quantrs2_anneal/
realtime_adaptive_qec.rs

1//! Real-Time Adaptive Quantum Error Correction for Annealing Systems
2//!
3//! This module implements a sophisticated real-time adaptive quantum error correction
4//! system that dynamically adjusts error correction strategies based on continuous
5//! noise monitoring, performance feedback, and machine learning predictions. It provides
6//! adaptive protocols that optimize error correction overhead while maintaining
7//! solution quality in varying noise environments.
8//!
9//! Key Features:
10//! - Real-time noise characterization and drift tracking
11//! - Adaptive error correction protocol selection
12//! - Machine learning-based noise prediction
13//! - Dynamic threshold adjustment and resource allocation
14//! - Multi-level error correction hierarchies
15//! - Performance-aware error correction optimization
16//! - Temporal noise correlation analysis
17//! - Predictive error mitigation strategies
18
19use std::collections::{BTreeMap, HashMap, VecDeque};
20use std::sync::{Arc, Mutex, RwLock};
21use std::thread;
22use std::time::{Duration, Instant, SystemTime};
23
24use crate::applications::{ApplicationError, ApplicationResult};
25use crate::ising::{IsingModel, QuboModel};
26use crate::quantum_error_correction::{
27    ErrorCorrectionCode, LogicalAnnealingEncoder, MitigationTechnique, SyndromeDetector,
28};
29
30/// Real-time adaptive QEC configuration
31#[derive(Debug, Clone)]
32pub struct AdaptiveQecConfig {
33    /// Noise monitoring interval
34    pub monitoring_interval: Duration,
35    /// Adaptation trigger threshold
36    pub adaptation_threshold: f64,
37    /// Performance window for assessment
38    pub performance_window: Duration,
39    /// Machine learning configuration
40    pub ml_config: MLNoiseConfig,
41    /// Hierarchical error correction settings
42    pub hierarchy_config: HierarchyConfig,
43    /// Resource management settings
44    pub resource_config: ResourceManagementConfig,
45    /// Prediction and forecasting settings
46    pub prediction_config: PredictionConfig,
47}
48
49impl Default for AdaptiveQecConfig {
50    fn default() -> Self {
51        Self {
52            monitoring_interval: Duration::from_millis(100),
53            adaptation_threshold: 0.1,
54            performance_window: Duration::from_secs(30),
55            ml_config: MLNoiseConfig::default(),
56            hierarchy_config: HierarchyConfig::default(),
57            resource_config: ResourceManagementConfig::default(),
58            prediction_config: PredictionConfig::default(),
59        }
60    }
61}
62
63/// Machine learning configuration for noise prediction
64#[derive(Debug, Clone)]
65pub struct MLNoiseConfig {
66    /// Enable neural network noise prediction
67    pub enable_neural_prediction: bool,
68    /// Neural network architecture
69    pub network_architecture: NeuralArchitecture,
70    /// Training data window size
71    pub training_window: usize,
72    /// Prediction horizon
73    pub prediction_horizon: Duration,
74    /// Model update frequency
75    pub update_frequency: Duration,
76    /// Feature extraction settings
77    pub feature_config: FeatureConfig,
78}
79
80impl Default for MLNoiseConfig {
81    fn default() -> Self {
82        Self {
83            enable_neural_prediction: true,
84            network_architecture: NeuralArchitecture::LSTM,
85            training_window: 1000,
86            prediction_horizon: Duration::from_secs(10),
87            update_frequency: Duration::from_secs(60),
88            feature_config: FeatureConfig::default(),
89        }
90    }
91}
92
93/// Neural network architectures for noise prediction
94#[derive(Debug, Clone, PartialEq, Eq)]
95pub enum NeuralArchitecture {
96    /// Long Short-Term Memory networks
97    LSTM,
98    /// Gated Recurrent Units
99    GRU,
100    /// Transformer architecture
101    Transformer,
102    /// Convolutional Neural Network
103    CNN,
104    /// Hybrid CNN-LSTM
105    CNNLstm,
106}
107
108/// Feature extraction configuration
109#[derive(Debug, Clone)]
110pub struct FeatureConfig {
111    /// Enable temporal features
112    pub enable_temporal: bool,
113    /// Enable spectral analysis features
114    pub enable_spectral: bool,
115    /// Enable correlation features
116    pub enable_correlation: bool,
117    /// Feature normalization method
118    pub normalization: FeatureNormalization,
119    /// Feature selection method
120    pub selection_method: FeatureSelection,
121}
122
123impl Default for FeatureConfig {
124    fn default() -> Self {
125        Self {
126            enable_temporal: true,
127            enable_spectral: true,
128            enable_correlation: true,
129            normalization: FeatureNormalization::ZScore,
130            selection_method: FeatureSelection::Automatic,
131        }
132    }
133}
134
135/// Feature normalization methods
136#[derive(Debug, Clone, PartialEq, Eq)]
137pub enum FeatureNormalization {
138    /// Z-score normalization
139    ZScore,
140    /// Min-max normalization
141    MinMax,
142    /// Robust scaling
143    Robust,
144    /// No normalization
145    None,
146}
147
148/// Feature selection methods
149#[derive(Debug, Clone, PartialEq, Eq)]
150pub enum FeatureSelection {
151    /// Automatic feature selection
152    Automatic,
153    /// Manual feature specification
154    Manual(Vec<String>),
155    /// Principal Component Analysis
156    PCA,
157    /// Mutual information
158    MutualInformation,
159}
160
161/// Hierarchical error correction configuration
162#[derive(Debug, Clone)]
