quantrs2_anneal/
variational_quantum_annealing.rs

1//! Variational Quantum Annealing for advanced optimization
2//!
3//! This module implements variational quantum annealing (VQA) algorithms that combine
4//! classical optimization with quantum annealing to solve complex optimization problems.
5//! VQA uses parameterized quantum circuits and classical optimization to find optimal
6//! solutions through iterative refinement.
7
8use scirs2_core::random::prelude::*;
9use scirs2_core::random::ChaCha8Rng;
10use scirs2_core::random::{Rng, SeedableRng};
11use std::collections::HashMap;
12use std::time::{Duration, Instant};
13use thiserror::Error;
14
15use crate::ising::{IsingError, IsingModel};
16use crate::simulator::{AnnealingParams, AnnealingSolution, QuantumAnnealingSimulator};
17
18/// Errors that can occur in variational quantum annealing
19#[derive(Error, Debug)]
20pub enum VqaError {
21    /// Ising model error
22    #[error("Ising error: {0}")]
23    IsingError(#[from] IsingError),
24
25    /// Invalid variational parameters
26    #[error("Invalid parameters: {0}")]
27    InvalidParameters(String),
28
29    /// Optimization failed
30    #[error("Optimization failed: {0}")]
31    OptimizationFailed(String),
32
33    /// Circuit construction error
34    #[error("Circuit error: {0}")]
35    CircuitError(String),
36
37    /// Convergence error
38    #[error("Convergence error: {0}")]
39    ConvergenceError(String),
40}
41
42/// Result type for VQA operations
43pub type VqaResult<T> = Result<T, VqaError>;
44
45/// Types of variational ansatz circuits
46#[derive(Debug, Clone, PartialEq)]
47pub enum AnsatzType {
48    /// Hardware-efficient ansatz with parameterized rotations
49    HardwareEfficient {
50        depth: usize,
51        entangling_gates: EntanglingGateType,
52    },
53
54    /// QAOA-inspired ansatz with problem and mixer terms
55    QaoaInspired {
56        layers: usize,
57        mixer_type: MixerType,
58    },
59
60    /// Adiabatic-inspired ansatz with time evolution
61    AdiabaticInspired {
62        time_steps: usize,
63        evolution_time: f64,
64    },
65
66    /// Custom ansatz with user-defined structure
67    Custom { structure: Vec<QuantumGate> },
68}
69
70/// Types of entangling gates for hardware-efficient ansatz
71#[derive(Debug, Clone, PartialEq, Eq)]
72pub enum EntanglingGateType {
73    /// CNOT gates in nearest-neighbor topology
74    CNot,
75    /// Controlled-Z gates
76    CZ,
77    /// Ising-style ZZ interactions
78    ZZ,
79    /// XY gates for spin exchange
80    XY,
81}
82
83/// Types of mixer operations
84#[derive(Debug, Clone, PartialEq, Eq)]
85pub enum MixerType {
86    /// X-rotation mixer (transverse field)
87    XRotation,
88    /// XY mixer for hard constraints
89    XY,
90    /// Multi-angle mixer
91    MultiAngle,
92}
93
94/// Quantum gate representation for variational circuits
95#[derive(Debug, Clone, PartialEq)]
96pub enum QuantumGate {
97    /// Single-qubit rotation around X-axis
98    RX { qubit: usize, angle: ParameterRef },
99    /// Single-qubit rotation around Y-axis
100    RY { qubit: usize, angle: ParameterRef },
101    /// Single-qubit rotation around Z-axis
102    RZ { qubit: usize, angle: ParameterRef },
103    /// Two-qubit CNOT gate
104    CNOT { control: usize, target: usize },
105    /// Two-qubit controlled-Z gate
106    CZ { control: usize, target: usize },
107    /// Parameterized ZZ interaction
108    ZZ {
109        qubit1: usize,
110        qubit2: usize,
111        angle: ParameterRef,
112    },
113}
114
115/// Reference to a variational parameter
116#[derive(Debug, Clone, PartialEq)]
117pub struct ParameterRef {
118    /// Parameter index
119    pub index: usize,
120    /// Optional scaling factor
121    pub scale: f64,
122}
123
124impl ParameterRef {
125    /// Create a new parameter reference
126    #[must_use]
127    pub const fn new(index: usize) -> Self {
128        Self { index, scale: 1.0 }
129    }
130
131    /// Create a scaled parameter reference
132    #[must_use]
133    pub const fn scaled(index: usize, scale: f64) -> Self {
134        Self { index, scale }
135    }
136}
137
138/// Variational quantum annealing configuration
139#[derive(Debug, Clone)]
140pub struct VqaConfig {
141    /// Ansatz type and structure
142    pub ansatz: AnsatzType,
143
144    /// Classical optimizer for parameters
145    pub optimizer: ClassicalOptimizer,
146
147    /// Maximum iterations for variational optimization
148    pub max_iterations: usize,
149
150    /// Convergence tolerance
151    pub convergence_tolerance: f64,
152
153    /// Number of quantum annealing shots per evaluation
154    pub num_shots: usize,
155
156    /// Base annealing parameters
157    pub annealing_params: AnnealingParams,
158
159    /// Parameter initialization range
160    pub parameter_init_range: (f64, f64),
161
162    /// Use gradient-based optimization
