quantrs2_anneal/scientific_performance_optimization/
profiling.rs

1//! Profiling and GPU acceleration types for scientific performance optimization.
2//!
3//! This module contains performance profiling, CPU profiling, memory profiling,
4//! I/O profiling, and GPU acceleration.
5
6use std::collections::{HashMap, VecDeque};
7use std::time::{Duration, Instant};
8
9use super::config::{GPUAccelerationConfig, ProfilingConfig};
10
11/// Performance profiler for system monitoring
12pub struct PerformanceProfiler {
13    /// Configuration
14    pub config: ProfilingConfig,
15    /// CPU profiler
16    pub cpu_profiler: CPUProfiler,
17    /// Memory profiler
18    pub memory_profiler: MemoryProfiler,
19    /// I/O profiler
20    pub io_profiler: IOProfiler,
21    /// Performance metrics
22    pub metrics: PerformanceMetrics,
23}
24
25impl PerformanceProfiler {
26    /// Create a new performance profiler
27    #[must_use]
28    pub fn new(config: ProfilingConfig) -> Self {
29        Self {
30            config,
31            cpu_profiler: CPUProfiler::new(),
32            memory_profiler: MemoryProfiler::new(),
33            io_profiler: IOProfiler::new(),
34            metrics: PerformanceMetrics::default(),
35        }
36    }
37
38    /// Start profiling
39    pub fn start(&mut self) {
40        self.cpu_profiler.start();
41        self.memory_profiler.start();
42        self.io_profiler.start();
43    }
44
45    /// Stop profiling and collect metrics
46    pub fn stop(&mut self) -> PerformanceMetrics {
47        self.cpu_profiler.stop();
48        self.memory_profiler.stop();
49        self.io_profiler.stop();
50        self.metrics.clone()
51    }
52
53    /// Take a snapshot of current metrics
54    pub fn snapshot(&mut self) {
55        self.cpu_profiler.sample();
56        self.memory_profiler.sample();
57        self.io_profiler.sample();
58    }
59}
60
61/// CPU performance profiler
62#[derive(Debug)]
63pub struct CPUProfiler {
64    /// CPU usage samples
65    pub cpu_samples: VecDeque<CPUSample>,
66    /// Function call statistics
67    pub function_stats: HashMap<String, FunctionStatistics>,
68    /// Profiling configuration
69    pub config: CPUProfilingConfig,
70    /// Is profiling active
71    pub is_active: bool,
72}
73
74impl CPUProfiler {
75    /// Create a new CPU profiler
76    #[must_use]
77    pub fn new() -> Self {
78        Self {
79            cpu_samples: VecDeque::new(),
80            function_stats: HashMap::new(),
81            config: CPUProfilingConfig::default(),
82            is_active: false,
83        }
84    }
85
86    /// Start CPU profiling
87    pub fn start(&mut self) {
88        self.is_active = true;
89        self.cpu_samples.clear();
90    }
91
92    /// Stop CPU profiling
93    pub fn stop(&mut self) {
94        self.is_active = false;
95    }
96
97    /// Take a CPU sample
98    pub fn sample(&mut self) {
99        if !self.is_active {
100            return;
101        }
102
103        let sample = CPUSample {
104            timestamp: Instant::now(),
105            usage_percent: 0.0, // Would need system call to get real value
106            active_threads: std::thread::available_parallelism()
107                .map(|p| p.get())
108                .unwrap_or(1),
109            context_switches: 0,
110        };
111
112        self.cpu_samples.push_back(sample);
113
114        // Keep only recent samples
115        while self.cpu_samples.len() > self.config.max_samples {
116            self.cpu_samples.pop_front();
117        }
118    }
119
120    /// Record function call
121    pub fn record_function_call(&mut self, function_name: &str, duration: Duration) {
122        let stats = self
123            .function_stats
124            .entry(function_name.to_string())
125            .or_insert_with(|| FunctionStatistics::new(function_name));
126
127        stats.call_count += 1;
128        stats.total_time += duration;