163pub struct HierarchyConfig {
164    /// Enable multi-level hierarchy
165    pub enable_hierarchy: bool,
166    /// Number of hierarchy levels
167    pub num_levels: usize,
168    /// Level transition thresholds
169    pub level_thresholds: Vec<f64>,
170    /// Resource allocation per level
171    pub level_resources: Vec<f64>,
172    /// Inter-level communication protocol
173    pub communication_protocol: HierarchyCommunication,
174}
175
176impl Default for HierarchyConfig {
177    fn default() -> Self {
178        Self {
179            enable_hierarchy: true,
180            num_levels: 3,
181            level_thresholds: vec![0.01, 0.05, 0.1],
182            level_resources: vec![0.1, 0.3, 0.6],
183            communication_protocol: HierarchyCommunication::Cascade,
184        }
185    }
186}
187
188/// Hierarchy communication protocols
189#[derive(Debug, Clone, PartialEq, Eq)]
190pub enum HierarchyCommunication {
191    /// Cascade from low to high levels
192    Cascade,
193    /// Parallel processing at all levels
194    Parallel,
195    /// Dynamic level selection
196    Dynamic,
197    /// Adaptive switching
198    Adaptive,
199}
200
201/// Resource management configuration
202#[derive(Debug, Clone)]
203pub struct ResourceManagementConfig {
204    /// Maximum overhead ratio
205    pub max_overhead_ratio: f64,
206    /// Resource allocation strategy
207    pub allocation_strategy: ResourceAllocationStrategy,
208    /// Dynamic resource adjustment
209    pub enable_dynamic_adjustment: bool,
210    /// Resource constraint enforcement
211    pub enforce_constraints: bool,
212    /// Performance vs. overhead trade-off
213    pub performance_weight: f64,
214}
215
216impl Default for ResourceManagementConfig {
217    fn default() -> Self {
218        Self {
219            max_overhead_ratio: 0.3,
220            allocation_strategy: ResourceAllocationStrategy::Adaptive,
221            enable_dynamic_adjustment: true,
222            enforce_constraints: true,
223            performance_weight: 0.7,
224        }
225    }
226}
227
228/// Resource allocation strategies
229#[derive(Debug, Clone, PartialEq, Eq)]
230pub enum ResourceAllocationStrategy {
231    /// Fixed allocation
232    Fixed,
233    /// Performance-based allocation
234    PerformanceBased,
235    /// Adaptive allocation
236    Adaptive,
237    /// Predictive allocation
238    Predictive,
239}
240
241/// Prediction and forecasting configuration
242#[derive(Debug, Clone)]
243pub struct PredictionConfig {
244    /// Enable noise trend prediction
245    pub enable_trend_prediction: bool,
246    /// Enable performance forecasting
247    pub enable_performance_forecasting: bool,
248    /// Prediction accuracy threshold
249    pub accuracy_threshold: f64,
250    /// Confidence interval level
251    pub confidence_level: f64,
252    /// Prediction update strategy
253    pub update_strategy: PredictionUpdateStrategy,
254}
255
256impl Default for PredictionConfig {
257    fn default() -> Self {
258        Self {
259            enable_trend_prediction: true,
260            enable_performance_forecasting: true,
261            accuracy_threshold: 0.8,
262            confidence_level: 0.95,
263            update_strategy: PredictionUpdateStrategy::Continuous,
264        }
265    }
266}
267
268/// Prediction update strategies
269#[derive(Debug, Clone, PartialEq, Eq)]
270pub enum PredictionUpdateStrategy {
271    /// Continuous updates
272    Continuous,
273    /// Periodic updates
274    Periodic(Duration),
275    /// Event-driven updates
276    EventDriven,
277    /// Adaptive updates
278    Adaptive,
279}
280
281/// Real-time noise characteristics
282#[derive(Debug, Clone)]
283pub struct NoiseCharacteristics {
284    /// Timestamp of measurement
285    pub timestamp: Instant,
286    /// Overall noise level
287    pub noise_level: f64,
288    /// Noise type classification
289    pub noise_type: NoiseType,
290    /// Temporal correlation
291    pub temporal_correlation: f64,
292    /// Spatial correlation
293    pub spatial_correlation: f64,
294    /// Noise spectrum
295    pub noise_spectrum: Vec<f64>,
296    /// Error rates per qubit
297    pub per_qubit_error_rates: Vec<f64>,
298    /// Coherence times
299    pub coherence_times: Vec<f64>,
300    /// Gate fidelities
301    pub gate_fidelities: HashMap<String, f64>,
302}
303
304/// Types of noise
305#[derive(Debug, Clone, PartialEq)]
306pub enum NoiseType {
307    /// White noise (uncorrelated)
308    White,
309    /// Colored noise (correlated)
310    Colored,
311    /// Burst noise (intermittent)
312    Burst,
313    /// Drift noise (slowly varying)
314    Drift,
315    /// Mixed noise types
316    Mixed(Vec<Self>),
317}
318
319/// Adaptive error correction protocol
320#[derive(Debug, Clone)]
321pub struct AdaptiveProtocol {
322    /// Protocol identifier
323    pub id: String,
324    /// Current error correction strategy
325    pub current_strategy: ErrorCorrectionStrategy,
326    /// Adaptation rules
327    pub adaptation_rules: Vec<AdaptationRule>,
328    /// Performance metrics
329    pub performance_metrics: ProtocolPerformance,
330    /// Resource usage
331    pub resource_usage: ResourceUsage,
332    /// Last adaptation time
333    pub last_adaptation: Instant,
334}
335
336/// Error correction strategies
337#[derive(Debug, Clone)]
338pub enum ErrorCorrectionStrategy {
339    /// No error correction
340    None,
341    /// Basic error detection
342    Detection(DetectionConfig),
343    /// Full error correction
344    Correction(CorrectionConfig),
345    /// Hybrid approach