163    pub use_gradients: bool,
164
165    /// Finite difference step for gradient estimation
166    pub gradient_step: f64,
167
168    /// Random seed
169    pub seed: Option<u64>,
170
171    /// Maximum runtime
172    pub max_runtime: Option<Duration>,
173
174    /// Logging frequency
175    pub log_frequency: usize,
176}
177
178impl Default for VqaConfig {
179    fn default() -> Self {
180        Self {
181            ansatz: AnsatzType::HardwareEfficient {
182                depth: 3,
183                entangling_gates: EntanglingGateType::CNot,
184            },
185            optimizer: ClassicalOptimizer::Adam {
186                learning_rate: 0.01,
187                beta1: 0.9,
188                beta2: 0.999,
189                epsilon: 1e-8,
190            },
191            max_iterations: 100,
192            convergence_tolerance: 1e-6,
193            num_shots: 100,
194            annealing_params: AnnealingParams::default(),
195            parameter_init_range: (-0.5, 0.5),
196            use_gradients: true,
197            gradient_step: 0.01,
198            seed: None,
199            max_runtime: Some(Duration::from_secs(3600)),
200            log_frequency: 10,
201        }
202    }
203}
204
205/// Classical optimizers for variational parameters
206#[derive(Debug, Clone)]
207pub enum ClassicalOptimizer {
208    /// Gradient descent
209    GradientDescent { learning_rate: f64 },
210
211    /// Adam optimizer
212    Adam {
213        learning_rate: f64,
214        beta1: f64,
215        beta2: f64,
216        epsilon: f64,
217    },
218
219    /// `RMSprop` optimizer
220    RMSprop {
221        learning_rate: f64,
222        decay_rate: f64,
223        epsilon: f64,
224    },
225
226    /// Nelder-Mead simplex
227    NelderMead {
228        initial_simplex_size: f64,
229        alpha: f64,
230        gamma: f64,
231        rho: f64,
232        sigma: f64,
233    },
234
235    /// BFGS quasi-Newton method
236    BFGS {
237        line_search_tolerance: f64,
238        max_line_search_iterations: usize,
239    },
240}
241
242/// Variational quantum annealing results
243#[derive(Debug, Clone)]
244pub struct VqaResults {
245    /// Best solution found
246    pub best_solution: Vec<i8>,
247
248    /// Best energy achieved
249    pub best_energy: f64,
250
251    /// Optimal variational parameters
252    pub optimal_parameters: Vec<f64>,
253
254    /// Energy history over iterations
255    pub energy_history: Vec<f64>,
256
257    /// Parameter history over iterations
258    pub parameter_history: Vec<Vec<f64>>,
259
260    /// Gradient norms over iterations
261    pub gradient_norms: Vec<f64>,
262
263    /// Number of iterations completed
264    pub iterations_completed: usize,
265
266    /// Convergence achieved
267    pub converged: bool,
268
269    /// Total optimization time
270    pub total_time: Duration,
271
272    /// Statistics about the optimization
273    pub statistics: VqaStatistics,
274}
275
276/// Statistics for VQA optimization
277#[derive(Debug, Clone)]
278pub struct VqaStatistics {
279    /// Total function evaluations
280    pub function_evaluations: usize,
281
282    /// Total gradient evaluations
283    pub gradient_evaluations: usize,
284
285    /// Total quantum annealing time
286    pub total_annealing_time: Duration,
287
288    /// Average energy per iteration
289    pub average_energy: f64,
290
291    /// Energy variance over iterations
292    pub energy_variance: f64,
293
294    /// Parameter update statistics
295    pub parameter_stats: ParameterStatistics,
296
297    /// Classical optimizer performance
298    pub optimizer_stats: OptimizerStatistics,
299}
300
301/// Statistics about parameter updates
302#[derive(Debug, Clone)]
303pub struct ParameterStatistics {
304    /// Average parameter magnitude
305    pub average_magnitude: f64,
306
307    /// Parameter variance
308    pub parameter_variance: f64,
309
310    /// Number of parameter updates
311    pub num_updates: usize,
312
313    /// Largest parameter change per iteration
314    pub max_parameter_change: Vec<f64>,
315}
316
317/// Statistics about classical optimizer performance
318#[derive(Debug, Clone)]
319pub struct OptimizerStatistics {
320    /// Step acceptance rate
321    pub step_acceptance_rate: f64,
322
323    /// Average step size
324    pub average_step_size: f64,
325
326    /// Number of line search iterations (for applicable optimizers)
327    pub line_search_iterations: usize,
328
329    /// Optimizer-specific metrics
330    pub optimizer_metrics: HashMap<String, f64>,
331}
332
333/// Variational quantum annealing optimizer
334pub struct VariationalQuantumAnnealer {
335    /// Configuration
336    config: VqaConfig,
337
338    /// Current variational parameters
339    parameters: Vec<f64>,
340
341    /// Classical optimizer state
342    optimizer_state: OptimizerState,