129        stats.average_time = stats.total_time / stats.call_count as u32;
130
131        if duration > stats.max_time {
132            stats.max_time = duration;
133        }
134        if stats.min_time == Duration::ZERO || duration < stats.min_time {
135            stats.min_time = duration;
136        }
137    }
138
139    /// Get average CPU usage
140    #[must_use]
141    pub fn average_usage(&self) -> f64 {
142        if self.cpu_samples.is_empty() {
143            return 0.0;
144        }
145        let sum: f64 = self.cpu_samples.iter().map(|s| s.usage_percent).sum();
146        sum / self.cpu_samples.len() as f64
147    }
148}
149
150impl Default for CPUProfiler {
151    fn default() -> Self {
152        Self::new()
153    }
154}
155
156/// CPU usage sample
157#[derive(Debug, Clone)]
158pub struct CPUSample {
159    /// Timestamp
160    pub timestamp: Instant,
161    /// CPU usage percentage
162    pub usage_percent: f64,
163    /// Active threads
164    pub active_threads: usize,
165    /// Context switches
166    pub context_switches: u64,
167}
168
169/// Function call statistics
170#[derive(Debug, Clone)]
171pub struct FunctionStatistics {
172    /// Function name
173    pub function_name: String,
174    /// Total call count
175    pub call_count: u64,
176    /// Total execution time
177    pub total_time: Duration,
178    /// Average execution time
179    pub average_time: Duration,
180    /// Maximum execution time
181    pub max_time: Duration,
182    /// Minimum execution time
183    pub min_time: Duration,
184}
185
186impl FunctionStatistics {
187    /// Create new function statistics
188    #[must_use]
189    pub fn new(function_name: &str) -> Self {
190        Self {
191            function_name: function_name.to_string(),
192            call_count: 0,
193            total_time: Duration::ZERO,
194            average_time: Duration::ZERO,
195            max_time: Duration::ZERO,
196            min_time: Duration::ZERO,
197        }
198    }
199}
200
201/// CPU profiling configuration
202#[derive(Debug, Clone)]
203pub struct CPUProfilingConfig {
204    /// Maximum samples to keep
205    pub max_samples: usize,
206    /// Sampling interval
207    pub sampling_interval: Duration,
208    /// Enable function-level profiling
209    pub enable_function_profiling: bool,
210}
211
212impl Default for CPUProfilingConfig {
213    fn default() -> Self {
214        Self {
215            max_samples: 1000,
216            sampling_interval: Duration::from_millis(100),
217            enable_function_profiling: true,
218        }
219    }
220}
221
222/// Memory profiler
223#[derive(Debug, Clone, Default)]
224pub struct MemoryProfiler {
225    /// Memory samples
226    pub samples: VecDeque<MemorySample>,
227    /// Is active
228    pub is_active: bool,
229}
230
231impl MemoryProfiler {
232    /// Create a new memory profiler
233    #[must_use]
234    pub const fn new() -> Self {
235        Self {
236            samples: VecDeque::new(),
237            is_active: false,
238        }
239    }
240
241    /// Start memory profiling
242    pub fn start(&mut self) {
243        self.is_active = true;
244        self.samples.clear();
245    }
246
247    /// Stop memory profiling
248    pub fn stop(&mut self) {
249        self.is_active = false;
250    }
251
252    /// Take a memory sample
253    pub fn sample(&mut self) {
254        if !self.is_active {
255            return;
256        }
257
258        let sample = MemorySample {
259            timestamp: Instant::now(),
260            heap_usage: 0,
261            stack_usage: 0,
262            total_allocated: 0,
263        };
264
265        self.samples.push_back(sample);
266    }
267}
268
269/// Memory sample
270#[derive(Debug, Clone)]
271pub struct MemorySample {
272    /// Timestamp
273    pub timestamp: Instant,
274    /// Heap usage
275    pub heap_usage: usize,