346    Hybrid(HybridConfig),
347    /// Adaptive strategy selection
348    Adaptive(AdaptiveStrategyConfig),
349}
350
351/// Detection-only configuration
352#[derive(Debug, Clone)]
353pub struct DetectionConfig {
354    /// Detection threshold
355    pub threshold: f64,
356    /// Detection method
357    pub method: DetectionMethod,
358    /// Action on detection
359    pub action: DetectionAction,
360}
361
362/// Detection methods
363#[derive(Debug, Clone, PartialEq, Eq)]
364pub enum DetectionMethod {
365    /// Parity check
366    Parity,
367    /// Syndrome measurement
368    Syndrome,
369    /// Statistical analysis
370    Statistical,
371    /// Machine learning classification
372    MLClassification,
373}
374
375/// Actions on error detection
376#[derive(Debug, Clone, PartialEq, Eq)]
377pub enum DetectionAction {
378    /// Flag error only
379    Flag,
380    /// Retry operation
381    Retry,
382    /// Switch protocol
383    SwitchProtocol,
384    /// Increase correction level
385    IncreaseCorrectionLevel,
386}
387
388/// Full error correction configuration
389#[derive(Debug, Clone)]
390pub struct CorrectionConfig {
391    /// Error correction code
392    pub code: ErrorCorrectionCode,
393    /// Correction threshold
394    pub threshold: f64,
395    /// Maximum correction attempts
396    pub max_attempts: usize,
397    /// Correction efficiency target
398    pub efficiency_target: f64,
399}
400
401/// Hybrid error correction configuration
402#[derive(Debug, Clone)]
403pub struct HybridConfig {
404    /// Detection configuration
405    pub detection: DetectionConfig,
406    /// Correction configuration
407    pub correction: CorrectionConfig,
408    /// Switching criteria
409    pub switching_criteria: SwitchingCriteria,
410}
411
412/// Adaptive strategy selection configuration
413#[derive(Debug, Clone)]
414pub struct AdaptiveStrategyConfig {
415    /// Available strategies
416    pub available_strategies: Vec<ErrorCorrectionStrategy>,
417    /// Selection algorithm
418    pub selection_algorithm: StrategySelectionAlgorithm,
419    /// Performance history
420    pub performance_history: Vec<StrategyPerformance>,
421}
422
423/// Strategy selection algorithms
424#[derive(Debug, Clone, PartialEq, Eq)]
425pub enum StrategySelectionAlgorithm {
426    /// Greedy selection
427    Greedy,
428    /// Multi-armed bandit
429    MultiArmedBandit,
430    /// Reinforcement learning
431    ReinforcementLearning,
432    /// Bayesian optimization
433    BayesianOptimization,
434}
435
436/// Strategy performance tracking
437#[derive(Debug, Clone)]
438pub struct StrategyPerformance {
439    /// Strategy identifier
440    pub strategy_id: String,
441    /// Performance score
442    pub performance_score: f64,
443    /// Resource overhead
444    pub resource_overhead: f64,
445    /// Success rate
446    pub success_rate: f64,
447    /// Timestamp
448    pub timestamp: Instant,
449}
450
451/// Switching criteria for hybrid approaches
452#[derive(Debug, Clone)]
453pub struct SwitchingCriteria {
454    /// Error rate threshold
455    pub error_rate_threshold: f64,
456    /// Performance degradation threshold
457    pub performance_threshold: f64,
458    /// Resource usage threshold
459    pub resource_threshold: f64,
460    /// Time-based switching
461    pub time_based: Option<Duration>,
462}
463
464/// Adaptation rules for protocol adjustment
465#[derive(Debug, Clone)]
466pub struct AdaptationRule {
467    /// Rule identifier
468    pub id: String,
469    /// Condition for triggering adaptation
470    pub condition: AdaptationCondition,
471    /// Action to take
472    pub action: AdaptationAction,
473    /// Priority level
474    pub priority: u8,
475    /// Cooldown period
476    pub cooldown: Duration,
477}
478
479/// Conditions for triggering adaptation
480#[derive(Debug, Clone)]
481pub enum AdaptationCondition {
482    /// Noise level exceeds threshold
483    NoiseThreshold(f64),
484    /// Performance drops below threshold
485    PerformanceThreshold(f64),
486    /// Error rate exceeds threshold
487    ErrorRateThreshold(f64),
488    /// Resource usage exceeds threshold
489    ResourceThreshold(f64),
490    /// Time-based condition
491    TimeBased(Duration),
492    /// Composite condition
493    Composite(Vec<Self>),
494}
495
496/// Actions for adaptation
497#[derive(Debug, Clone)]
498pub enum AdaptationAction {
499    /// Switch error correction strategy
500    SwitchStrategy(ErrorCorrectionStrategy),
501    /// Adjust threshold
502    AdjustThreshold(f64),
503    /// Increase correction level
504    IncreaseCorrectionLevel,
505    /// Decrease correction level
506    DecreaseCorrectionLevel,
507    /// Reallocate resources
508    ReallocateResources(ResourceReallocation),
509    /// Update prediction model
510    UpdatePredictionModel,
511}
512
513/// Resource reallocation specification
514#[derive(Debug, Clone)]
515pub struct ResourceReallocation {
516    /// New resource allocation ratios
517    pub allocation_ratios: Vec<f64>,
518    /// Target components
519    pub target_components: Vec<String>,
520    /// Reallocation priority
521    pub priority: u8,
522}
523
524/// Protocol performance metrics
525#[derive(Debug, Clone)]
526pub struct ProtocolPerformance {
527    /// Success rate
528    pub success_rate: f64,
529    /// Average correction time
530    pub avg_correction_time: Duration,
531    /// Resource efficiency
532    pub resource_efficiency: f64,
533    /// Quality improvement
534    pub quality_improvement: f64,
535    /// Overhead ratio
536    pub overhead_ratio: f64,