343
344    /// Random number generator
345    rng: ChaCha8Rng,
346
347    /// Optimization history
348    history: OptimizationHistory,
349}
350
351/// Internal state for classical optimizers
352#[derive(Debug)]
353enum OptimizerState {
354    GradientDescent {
355        momentum: Option<Vec<f64>>,
356    },
357
358    Adam {
359        m: Vec<f64>, // First moment estimate
360        v: Vec<f64>, // Second moment estimate
361        t: usize,    // Time step
362    },
363
364    RMSprop {
365        s: Vec<f64>, // Moving average of squared gradients
366    },
367
368    NelderMead {
369        simplex: Vec<Vec<f64>>,
370        function_values: Vec<f64>,
371    },
372
373    BFGS {
374        hessian_inverse: Vec<Vec<f64>>,
375        previous_gradient: Option<Vec<f64>>,
376        previous_parameters: Option<Vec<f64>>,
377    },
378}
379
380/// Optimization history tracking
381#[derive(Debug)]
382struct OptimizationHistory {
383    energies: Vec<f64>,
384    parameters: Vec<Vec<f64>>,
385    gradients: Vec<Vec<f64>>,
386    function_evals: usize,
387    gradient_evals: usize,
388    start_time: Instant,
389}
390
391impl VariationalQuantumAnnealer {
392    /// Create a new variational quantum annealer
393    pub fn new(config: VqaConfig) -> VqaResult<Self> {
394        let num_parameters = Self::count_parameters(&config.ansatz)?;
395
396        let rng = match config.seed {
397            Some(seed) => ChaCha8Rng::seed_from_u64(seed),
398            None => ChaCha8Rng::seed_from_u64(thread_rng().gen()),
399        };
400
401        let mut vqa = Self {
402            config: config.clone(),
403            parameters: vec![0.0; num_parameters],
404            optimizer_state: Self::initialize_optimizer_state(&config.optimizer, num_parameters)?,
405            rng,
406            history: OptimizationHistory {
407                energies: Vec::new(),
408                parameters: Vec::new(),
409                gradients: Vec::new(),
410                function_evals: 0,
411                gradient_evals: 0,
412                start_time: Instant::now(),
413            },
414        };
415
416        vqa.initialize_parameters()?;
417        Ok(vqa)
418    }
419
420    /// Count the number of parameters in an ansatz
421    fn count_parameters(ansatz: &AnsatzType) -> VqaResult<usize> {
422        match ansatz {
423            AnsatzType::HardwareEfficient { depth, .. } => {
424                // For hardware-efficient: 3 rotations per qubit per layer + entangling layers
425                // Assuming this will be determined by the problem size when used
426                Ok(depth * 10) // Placeholder - should be calculated based on problem size
427            }
428
429            AnsatzType::QaoaInspired { layers, .. } => {
430                // For QAOA: 2 parameters per layer (gamma and beta)
431                Ok(layers * 2)
432            }
433
434            AnsatzType::AdiabaticInspired { time_steps, .. } => {
435                // For adiabatic: one parameter per time step
436                Ok(*time_steps)
437            }
438
439            AnsatzType::Custom { structure } => {
440                // Count unique parameter references
441                let mut max_param_index = 0;
442                for gate in structure {
443                    if let Some(param_ref) = Self::extract_parameter_ref(gate) {
444                        max_param_index = max_param_index.max(param_ref.index);
445                    }
446                }
447                Ok(max_param_index + 1)
448            }
449        }
450    }
451
452    /// Extract parameter reference from a gate
453    const fn extract_parameter_ref(gate: &QuantumGate) -> Option<&ParameterRef> {
454        match gate {
455            QuantumGate::RX { angle, .. }
456            | QuantumGate::RY { angle, .. }
457            | QuantumGate::RZ { angle, .. }
458            | QuantumGate::ZZ { angle, .. } => Some(angle),
459            _ => None,
460        }
461    }
462
463    /// Initialize optimizer state
464    fn initialize_optimizer_state(
465        optimizer: &ClassicalOptimizer,
466        num_params: usize,
467    ) -> VqaResult<OptimizerState> {
468        match optimizer {
469            ClassicalOptimizer::GradientDescent { .. } => {
470                Ok(OptimizerState::GradientDescent { momentum: None })
471            }
472
473            ClassicalOptimizer::Adam { .. } => Ok(OptimizerState::Adam {
474                m: vec![0.0; num_params],
475                v: vec![0.0; num_params],
476                t: 0,
477            }),
478
479            ClassicalOptimizer::RMSprop { .. } => Ok(OptimizerState::RMSprop {
480                s: vec![0.0; num_params],
481            }),
482
483            ClassicalOptimizer::NelderMead {
484                initial_simplex_size,
485                ..