276    /// Stack usage
277    pub stack_usage: usize,
278    /// Total allocated
279    pub total_allocated: usize,
280}
281
282/// I/O profiler
283#[derive(Debug, Clone, Default)]
284pub struct IOProfiler {
285    /// I/O samples
286    pub samples: VecDeque<IOSample>,
287    /// Is active
288    pub is_active: bool,
289}
290
291impl IOProfiler {
292    /// Create a new I/O profiler
293    #[must_use]
294    pub const fn new() -> Self {
295        Self {
296            samples: VecDeque::new(),
297            is_active: false,
298        }
299    }
300
301    /// Start I/O profiling
302    pub fn start(&mut self) {
303        self.is_active = true;
304        self.samples.clear();
305    }
306
307    /// Stop I/O profiling
308    pub fn stop(&mut self) {
309        self.is_active = false;
310    }
311
312    /// Take an I/O sample
313    pub fn sample(&mut self) {
314        if !self.is_active {
315            return;
316        }
317
318        let sample = IOSample {
319            timestamp: Instant::now(),
320            bytes_read: 0,
321            bytes_written: 0,
322            io_operations: 0,
323        };
324
325        self.samples.push_back(sample);
326    }
327}
328
329/// I/O sample
330#[derive(Debug, Clone)]
331pub struct IOSample {
332    /// Timestamp
333    pub timestamp: Instant,
334    /// Bytes read
335    pub bytes_read: u64,
336    /// Bytes written
337    pub bytes_written: u64,
338    /// I/O operations count
339    pub io_operations: u64,
340}
341
342/// Performance metrics
343#[derive(Debug, Clone, Default)]
344pub struct PerformanceMetrics {
345    /// Overall performance score
346    pub performance_score: f64,
347    /// CPU utilization
348    pub cpu_utilization: f64,
349    /// Memory utilization
350    pub memory_utilization: f64,
351    /// I/O throughput
352    pub io_throughput: f64,
353}
354
355/// GPU accelerator for compute-intensive tasks
356pub struct GPUAccelerator {
357    /// Configuration
358    pub config: GPUAccelerationConfig,
359    /// Available GPU devices
360    pub devices: Vec<GPUDevice>,
361    /// GPU memory manager
362    pub memory_manager: GPUMemoryManager,
363    /// Kernel registry
364    pub kernel_registry: KernelRegistry,
365}
366
367impl GPUAccelerator {
368    /// Create a new GPU accelerator
369    #[must_use]
370    pub fn new(config: GPUAccelerationConfig) -> Self {
371        Self {
372            config,
373            devices: Vec::new(),
374            memory_manager: GPUMemoryManager::new(),
375            kernel_registry: KernelRegistry::new(),
376        }
377    }
378
379    /// Check if GPU is available
380    #[must_use]
381    pub fn is_available(&self) -> bool {
382        self.config.enable_gpu && !self.devices.is_empty()
383    }
384
385    /// Get available GPU count
386    #[must_use]
387    pub fn device_count(&self) -> usize {
388        self.devices.len()
389    }
390
391    /// Get device by ID
392    #[must_use]
393    pub fn get_device(&self, device_id: usize) -> Option<&GPUDevice> {
394        self.devices.iter().find(|d| d.device_id == device_id)
395    }
396
397    /// Detect available GPU devices
398    pub fn detect_devices(&mut self) {
399        // In a real implementation, this would use CUDA/OpenCL to detect devices
400        // For now, this is a placeholder
401        self.devices.clear();
402    }
403}
404
405/// GPU device representation
406#[derive(Debug)]
407pub struct GPUDevice {
408    /// Device identifier
409    pub device_id: usize,
410    /// Device name
411    pub device_name: String,
412    /// Compute capability
413    pub compute_capability: (u32, u32),
414    /// Total memory
415    pub total_memory: usize,
416    /// Available memory
417    pub available_memory: usize,
418    /// Device status
419    pub status: GPUDeviceStatus,
420}
421
422impl GPUDevice {
423    /// Create a new GPU device
424    #[must_use]