537    /// Adaptation frequency
538    pub adaptation_frequency: f64,
539}
540
541/// Resource usage tracking
542#[derive(Debug, Clone)]
543pub struct ResourceUsage {
544    /// Computational resources
545    pub computational: f64,
546    /// Memory usage
547    pub memory: f64,
548    /// Communication overhead
549    pub communication: f64,
550    /// Total overhead
551    pub total_overhead: f64,
552    /// Usage history
553    pub usage_history: VecDeque<ResourceSnapshot>,
554}
555
556/// Resource usage snapshot
557#[derive(Debug, Clone)]
558pub struct ResourceSnapshot {
559    /// Timestamp
560    pub timestamp: Instant,
561    /// Resource usage values
562    pub usage: HashMap<String, f64>,
563    /// Performance metrics at this time
564    pub performance: f64,
565}
566
567/// Noise prediction model
568#[derive(Debug)]
569pub struct NoisePredictionModel {
570    /// Model type
571    pub model_type: NeuralArchitecture,
572    /// Model parameters
573    pub parameters: Vec<f64>,
574    /// Training data
575    pub training_data: VecDeque<NoiseDataPoint>,
576    /// Prediction accuracy
577    pub accuracy: f64,
578    /// Last update time
579    pub last_update: Instant,
580    /// Feature extractor
581    pub feature_extractor: FeatureExtractor,
582}
583
584/// Noise data point for training
585#[derive(Debug, Clone)]
586pub struct NoiseDataPoint {
587    /// Input features
588    pub features: Vec<f64>,
589    /// Target noise characteristics
590    pub target: NoiseCharacteristics,
591    /// Timestamp
592    pub timestamp: Instant,
593}
594
595/// Feature extraction system
596#[derive(Debug)]
597pub struct FeatureExtractor {
598    /// Extraction configuration
599    pub config: FeatureConfig,
600    /// Feature definitions
601    pub feature_definitions: Vec<FeatureDefinition>,
602    /// Normalization parameters
603    pub normalization_params: HashMap<String, NormalizationParams>,
604}
605
606/// Feature definition
607#[derive(Debug, Clone)]
608pub struct FeatureDefinition {
609    /// Feature name
610    pub name: String,
611    /// Feature type
612    pub feature_type: FeatureType,
613    /// Extraction parameters
614    pub parameters: HashMap<String, f64>,
615}
616
617/// Types of features
618#[derive(Debug, Clone, PartialEq, Eq)]
619pub enum FeatureType {
620    /// Temporal features
621    Temporal,
622    /// Spectral features
623    Spectral,
624    /// Correlation features
625    Correlation,
626    /// Statistical features
627    Statistical,
628    /// Custom features
629    Custom(String),
630}
631
632/// Normalization parameters
633#[derive(Debug, Clone)]
634pub struct NormalizationParams {
635    /// Mean value
636    pub mean: f64,
637    /// Standard deviation
638    pub std: f64,
639    /// Minimum value
640    pub min: f64,
641    /// Maximum value
642    pub max: f64,
643}
644
645/// Main real-time adaptive QEC system
646pub struct RealTimeAdaptiveQec {
647    /// Configuration
648    pub config: AdaptiveQecConfig,
649    /// Noise monitoring system
650    pub noise_monitor: Arc<Mutex<NoiseMonitor>>,
651    /// Adaptive protocol manager
652    pub protocol_manager: Arc<RwLock<AdaptiveProtocolManager>>,
653    /// ML prediction system
654    pub prediction_system: Arc<Mutex<NoisePredictionSystem>>,
655    /// Performance analyzer
656    pub performance_analyzer: Arc<Mutex<PerformanceAnalyzer>>,
657    /// Resource manager
658    pub resource_manager: Arc<Mutex<AdaptiveResourceManager>>,
659    /// Hierarchy coordinator
660    pub hierarchy_coordinator: Arc<Mutex<HierarchyCoordinator>>,
661}
662
663/// Noise monitoring system
664pub struct NoiseMonitor {
665    /// Current noise characteristics
666    pub current_noise: NoiseCharacteristics,
667    /// Noise history
668    pub noise_history: VecDeque<NoiseCharacteristics>,
669    /// Monitoring sensors
670    pub sensors: Vec<NoiseSensor>,
671    /// Analysis algorithms
672    pub analyzers: Vec<NoiseAnalyzer>,
673}
674
675/// Noise sensor interface
676#[derive(Debug)]
677pub struct NoiseSensor {
678    /// Sensor identifier
679    pub id: String,
680    /// Sensor type
681    pub sensor_type: SensorType,
682    /// Measurement frequency
683    pub frequency: f64,
684    /// Last measurement
685    pub last_measurement: Option<Instant>,
686    /// Calibration data
687    pub calibration: SensorCalibration,
688}
689
690/// Types of noise sensors
691#[derive(Debug, Clone, PartialEq, Eq)]
692pub enum SensorType {
693    /// Error rate sensor
694    ErrorRate,
695    /// Coherence time sensor
696    CoherenceTime,
697    /// Gate fidelity sensor
698    GateFidelity,
699    /// Environmental sensor
700    Environmental,
701    /// Process tomography
702    ProcessTomography,
703}
704
705/// Sensor calibration data
706#[derive(Debug, Clone)]
707pub struct SensorCalibration {
708    /// Calibration timestamp
709    pub timestamp: Instant,
710    /// Calibration parameters
711    pub parameters: HashMap<String, f64>,
712    /// Accuracy estimate
713    pub accuracy: f64,
714}
715
716/// Noise analysis algorithms
717#[derive(Debug)]
718pub struct NoiseAnalyzer {
719    /// Analyzer identifier
720    pub id: String,
721    /// Analysis algorithm
722    pub algorithm: AnalysisAlgorithm,
723    /// Analysis parameters
724    pub parameters: HashMap<String, f64>,
725}
726
727/// Noise analysis algorithms
728#[derive(Debug, Clone, PartialEq, Eq)]
729pub enum AnalysisAlgorithm {
730    /// Spectral analysis
731    Spectral,
732    /// Correlation analysis
733    Correlation,
734    /// Statistical analysis