486            } => {
487                // Initialize simplex
488                let mut simplex = vec![vec![0.0; num_params]; num_params + 1];
489                for i in 0..num_params {
490                    simplex[i + 1][i] = *initial_simplex_size;
491                }
492
493                Ok(OptimizerState::NelderMead {
494                    simplex,
495                    function_values: vec![f64::INFINITY; num_params + 1],
496                })
497            }
498
499            ClassicalOptimizer::BFGS { .. } => {
500                // Initialize identity matrix for Hessian inverse
501                let mut hessian_inverse = vec![vec![0.0; num_params]; num_params];
502                for i in 0..num_params {
503                    hessian_inverse[i][i] = 1.0;
504                }
505
506                Ok(OptimizerState::BFGS {
507                    hessian_inverse,
508                    previous_gradient: None,
509                    previous_parameters: None,
510                })
511            }
512        }
513    }
514
515    /// Initialize variational parameters
516    fn initialize_parameters(&mut self) -> VqaResult<()> {
517        let (min, max) = self.config.parameter_init_range;
518
519        for param in &mut self.parameters {
520            *param = self.rng.gen_range(min..max);
521        }
522
523        Ok(())
524    }
525
526    /// Optimize the variational quantum annealing problem
527    pub fn optimize(&mut self, problem: &IsingModel) -> VqaResult<VqaResults> {
528        println!("Starting variational quantum annealing optimization...");
529
530        self.history.start_time = Instant::now();
531        let mut best_energy = f64::INFINITY;
532        let mut best_solution = vec![0; problem.num_qubits];
533        let mut best_parameters = self.parameters.clone();
534
535        for iteration in 0..self.config.max_iterations {
536            let iteration_start = Instant::now();
537
538            // Check runtime limit
539            if let Some(max_runtime) = self.config.max_runtime {
540                if self.history.start_time.elapsed() > max_runtime {
541                    println!("Maximum runtime exceeded");
542                    break;
543                }
544            }
545
546            // Evaluate current parameters
547            let current_params = self.parameters.clone();
548            let (energy, solution) = self.evaluate_objective(problem, &current_params)?;
549
550            // Update best solution
551            if energy < best_energy {
552                best_energy = energy;
553                best_solution = solution;
554                best_parameters = self.parameters.clone();
555            }
556
557            // Record history
558            self.history.energies.push(energy);
559            self.history.parameters.push(self.parameters.clone());
560
561            // Compute gradients if needed
562            let gradients = if self.config.use_gradients {
563                let grads = self.compute_gradients(problem)?;
564                self.history.gradients.push(grads.clone());
565                Some(grads)
566            } else {
567                None
568            };
569
570            // Update parameters using classical optimizer
571            self.update_parameters(gradients.as_ref().map(std::vec::Vec::as_slice))?;
572
573            // Logging
574            if iteration % self.config.log_frequency == 0 {
575                let grad_norm = gradients
576                    .as_ref()
577                    .map_or(0.0, |g| g.iter().map(|&x| x.powi(2)).sum::<f64>().sqrt());
578
579                println!(
580                    "Iteration {}: Energy = {:.6}, Gradient norm = {:.6}, Time = {:.2?}",
581                    iteration,
582                    energy,
583                    grad_norm,
584                    iteration_start.elapsed()
585                );
586            }
587
588            // Check convergence
589            if self.check_convergence()? {
590                println!("Converged at iteration {iteration}");
591                break;
592            }
593        }
594
595        let total_time = self.history.start_time.elapsed();
596
597        // Calculate statistics
598        let statistics = self.calculate_statistics();
599
600        Ok(VqaResults {
601            best_solution,
602            best_energy,
603            optimal_parameters: best_parameters,
604            energy_history: self.history.energies.clone(),
605            parameter_history: self.history.parameters.clone(),
606            gradient_norms: self
607                .history
608                .gradients
609                .iter()
610                .map(|g| g.iter().map(|&x| x.powi(2)).sum::<f64>().sqrt())
611                .collect(),
612            iterations_completed: self.history.energies.len(),
613            converged: self.check_convergence()?,
614            total_time,
615            statistics,
616        })
617    }
618
619    /// Evaluate the objective function for given parameters
620    fn evaluate_objective(
621        &mut self,
622        problem: &IsingModel,
623        parameters: &[f64],
624    ) -> VqaResult<(f64, Vec<i8>)> {
625        self.history.function_evals += 1;
626
627        // Construct the parameterized quantum circuit
628        let circuit = self.build_quantum_circuit(problem, parameters)?;
629
630        // Execute quantum annealing with the parameterized problem
631        let modified_problem = self.apply_circuit_to_problem(problem, &circuit)?;
632
633        // Perform quantum annealing
634        let mut simulator = QuantumAnnealingSimulator::new(self.config.annealing_params.clone())
635            .map_err(|e| VqaError::OptimizationFailed(e.to_string()))?;
636
637        let mut best_energy = f64::INFINITY;
638        let mut best_solution = vec![0; problem.num_qubits];
639
