64 {
674        match self.learning_rate_schedule.schedule_type {
675            ScheduleType::Constant => self.learning_rate_schedule.initial_rate,
676            ScheduleType::LinearDecay => {
677                let decay_rate = self
678                    .learning_rate_schedule
679                    .parameters
680                    .get("decay_rate")
681                    .unwrap_or(&0.001);
682                self.learning_rate_schedule.initial_rate / (1.0 + decay_rate * iteration as f64)
683            }
684            ScheduleType::ExponentialDecay => {
685                let decay_rate = self
686                    .learning_rate_schedule
687                    .parameters
688                    .get("decay_rate")
689                    .unwrap_or(&0.95);
690                self.learning_rate_schedule.initial_rate * decay_rate.powi(iteration as i32)
691            }
692            _ => self.learning_rate_schedule.initial_rate, // Simplified
693        }
694    }
695
696    /// Extract quantum state information
697    fn extract_quantum_info<const N: usize>(
698        &self,
699        _problem: &HybridOptimizationProblem<N>,
700    ) -> QuantRS2Result<QuantumStateInfo> {
701        // This is a placeholder - real implementation would extract:
702        // 1. Final quantum states from each circuit
703        // 2. Measurement statistics
704        // 3. Entanglement measures
705
706        Ok(QuantumStateInfo {
707            final_states: HashMap::new(),
708            measurement_stats: HashMap::new(),
709            entanglement_info: HashMap::new(),
710        })
711    }
712}
713
714impl Default for HybridOptimizer {
715    fn default() -> Self {
716        Self::new(HybridOptimizationAlgorithm::CoordinateDescent)
717    }
718}
719
720#[cfg(test)]
721mod tests {
722    use super::*;
723
724    #[test]
725    fn test_hybrid_problem_creation() {
726        let problem = HybridOptimizationProblem::<4>::new();
727        assert_eq!(problem.quantum_circuits.len(), 0);
728        assert_eq!(problem.classical_steps.len(), 0);
729    }
730
731    #[test]
732    fn test_component_addition() {
733        let mut problem = HybridOptimizationProblem::<2>::new();
734        problem.set_global_parameters(vec![0.1, 0.2, 0.3]);
735
736        let circuit = Circuit::<2>::new();
737        problem
738            .add_quantum_component("q1".to_string(), circuit, vec![0, 1])
739            .expect("add_quantum_component should succeed");
740
741        assert_eq!(problem.quantum_circuits.len(), 1);
742        assert_eq!(problem.data_flow.nodes.len(), 1);
743    }
744
745    #[test]
746    fn test_data_flow() {
747        let mut problem = HybridOptimizationProblem::<2>::new();
748        problem.set_global_parameters(vec![0.1, 0.2]);
749
750        let circuit = Circuit::<2>::new();
751        problem
752            .add_quantum_component("q1".to_string(), circuit, vec![0])
753            .expect("add_quantum_component should succeed");
754        problem
755            .add_classical_step(
756                "c1".to_string(),
757                ClassicalStepType::LinearAlgebra(LinearAlgebraOp::MatrixMultiplication),
758                vec!["q1".to_string()],
759                vec!["output".to_string()],
760            )
761            .expect("add_classical_step should succeed");
762
763        problem
764            .add_data_flow(
765                "q1".to_string(),
766                "c1".to_string(),
767                DataType::Measurements(vec![0.1, 0.2]),
768            )
769            .expect("add_data_flow should succeed");
770
771        assert_eq!(problem.data_flow.edges.len(), 1);
772    }
773
774    #[test]
775    fn test_optimizer_creation() {
776        let optimizer = HybridOptimizer::new(HybridOptimizationAlgorithm::SimultaneousOptimization);
777        assert_eq!(
778            optimizer.algorithm,
779            HybridOptimizationAlgorithm::SimultaneousOptimization
780        );
781        assert_eq!(optimizer.max_iterations, 1000);
782    }
783}