735    Statistical,
736    /// Machine learning classification
737    MLClassification,
738    /// Fourier analysis
739    Fourier,
740}
741
742/// Adaptive protocol management
743pub struct AdaptiveProtocolManager {
744    /// Currently active protocols
745    pub active_protocols: HashMap<String, AdaptiveProtocol>,
746    /// Protocol history
747    pub protocol_history: VecDeque<ProtocolEvent>,
748    /// Adaptation engine
749    pub adaptation_engine: AdaptationEngine,
750}
751
752/// Protocol events for history tracking
753#[derive(Debug, Clone)]
754pub struct ProtocolEvent {
755    /// Event timestamp
756    pub timestamp: Instant,
757    /// Event type
758    pub event_type: ProtocolEventType,
759    /// Protocol involved
760    pub protocol_id: String,
761    /// Event details
762    pub details: HashMap<String, String>,
763}
764
765/// Types of protocol events
766#[derive(Debug, Clone, PartialEq, Eq)]
767pub enum ProtocolEventType {
768    /// Protocol activation
769    Activation,
770    /// Protocol deactivation
771    Deactivation,
772    /// Protocol adaptation
773    Adaptation,
774    /// Performance update
775    PerformanceUpdate,
776    /// Error detected
777    ErrorDetected,
778    /// Error corrected
779    ErrorCorrected,
780}
781
782/// Adaptation decision engine
783#[derive(Debug)]
784pub struct AdaptationEngine {
785    /// Decision algorithm
786    pub algorithm: AdaptationAlgorithm,
787    /// Decision parameters
788    pub parameters: HashMap<String, f64>,
789    /// Decision history
790    pub decision_history: VecDeque<AdaptationDecision>,
791}
792
793/// Adaptation algorithms
794#[derive(Debug, Clone, PartialEq, Eq)]
795pub enum AdaptationAlgorithm {
796    /// Rule-based adaptation
797    RuleBased,
798    /// Machine learning-based
799    MachineLearning,
800    /// Reinforcement learning
801    ReinforcementLearning,
802    /// Bayesian optimization
803    BayesianOptimization,
804    /// Hybrid approach
805    Hybrid,
806}
807
808/// Adaptation decisions
809#[derive(Debug, Clone)]
810pub struct AdaptationDecision {
811    /// Decision timestamp
812    pub timestamp: Instant,
813    /// Decision rationale
814    pub rationale: String,
815    /// Actions taken
816    pub actions: Vec<AdaptationAction>,
817    /// Expected impact
818    pub expected_impact: f64,
819    /// Actual impact (filled later)
820    pub actual_impact: Option<f64>,
821}
822
823/// Noise prediction system
824pub struct NoisePredictionSystem {
825    /// Prediction models
826    pub models: HashMap<String, NoisePredictionModel>,
827    /// Model ensemble
828    pub ensemble: ModelEnsemble,
829    /// Prediction cache
830    pub prediction_cache: HashMap<String, PredictionResult>,
831}
832
833/// Model ensemble for improved predictions
834#[derive(Debug)]
835pub struct ModelEnsemble {
836    /// Ensemble method
837    pub method: EnsembleMethod,
838    /// Model weights
839    pub weights: HashMap<String, f64>,
840    /// Performance history
841    pub performance_history: VecDeque<EnsemblePerformance>,
842}
843
844/// Ensemble methods
845#[derive(Debug, Clone, PartialEq, Eq)]
846pub enum EnsembleMethod {
847    /// Simple averaging
848    Average,
849    /// Weighted averaging
850    WeightedAverage,
851    /// Voting
852    Voting,
853    /// Stacking
854    Stacking,
855    /// Boosting
856    Boosting,
857}
858
859/// Ensemble performance tracking
860#[derive(Debug, Clone)]
861pub struct EnsemblePerformance {
862    /// Timestamp
863    pub timestamp: Instant,
864    /// Accuracy
865    pub accuracy: f64,
866    /// Confidence
867    pub confidence: f64,
868    /// Individual model contributions
869    pub model_contributions: HashMap<String, f64>,
870}
871
872/// Prediction results
873#[derive(Debug, Clone)]
874pub struct PredictionResult {
875    /// Predicted noise characteristics
876    pub predicted_noise: NoiseCharacteristics,
877    /// Prediction confidence
878    pub confidence: f64,
879    /// Prediction horizon
880    pub horizon: Duration,
881    /// Uncertainty bounds
882    pub uncertainty_bounds: (f64, f64),
883    /// Prediction timestamp
884    pub timestamp: Instant,
885}
886
887/// Performance analysis system
888pub struct PerformanceAnalyzer {
889    /// Performance metrics
890    pub metrics: PerformanceMetrics,
891    /// Analysis algorithms
892    pub analyzers: Vec<PerformanceAnalysisAlgorithm>,
893    /// Benchmark comparisons
894    pub benchmarks: HashMap<String, BenchmarkResult>,
895}
896
897/// Comprehensive performance metrics
898#[derive(Debug, Clone)]
899pub struct PerformanceMetrics {
900    /// Error correction efficiency
901    pub correction_efficiency: f64,
902    /// Resource utilization efficiency
903    pub resource_efficiency: f64,
904    /// Adaptation responsiveness
905    pub adaptation_responsiveness: f64,
906    /// Prediction accuracy
907    pub prediction_accuracy: f64,
908    /// Overall system performance
909    pub overall_performance: f64,
910    /// Performance history
911    pub performance_history: VecDeque<PerformanceSnapshot>,
912}
913
914/// Performance snapshot for historical tracking
915#[derive(Debug, Clone)]
916pub struct PerformanceSnapshot {
917    /// Timestamp
918    pub timestamp: Instant,
919    /// Metrics at this time
920    pub metrics: HashMap<String, f64>,
921    /// System state
922    pub system_state: SystemState,
923}
924
925/// System state representation
926#[derive(Debug, Clone)]
927pub struct SystemState {
928    /// Active protocols
929    pub active_protocols: Vec<String>,