640        // Multiple shots for statistical averaging
641        for _ in 0..self.config.num_shots {
642            let result = simulator
643                .solve(&modified_problem)
644                .map_err(|e| VqaError::OptimizationFailed(e.to_string()))?;
645
646            if result.best_energy < best_energy {
647                best_energy = result.best_energy;
648                best_solution = result.best_spins;
649            }
650        }
651
652        Ok((best_energy, best_solution))
653    }
654
655    /// Build the quantum circuit for current parameters
656    fn build_quantum_circuit(
657        &self,
658        problem: &IsingModel,
659        parameters: &[f64],
660    ) -> VqaResult<QuantumCircuit> {
661        let num_qubits = problem.num_qubits;
662        let mut circuit = QuantumCircuit::new(num_qubits);
663
664        match &self.config.ansatz {
665            AnsatzType::HardwareEfficient {
666                depth,
667                entangling_gates,
668            } => {
669                self.build_hardware_efficient_circuit(
670                    &mut circuit,
671                    *depth,
672                    entangling_gates,
673                    parameters,
674                )?;
675            }
676
677            AnsatzType::QaoaInspired { layers, mixer_type } => {
678                self.build_qaoa_inspired_circuit(
679                    &mut circuit,
680                    problem,
681                    *layers,
682                    mixer_type,
683                    parameters,
684                )?;
685            }
686
687            AnsatzType::AdiabaticInspired {
688                time_steps,
689                evolution_time,
690            } => {
691                self.build_adiabatic_inspired_circuit(
692                    &mut circuit,
693                    problem,
694                    *time_steps,
695                    *evolution_time,
696                    parameters,
697                )?;
698            }
699
700            AnsatzType::Custom { structure } => {
701                self.build_custom_circuit(&mut circuit, structure, parameters)?;
702            }
703        }
704
705        Ok(circuit)
706    }
707
708    /// Build hardware-efficient ansatz circuit
709    fn build_hardware_efficient_circuit(
710        &self,
711        circuit: &mut QuantumCircuit,
712        depth: usize,
713        entangling_gates: &EntanglingGateType,
714        parameters: &[f64],
715    ) -> VqaResult<()> {
716        let num_qubits = circuit.num_qubits;
717        let mut param_idx = 0;
718
719        for layer in 0..depth {
720            // Single-qubit rotations
721            for qubit in 0..num_qubits {
722                if param_idx < parameters.len() {
723                    circuit.add_gate(QuantumGate::RY {
724                        qubit,
725                        angle: ParameterRef::new(param_idx),
726                    });
727                    param_idx += 1;
728                }
729
730                if param_idx < parameters.len() {
731                    circuit.add_gate(QuantumGate::RZ {
732                        qubit,
733                        angle: ParameterRef::new(param_idx),
734                    });
735                    param_idx += 1;
736                }
737            }
738
739            // Entangling gates
740            match entangling_gates {
741                EntanglingGateType::CNot => {
742                    for qubit in 0..num_qubits - 1 {
743                        circuit.add_gate(QuantumGate::CNOT {
744                            control: qubit,
745                            target: qubit + 1,
746                        });
747                    }
748                }
749
750                EntanglingGateType::CZ => {
751                    for qubit in 0..num_qubits - 1 {
752                        circuit.add_gate(QuantumGate::CZ {
753                            control: qubit,
754                            target: qubit + 1,
755                        });
756                    }
757                }
758
759                EntanglingGateType::ZZ => {
760                    for qubit in 0..num_qubits - 1 {
761                        if param_idx < parameters.len() {
762                            circuit.add_gate(QuantumGate::ZZ {
763                                qubit1: qubit,
764                                qubit2: qubit + 1,
765                                angle: ParameterRef::new(param_idx),
766                            });
767                            param_idx += 1;
768                        }
769                    }
770                }
771
772                EntanglingGateType::XY => {
773                    // Implement XY gates as combination of other gates
774                    for qubit in 0..num_qubits - 1 {
775                        if param_idx < parameters.len() {
776                            // Simplified XY implementation
777                            circuit.add_gate(QuantumGate::CNOT {
778                                control: qubit,
779                                target: qubit + 1,
780                            });
781                            param_idx += 1;
782                        }
783                    }
784                }
785            }
786        }
787
788        Ok(())
789    }
790
791    /// Build QAOA-inspired circuit
792    fn build_qaoa_inspired_circuit(
793        &self,
794        circuit: &mut QuantumCircuit,
795        problem: &IsingModel,
796        layers: usize,
797        mixer_type: &MixerType,
798        parameters: &[f64],
799    ) -> VqaResult<()> {
800        let num_qubits = circuit.num_qubits;
801
802        for layer in 0..layers {
803            let gamma_idx = layer * 2;
804            let beta_idx = layer * 2 + 1;
805
806            if gamma_idx >= parameters.len() || beta_idx >= parameters.len() {
807                break;