425    pub fn new(device_id: usize, device_name: String) -> Self {
426        Self {
427            device_id,
428            device_name,
429            compute_capability: (0, 0),
430            total_memory: 0,
431            available_memory: 0,
432            status: GPUDeviceStatus::Available,
433        }
434    }
435
436    /// Check if device is available
437    #[must_use]
438    pub fn is_available(&self) -> bool {
439        self.status == GPUDeviceStatus::Available
440    }
441
442    /// Get memory utilization
443    #[must_use]
444    pub fn memory_utilization(&self) -> f64 {
445        if self.total_memory == 0 {
446            return 0.0;
447        }
448        (self.total_memory - self.available_memory) as f64 / self.total_memory as f64
449    }
450}
451
452/// GPU device status
453#[derive(Debug, Clone, PartialEq, Eq)]
454pub enum GPUDeviceStatus {
455    /// Device is available
456    Available,
457    /// Device is busy
458    Busy,
459    /// Device has an error
460    Error,
461    /// Device is not supported
462    Unsupported,
463}
464
465/// GPU memory manager
466#[derive(Debug, Clone, Default)]
467pub struct GPUMemoryManager {
468    /// Allocated buffers
469    pub allocated_buffers: HashMap<String, GPUBuffer>,
470    /// Total allocated
471    pub total_allocated: usize,
472}
473
474impl GPUMemoryManager {
475    /// Create a new GPU memory manager
476    #[must_use]
477    pub fn new() -> Self {
478        Self {
479            allocated_buffers: HashMap::new(),
480            total_allocated: 0,
481        }
482    }
483
484    /// Allocate a buffer
485    pub fn allocate(&mut self, name: &str, size: usize) -> Result<(), String> {
486        let buffer = GPUBuffer {
487            name: name.to_string(),
488            size,
489            device_ptr: 0, // Placeholder
490        };
491
492        self.allocated_buffers.insert(name.to_string(), buffer);
493        self.total_allocated += size;
494        Ok(())
495    }
496
497    /// Free a buffer
498    pub fn free(&mut self, name: &str) -> Result<(), String> {
499        if let Some(buffer) = self.allocated_buffers.remove(name) {
500            self.total_allocated = self.total_allocated.saturating_sub(buffer.size);
501            Ok(())
502        } else {
503            Err(format!("Buffer {name} not found"))
504        }
505    }
506}
507
508/// GPU buffer
509#[derive(Debug, Clone)]
510pub struct GPUBuffer {
511    /// Buffer name
512    pub name: String,
513    /// Buffer size
514    pub size: usize,
515    /// Device pointer
516    pub device_ptr: usize,
517}
518
519/// Kernel registry for GPU compute kernels
520#[derive(Debug, Clone, Default)]
521pub struct KernelRegistry {
522    /// Registered kernels
523    pub kernels: HashMap<String, GPUKernel>,
524}
525
526impl KernelRegistry {
527    /// Create a new kernel registry
528    #[must_use]
529    pub fn new() -> Self {
530        Self {
531            kernels: HashMap::new(),
532        }
533    }
534
535    /// Register a kernel
536    pub fn register(&mut self, name: &str, kernel: GPUKernel) {
537        self.kernels.insert(name.to_string(), kernel);
538    }
539
540    /// Get a kernel
541    #[must_use]
542    pub fn get(&self, name: &str) -> Option<&GPUKernel> {
543        self.kernels.get(name)
544    }
545}
546
547/// GPU compute kernel
548#[derive(Debug, Clone)]
549pub struct GPUKernel {
550    /// Kernel name
551    pub name: String,
552    /// Block size
553    pub block_size: usize,
554    /// Grid size
555    pub grid_size: usize,
556    /// Shared memory size
557    pub shared_memory: usize,
558}
559
560impl GPUKernel {
561    /// Create a new GPU kernel
562    #[must_use]
563    pub fn new(name: &str) -> Self {
564        Self {
565            name: name.to_string(),
566            block_size: 256,
567            grid_size: 1024,
568            shared_memory: 0,
569        }
570    }
571}