930    /// Current noise level
931    pub noise_level: f64,
932    /// Resource usage
933    pub resource_usage: f64,
934    /// Performance score
935    pub performance_score: f64,
936}
937
938/// Performance analysis algorithms
939#[derive(Debug)]
940pub struct PerformanceAnalysisAlgorithm {
941    /// Algorithm identifier
942    pub id: String,
943    /// Analysis type
944    pub analysis_type: AnalysisType,
945    /// Algorithm parameters
946    pub parameters: HashMap<String, f64>,
947}
948
949/// Types of performance analysis
950#[derive(Debug, Clone, PartialEq, Eq)]
951pub enum AnalysisType {
952    /// Trend analysis
953    Trend,
954    /// Anomaly detection
955    AnomalyDetection,
956    /// Correlation analysis
957    Correlation,
958    /// Comparative analysis
959    Comparative,
960    /// Predictive analysis
961    Predictive,
962}
963
964/// Benchmark results
965#[derive(Debug, Clone)]
966pub struct BenchmarkResult {
967    /// Benchmark name
968    pub name: String,
969    /// Performance score
970    pub score: f64,
971    /// Comparison baseline
972    pub baseline: f64,
973    /// Improvement factor
974    pub improvement_factor: f64,
975    /// Timestamp
976    pub timestamp: Instant,
977}
978
979/// Adaptive resource management
980pub struct AdaptiveResourceManager {
981    /// Resource allocation
982    pub allocation: ResourceAllocation,
983    /// Resource constraints
984    pub constraints: ResourceConstraints,
985    /// Optimization algorithms
986    pub optimizers: Vec<ResourceOptimizer>,
987}
988
989/// Current resource allocation
990#[derive(Debug, Clone)]
991pub struct ResourceAllocation {
992    /// Allocation map
993    pub allocation_map: HashMap<String, f64>,
994    /// Total allocated resources
995    pub total_allocated: f64,
996    /// Available resources
997    pub available_resources: f64,
998    /// Allocation history
999    pub allocation_history: VecDeque<AllocationSnapshot>,
1000}
1001
1002/// Allocation snapshot
1003#[derive(Debug, Clone)]
1004pub struct AllocationSnapshot {
1005    /// Timestamp
1006    pub timestamp: Instant,
1007    /// Allocation state
1008    pub allocation: HashMap<String, f64>,
1009    /// Performance at this allocation
1010    pub performance: f64,
1011}
1012
1013/// Resource constraints
1014#[derive(Debug, Clone)]
1015pub struct ResourceConstraints {
1016    /// Maximum total resources
1017    pub max_total: f64,
1018    /// Per-component constraints
1019    pub per_component: HashMap<String, f64>,
1020    /// Minimum performance requirement
1021    pub min_performance: f64,
1022    /// Constraint enforcement method
1023    pub enforcement_method: ConstraintEnforcement,
1024}
1025
1026/// Constraint enforcement methods
1027#[derive(Debug, Clone, PartialEq, Eq)]
1028pub enum ConstraintEnforcement {
1029    /// Hard constraints (must be satisfied)
1030    Hard,
1031    /// Soft constraints (penalties)
1032    Soft,
1033    /// Adaptive constraints
1034    Adaptive,
1035}
1036
1037/// Resource optimization algorithms
1038#[derive(Debug)]
1039pub struct ResourceOptimizer {
1040    /// Optimizer identifier
1041    pub id: String,
1042    /// Optimization algorithm
1043    pub algorithm: OptimizationAlgorithm,
1044    /// Algorithm parameters
1045    pub parameters: HashMap<String, f64>,
1046}
1047
1048/// Resource optimization algorithms
1049#[derive(Debug, Clone, PartialEq, Eq)]
1050pub enum OptimizationAlgorithm {
1051    /// Gradient descent
1052    GradientDescent,
1053    /// Genetic algorithm
1054    GeneticAlgorithm,
1055    /// Simulated annealing
1056    SimulatedAnnealing,
1057    /// Particle swarm optimization
1058    ParticleSwarm,
1059    /// Bayesian optimization
1060    BayesianOptimization,
1061}
1062
1063/// Hierarchy coordination system
1064pub struct HierarchyCoordinator {
1065    /// Hierarchy levels
1066    pub levels: Vec<HierarchyLevel>,
1067    /// Inter-level communication
1068    pub communication: HierarchyCommunicationManager,
1069    /// Coordination algorithms
1070    pub coordinators: Vec<CoordinationAlgorithm>,
1071}
1072
1073/// Hierarchy level representation
1074#[derive(Debug, Clone)]
1075pub struct HierarchyLevel {
1076    /// Level identifier
1077    pub id: usize,
1078    /// Level priority
1079    pub priority: u8,
1080    /// Active protocols at this level
1081    pub protocols: Vec<String>,
1082    /// Resource allocation
1083    pub resources: f64,
1084    /// Performance metrics
1085    pub performance: LevelPerformance,
1086}
1087
1088/// Level-specific performance metrics
1089#[derive(Debug, Clone)]
1090pub struct LevelPerformance {
1091    /// Correction accuracy
1092    pub accuracy: f64,
1093    /// Response time
1094    pub response_time: Duration,
1095    /// Resource efficiency
1096    pub efficiency: f64,
1097    /// Coordination effectiveness
1098    pub coordination_effectiveness: f64,
1099}
1100
1101/// Inter-level communication management
1102#[derive(Debug)]
1103pub struct HierarchyCommunicationManager {
1104    /// Communication channels
1105    pub channels: HashMap<(usize, usize), CommunicationChannel>,
1106    /// Message queues
1107    pub message_queues: HashMap<usize, VecDeque<HierarchyMessage>>,
1108    /// Communication statistics
1109    pub statistics: CommunicationStatistics,
1110}
1111
1112/// Communication channel between levels
1113#[derive(Debug)]
1114pub struct CommunicationChannel {
1115    /// Source level
1116    pub source: usize,
1117    /// Target level
1118    pub target: usize,
1119    /// Channel capacity
1120    pub capacity: f64,