808            }
809
810            let gamma = parameters[gamma_idx];
811            let beta = parameters[beta_idx];
812
813            // Problem Hamiltonian layer (ZZ interactions)
814            for i in 0..num_qubits {
815                for j in (i + 1)..num_qubits {
816                    if let Ok(coupling) = problem.get_coupling(i, j) {
817                        if coupling != 0.0 {
818                            circuit.add_gate(QuantumGate::ZZ {
819                                qubit1: i,
820                                qubit2: j,
821                                angle: ParameterRef::scaled(gamma_idx, gamma * coupling),
822                            });
823                        }
824                    }
825                }
826
827                // Bias terms
828                if let Ok(bias) = problem.get_bias(i) {
829                    if bias != 0.0 {
830                        circuit.add_gate(QuantumGate::RZ {
831                            qubit: i,
832                            angle: ParameterRef::scaled(gamma_idx, gamma * bias),
833                        });
834                    }
835                }
836            }
837
838            // Mixer layer
839            match mixer_type {
840                MixerType::XRotation => {
841                    for qubit in 0..num_qubits {
842                        circuit.add_gate(QuantumGate::RX {
843                            qubit,
844                            angle: ParameterRef::scaled(beta_idx, beta),
845                        });
846                    }
847                }
848
849                MixerType::XY => {
850                    // XY mixer for hard constraints
851                    for qubit in 0..num_qubits - 1 {
852                        circuit.add_gate(QuantumGate::CNOT {
853                            control: qubit,
854                            target: qubit + 1,
855                        });
856                    }
857                }
858
859                MixerType::MultiAngle => {
860                    // Multi-angle mixer
861                    for qubit in 0..num_qubits {
862                        circuit.add_gate(QuantumGate::RX {
863                            qubit,
864                            angle: ParameterRef::scaled(beta_idx, beta),
865                        });
866                        circuit.add_gate(QuantumGate::RY {
867                            qubit,
868                            angle: ParameterRef::scaled(beta_idx, beta * 0.5),
869                        });
870                    }
871                }
872            }
873        }
874
875        Ok(())
876    }
877
878    /// Build adiabatic-inspired circuit
879    fn build_adiabatic_inspired_circuit(
880        &self,
881        circuit: &mut QuantumCircuit,
882        problem: &IsingModel,
883        time_steps: usize,
884        evolution_time: f64,
885        parameters: &[f64],
886    ) -> VqaResult<()> {
887        let num_qubits = circuit.num_qubits;
888        let dt = evolution_time / time_steps as f64;
889
890        for step in 0..time_steps {
891            if step >= parameters.len() {
892                break;
893            }
894
895            let s = parameters[step]; // Annealing parameter s(t)
896
897            // Transverse field (initial Hamiltonian)
898            for qubit in 0..num_qubits {
899                circuit.add_gate(QuantumGate::RX {
900                    qubit,
901                    angle: ParameterRef::scaled(step, -2.0 * (1.0 - s) * dt),
902                });
903            }
904
905            // Problem Hamiltonian
906            for i in 0..num_qubits {
907                for j in (i + 1)..num_qubits {
908                    if let Ok(coupling) = problem.get_coupling(i, j) {
909                        if coupling != 0.0 {
910                            circuit.add_gate(QuantumGate::ZZ {
911                                qubit1: i,
912                                qubit2: j,
913                                angle: ParameterRef::scaled(step, -s * coupling * dt),
914                            });
915                        }
916                    }
917                }
918            }
919        }
920
921        Ok(())
922    }
923
924    /// Build custom circuit from structure
925    fn build_custom_circuit(
926        &self,
927        circuit: &mut QuantumCircuit,
928        structure: &[QuantumGate],
929        parameters: &[f64],
930    ) -> VqaResult<()> {
931        for gate in structure {
932            // Create gate with current parameter values
933            let parameterized_gate = match gate {
934                QuantumGate::RX { qubit, angle } => {
935                    let param_value = if angle.index < parameters.len() {
936                        parameters[angle.index] * angle.scale
937                    } else {
938                        0.0
939                    };
940                    QuantumGate::RX {
941                        qubit: *qubit,
942                        angle: ParameterRef::scaled(angle.index, param_value),
943                    }
944                }
945
946                QuantumGate::RY { qubit, angle } => {
947                    let param_value = if angle.index < parameters.len() {
948                        parameters[angle.index] * angle.scale
949                    } else {
950                        0.0
951                    };
952                    QuantumGate::RY {
953                        qubit: *qubit,
954                        angle: ParameterRef::scaled(angle.index, param_value),
955                    }
956                }
957
958                QuantumGate::RZ { qubit, angle } => {
959                    let param_value = if angle.index < parameters.len() {
960                        parameters[angle.index] * angle.scale
961                    } else {
962                        0.0
963                    };
964                    QuantumGate::RZ {
965                        qubit: *qubit,
966                        angle: ParameterRef::scaled(angle.index, param_value),
967                    }
968                }
969
970                QuantumGate::ZZ {
971                    qubit1,
972                    qubit2,
973                    angle,
974                } => {
975                    let param_value = if angle.index < parameters.len() {
976                        parameters[angle.index] * angle.scale
977                    } else {
978                        0.0
979                    };
980                    QuantumGate::ZZ {
981                        qubit1: *qubit1,
982                        qubit2: *qubit2,
983                        angle: ParameterRef::scaled(angle.index, param_value),
984                    }
985                }
986
987                // Non-parameterized gates
988                _ => gate.clone(),
989            };
990
991            circuit.add_gate(parameterized_gate);
992        }
993
994        Ok(())
995    }
996
997    /// Apply quantum circuit to modify the problem
998    fn apply_circuit_to_problem(
999        &self,
1000        problem: &IsingModel,
1001        circuit: &QuantumCircuit,
1002    ) -> VqaResult<IsingModel> {
1003        // For now, return the original problem
1004        // In a full implementation, this would apply the quantum circuit effects
1005        // to modify the problem Hamiltonian
1006        Ok(problem.clone())
1007    }
1008
1009    /// Compute gradients using finite differences
1010    fn compute_gradients(&mut self, problem: &IsingModel) -> VqaResult<Vec<f64>> {
1011        self.history.gradient_evals += 1;
1012
1013        let mut gradients = vec![0.0; self.parameters.len()];
1014        let step = self.config.gradient_step;
1015
1016        for i in 0..self.parameters.len() {
1017            // Create modified parameter vectors
1018            let mut params_plus = self.parameters.clone();
1019            let mut params_minus = self.parameters.clone();
1020
1021            params_plus[i] += step;
1022            params_minus[i] -= step;
1023
1024            let (energy_plus, _) = self.evaluate_objective(problem, &params_plus)?;
1025            let (energy_minus, _) = self.evaluate_objective(problem, &params_minus)?;
1026
1027            // Compute gradient
1028            gradients[i] = (energy_plus - energy_minus) / (2.0 * step);
1029        }
1030
1031        Ok(gradients)
1032    }
1033
1034    /// Update parameters using classical optimizer
1035    fn update_parameters(&mut self, gradients: Option<&[f64]>) -> VqaResult<()> {
1036        match (&mut self.optimizer_state, &self.config.optimizer) {
1037            (
1038                OptimizerState::Adam { m, v, t },
1039                ClassicalOptimizer::Adam {
1040                    learning_rate,
1041                    beta1,
1042                    beta2,
1043                    epsilon,
1044                },
1045            ) => {
1046                if let Some(grads) = gradients {
1047                    *t += 1;
1048
1049                    for i in 0..self.parameters.len() {
1050                        // Update biased first moment estimate
1051                        m[i] = (1.0 - beta1).mul_add(grads[i], beta1 * m[i]);
1052
1053                        // Update biased second moment estimate
1054                        v[i] = (1.0 - beta2).mul_add(grads[i].powi(2), beta2 * v[i]);
1055
1056                        // Compute bias-corrected estimates
1057                        let m_hat = m[i] / (1.0 - beta1.powi(*t as i32));
1058                        let v_hat = v[i] / (1.0 - beta2.powi(*t as i32));
1059
1060                        // Update parameter
1061                        self.parameters[i] -= learning_rate * m_hat / (v_hat.sqrt() + epsilon);
1062                    }
1063                }
1064            }
1065
1066            (
1067                OptimizerState::GradientDescent { .. },
1068                ClassicalOptimizer::GradientDescent { learning_rate },
1069            ) => {
1070                if let Some(grads) = gradients {
1071                    for i in 0..self.parameters.len() {
1072                        self.parameters[i] -= learning_rate * grads[i];
1073                    }
1074                }
1075            }
1076
1077            _ => {
1078                // Implement other optimizers as needed
1079                return Err(VqaError::OptimizationFailed(
1080                    "Optimizer not implemented".to_string(),
1081                ));
1082            }
1083        }
1084
1085        Ok(())
1086    }
1087
1088    /// Check convergence criteria
1089    fn check_convergence(&self) -> VqaResult<bool> {
1090        if self.history.energies.len() < 2 {
1091            return Ok(false);
1092        }
1093
1094        let recent_energies =
1095            &self.history.energies[self.history.energies.len().saturating_sub(5)..];
1096        let energy_range = recent_energies
1097            .iter()
1098            .copied()
1099            .fold(f64::NEG_INFINITY, f64::max)
1100            - recent_energies
1101                .iter()
1102                .copied()
1103                .fold(f64::INFINITY, f64::min);
1104
1105        Ok(energy_range < self.config.convergence_tolerance)
1106    }
1107
1108    /// Calculate optimization statistics
1109    fn calculate_statistics(&self) -> VqaStatistics {
1110        let average_energy = if self.history.energies.is_empty() {
1111            0.0
1112        } else {
1113            self.history.energies.iter().sum::<f64>() / self.history.energies.len() as f64
1114        };
1115
1116        let energy_variance = if self.history.energies.len() > 1 {
1117            let mean = average_energy;
1118            self.history
1119                .energies
1120                .iter()
1121                .map(|&e| (e - mean).powi(2))