1121    /// Current utilization
1122    pub utilization: f64,
1123    /// Message latency
1124    pub latency: Duration,
1125}
1126
1127/// Messages between hierarchy levels
1128#[derive(Debug, Clone)]
1129pub struct HierarchyMessage {
1130    /// Message identifier
1131    pub id: String,
1132    /// Source level
1133    pub source: usize,
1134    /// Target level
1135    pub target: usize,
1136    /// Message type
1137    pub message_type: MessageType,
1138    /// Message payload
1139    pub payload: MessagePayload,
1140    /// Timestamp
1141    pub timestamp: Instant,
1142    /// Priority
1143    pub priority: u8,
1144}
1145
1146/// Types of hierarchy messages
1147#[derive(Debug, Clone, PartialEq, Eq)]
1148pub enum MessageType {
1149    /// Error detection report
1150    ErrorReport,
1151    /// Correction request
1152    CorrectionRequest,
1153    /// Resource request
1154    ResourceRequest,
1155    /// Performance update
1156    PerformanceUpdate,
1157    /// Coordination signal
1158    CoordinationSignal,
1159}
1160
1161/// Message payload data
1162#[derive(Debug, Clone)]
1163pub enum MessagePayload {
1164    /// Error information
1165    ErrorInfo(ErrorInfo),
1166    /// Resource request details
1167    ResourceRequest(ResourceRequestDetails),
1168    /// Performance data
1169    PerformanceData(PerformanceData),
1170    /// Coordination instructions
1171    CoordinationInstructions(CoordinationInstructions),
1172    /// Generic data
1173    Generic(Vec<u8>),
1174}
1175
1176/// Error information payload
1177#[derive(Debug, Clone)]
1178pub struct ErrorInfo {
1179    /// Error type
1180    pub error_type: String,
1181    /// Error location
1182    pub location: Vec<usize>,
1183    /// Error severity
1184    pub severity: f64,
1185    /// Suggested correction
1186    pub suggested_correction: Option<String>,
1187}
1188
1189/// Resource request details
1190#[derive(Debug, Clone)]
1191pub struct ResourceRequestDetails {
1192    /// Requested resources
1193    pub requested_resources: HashMap<String, f64>,
1194    /// Request priority
1195    pub priority: u8,
1196    /// Request deadline
1197    pub deadline: Option<Instant>,
1198    /// Justification
1199    pub justification: String,
1200}
1201
1202/// Performance data payload
1203#[derive(Debug, Clone)]
1204pub struct PerformanceData {
1205    /// Performance metrics
1206    pub metrics: HashMap<String, f64>,
1207    /// Timestamp
1208    pub timestamp: Instant,
1209    /// Data source
1210    pub source: String,
1211}
1212
1213/// Coordination instructions
1214#[derive(Debug, Clone)]
1215pub struct CoordinationInstructions {
1216    /// Instructions
1217    pub instructions: Vec<String>,
1218    /// Target components
1219    pub targets: Vec<String>,
1220    /// Execution priority
1221    pub priority: u8,
1222}
1223
1224/// Communication statistics
1225#[derive(Debug, Clone)]
1226pub struct CommunicationStatistics {
1227    /// Message throughput
1228    pub throughput: f64,
1229    /// Average latency
1230    pub avg_latency: Duration,
1231    /// Message success rate
1232    pub success_rate: f64,
1233    /// Channel utilization
1234    pub channel_utilization: HashMap<(usize, usize), f64>,
1235}
1236
1237/// Coordination algorithms
1238#[derive(Debug)]
1239pub struct CoordinationAlgorithm {
1240    /// Algorithm identifier
1241    pub id: String,
1242    /// Coordination strategy
1243    pub strategy: CoordinationStrategy,
1244    /// Algorithm parameters
1245    pub parameters: HashMap<String, f64>,
1246}
1247
1248/// Coordination strategies
1249#[derive(Debug, Clone, PartialEq, Eq)]
1250pub enum CoordinationStrategy {
1251    /// Centralized coordination
1252    Centralized,
1253    /// Distributed coordination
1254    Distributed,
1255    /// Hierarchical coordination
1256    Hierarchical,
1257    /// Consensus-based coordination
1258    Consensus,
1259    /// Market-based coordination
1260    MarketBased,
1261}
1262
1263impl RealTimeAdaptiveQec {
1264    /// Create new real-time adaptive QEC system
1265    #[must_use]
1266    pub fn new(config: AdaptiveQecConfig) -> Self {
1267        Self {
1268            config: config.clone(),
1269            noise_monitor: Arc::new(Mutex::new(NoiseMonitor::new())),
1270            protocol_manager: Arc::new(RwLock::new(AdaptiveProtocolManager::new())),
1271            prediction_system: Arc::new(Mutex::new(NoisePredictionSystem::new(config.ml_config))),
1272            performance_analyzer: Arc::new(Mutex::new(PerformanceAnalyzer::new())),
1273            resource_manager: Arc::new(Mutex::new(AdaptiveResourceManager::new(
1274                config.resource_config,
1275            ))),
1276            hierarchy_coordinator: Arc::new(Mutex::new(HierarchyCoordinator::new(
1277                config.hierarchy_config,
1278            ))),
1279        }
1280    }
1281
1282    /// Start real-time adaptive QEC system
1283    pub fn start(&self) -> ApplicationResult<()> {
1284        println!("Starting real-time adaptive quantum error correction system");
1285
1286        // Initialize all subsystems
1287        self.initialize_noise_monitoring()?;
1288        self.initialize_prediction_system()?;
1289        self.initialize_protocol_management()?;
1290        self.initialize_performance_analysis()?;
1291        self.initialize_resource_management()?;
1292        self.initialize_hierarchy_coordination()?;
1293
1294        // Start monitoring loops
1295        self.start_monitoring_loops()?;
1296
1297        println!("Real-time adaptive QEC system started successfully");
1298        Ok(())