1122                .sum::<f64>()
1123                / (self.history.energies.len() - 1) as f64
1124        } else {
1125            0.0
1126        };
1127
1128        // Calculate parameter statistics
1129        let parameter_stats = self.calculate_parameter_statistics();
1130
1131        VqaStatistics {
1132            function_evaluations: self.history.function_evals,
1133            gradient_evaluations: self.history.gradient_evals,
1134            total_annealing_time: Duration::from_secs(0), // Would be tracked in real implementation
1135            average_energy,
1136            energy_variance,
1137            parameter_stats,
1138            optimizer_stats: OptimizerStatistics {
1139                step_acceptance_rate: 1.0, // Placeholder
1140                average_step_size: 0.01,   // Placeholder
1141                line_search_iterations: 0,
1142                optimizer_metrics: HashMap::new(),
1143            },
1144        }
1145    }
1146
1147    /// Calculate parameter statistics
1148    fn calculate_parameter_statistics(&self) -> ParameterStatistics {
1149        let average_magnitude = if self.parameters.is_empty() {
1150            0.0
1151        } else {
1152            self.parameters.iter().map(|&p| p.abs()).sum::<f64>() / self.parameters.len() as f64
1153        };
1154
1155        let parameter_variance = if self.parameters.len() > 1 {
1156            let mean = self.parameters.iter().sum::<f64>() / self.parameters.len() as f64;
1157            self.parameters
1158                .iter()
1159                .map(|&p| (p - mean).powi(2))
1160                .sum::<f64>()
1161                / (self.parameters.len() - 1) as f64
1162        } else {
1163            0.0
1164        };
1165
1166        ParameterStatistics {
1167            average_magnitude,
1168            parameter_variance,
1169            num_updates: self.history.parameters.len(),
1170            max_parameter_change: Vec::new(), // Would track in real implementation
1171        }
1172    }
1173}
1174
1175/// Quantum circuit representation
1176#[derive(Debug, Clone)]
1177pub struct QuantumCircuit {
1178    /// Number of qubits
1179    pub num_qubits: usize,
1180
1181    /// Sequence of quantum gates
1182    pub gates: Vec<QuantumGate>,
1183}
1184
1185impl QuantumCircuit {
1186    /// Create a new quantum circuit
1187    #[must_use]
1188    pub const fn new(num_qubits: usize) -> Self {
1189        Self {
1190            num_qubits,
1191            gates: Vec::new(),
1192        }
1193    }
1194
1195    /// Add a gate to the circuit
1196    pub fn add_gate(&mut self, gate: QuantumGate) {
1197        self.gates.push(gate);
1198    }
1199
1200    /// Get the depth of the circuit
1201    #[must_use]
1202    pub fn depth(&self) -> usize {
1203        // Simplified depth calculation
1204        self.gates.len()
1205    }
1206}
1207
1208/// Helper functions for creating common VQA configurations
1209
1210/// Create a QAOA-style VQA configuration
1211#[must_use]
1212pub fn create_qaoa_vqa_config(layers: usize, max_iterations: usize) -> VqaConfig {
1213    VqaConfig {
1214        ansatz: AnsatzType::QaoaInspired {
1215            layers,
1216            mixer_type: MixerType::XRotation,
1217        },
1218        max_iterations,
1219        ..Default::default()
1220    }
1221}
1222
1223/// Create a hardware-efficient VQA configuration
1224#[must_use]
1225pub fn create_hardware_efficient_vqa_config(depth: usize, max_iterations: usize) -> VqaConfig {
1226    VqaConfig {
1227        ansatz: AnsatzType::HardwareEfficient {
1228            depth,
1229            entangling_gates: EntanglingGateType::CNot,
1230        },
1231        max_iterations,
1232        ..Default::default()
1233    }
1234}
1235
1236/// Create an adiabatic-inspired VQA configuration
1237#[must_use]
1238pub fn create_adiabatic_vqa_config(
1239    time_steps: usize,
1240    evolution_time: f64,
1241    max_iterations: usize,
1242) -> VqaConfig {
1243    VqaConfig {
1244        ansatz: AnsatzType::AdiabaticInspired {
1245            time_steps,
1246            evolution_time,
1247        },
1248        max_iterations,
1249        ..Default::default()
1250    }
1251}
1252
1253#[cfg(test)]
1254mod tests {
1255    use super::*;
1256
1257    #[test]
1258    fn test_vqa_config_creation() {
1259        let config = create_qaoa_vqa_config(3, 50);
1260
1261        match config.ansatz {
1262            AnsatzType::QaoaInspired { layers, .. } => {
1263                assert_eq!(layers, 3);
1264            }
1265            _ => panic!("Expected QAOA ansatz"),
1266        }
1267
1268        assert_eq!(config.max_iterations, 50);
1269    }
1270
1271    #[test]
1272    fn test_parameter_ref() {
1273        let param_ref = ParameterRef::new(5);
1274        assert_eq!(param_ref.index, 5);
1275        assert_eq!(param_ref.scale, 1.0);
1276
1277        let scaled_ref = ParameterRef::scaled(3, 2.5);
1278        assert_eq!(scaled_ref.index, 3);
1279        assert_eq!(scaled_ref.scale, 2.5);
1280    }
1281
1282    #[test]
1283    fn test_quantum_circuit() {
1284        let mut circuit = QuantumCircuit::new(3);
1285        assert_eq!(circuit.num_qubits, 3);
1286        assert_eq!(circuit.gates.len(), 0);
1287
1288        circuit.add_gate(QuantumGate::RX {
1289            qubit: 0,
1290            angle: ParameterRef::new(0),
1291        });
1292
1293        assert_eq!(circuit.gates.len(), 1);
1294        assert_eq!(circuit.depth(), 1);
1295    }
1296
1297    #[test]
1298    fn test_parameter_counting() {
1299        let ansatz = AnsatzType::QaoaInspired {
1300            layers: 5,
1301            mixer_type: MixerType::XRotation,
1302        };
1303
1304        let count = VariationalQuantumAnnealer::count_parameters(&ansatz)
1305            .expect("parameter counting should succeed");
1306        assert_eq!(count, 10); // 2 parameters per layer
1307    }
1308}