1299    }
1300
1301    /// Apply adaptive error correction to a problem
1302    pub fn apply_adaptive_correction(
1303        &self,
1304        problem: &IsingModel,
1305    ) -> ApplicationResult<CorrectedProblem> {
1306        println!("Applying adaptive error correction to Ising problem");
1307
1308        // Step 1: Assess current noise conditions
1309        let noise_assessment = self.assess_noise_conditions()?;
1310
1311        // Step 2: Predict near-future noise
1312        let noise_prediction = self.predict_noise_evolution(&noise_assessment)?;
1313
1314        // Step 3: Select optimal correction strategy
1315        let correction_strategy =
1316            self.select_correction_strategy(problem, &noise_assessment, &noise_prediction)?;
1317
1318        // Step 4: Apply correction with adaptive monitoring
1319        let corrected_problem =
1320            self.apply_correction_with_monitoring(problem, &correction_strategy)?;
1321
1322        // Step 5: Update system state and learn from results
1323        self.update_system_state(&corrected_problem)?;
1324
1325        println!("Adaptive error correction applied successfully");
1326        Ok(corrected_problem)
1327    }
1328
1329    /// Assess current noise conditions
1330    fn assess_noise_conditions(&self) -> ApplicationResult<NoiseAssessment> {
1331        let noise_monitor = self.noise_monitor.lock().map_err(|_| {
1332            ApplicationError::OptimizationError("Failed to acquire noise monitor lock".to_string())
1333        })?;
1334
1335        let current_noise = &noise_monitor.current_noise;
1336
1337        // Analyze noise characteristics
1338        let noise_level = current_noise.noise_level;
1339        let noise_type = current_noise.noise_type.clone();
1340        let temporal_correlation = current_noise.temporal_correlation;
1341
1342        // Classify noise severity
1343        let severity = if noise_level < 0.01 {
1344            NoiseSeverity::Low
1345        } else if noise_level < 0.05 {
1346            NoiseSeverity::Medium
1347        } else {
1348            NoiseSeverity::High
1349        };
1350
1351        Ok(NoiseAssessment {
1352            current_noise: current_noise.clone(),
1353            severity,
1354            trends: self.analyze_noise_trends(&noise_monitor)?,
1355            confidence: 0.9,
1356            timestamp: Instant::now(),
1357        })
1358    }
1359
1360    /// Analyze noise trends from history
1361    fn analyze_noise_trends(&self, noise_monitor: &NoiseMonitor) -> ApplicationResult<NoiseTrends> {
1362        let history = &noise_monitor.noise_history;
1363
1364        if history.len() < 2 {
1365            return Ok(NoiseTrends {
1366                direction: TrendDirection::Stable,
1367                rate: 0.0,
1368                confidence: 0.5,
1369            });
1370        }
1371
1372        // Simple trend analysis
1373        let recent = &history[history.len() - 1];
1374        let previous = &history[history.len() - 2];
1375
1376        let noise_change = recent.noise_level - previous.noise_level;
1377        let direction = if noise_change > 0.001 {
1378            TrendDirection::Increasing
1379        } else if noise_change < -0.001 {
1380            TrendDirection::Decreasing
1381        } else {
1382            TrendDirection::Stable
1383        };
1384
1385        Ok(NoiseTrends {
1386            direction,
1387            rate: noise_change.abs(),
1388            confidence: 0.8,
1389        })
1390    }
1391
1392    /// Predict noise evolution
1393    fn predict_noise_evolution(
1394        &self,
1395        assessment: &NoiseAssessment,
1396    ) -> ApplicationResult<NoisePrediction> {
1397        let prediction_system = self.prediction_system.lock().map_err(|_| {
1398            ApplicationError::OptimizationError(
1399                "Failed to acquire prediction system lock".to_string(),
1400            )
1401        })?;
1402
1403        // Use ensemble prediction
1404        let predicted_noise_level = match assessment.trends.direction {
1405            TrendDirection::Increasing => assessment
1406                .trends
1407                .rate
1408                .mul_add(2.0, assessment.current_noise.noise_level),
1409            TrendDirection::Decreasing => assessment
1410                .trends
1411                .rate
1412                .mul_add(-2.0, assessment.current_noise.noise_level)
1413                .max(0.0),
1414            TrendDirection::Stable => assessment.current_noise.noise_level,
1415        };
1416
1417        let predicted_noise = NoiseCharacteristics {
1418            timestamp: Instant::now()
1419                + Duration::from_millis(
1420                    (self.config.prediction_config.accuracy_threshold * 1000.0) as u64,
1421                ),
1422            noise_level: predicted_noise_level,
1423            noise_type: assessment.current_noise.noise_type.clone(),
1424            temporal_correlation: assessment.current_noise.temporal_correlation,
1425            spatial_correlation: assessment.current_noise.spatial_correlation,
1426            noise_spectrum: assessment.current_noise.noise_spectrum.clone(),
1427            per_qubit_error_rates: assessment.current_noise.per_qubit_error_rates.clone(),
1428            coherence_times: assessment.current_noise.coherence_times.clone(),
1429            gate_fidelities: assessment.current_noise.gate_fidelities.clone(),
1430        };
1431
1432        Ok(NoisePrediction {
1433            predicted_noise,
1434            confidence: 0.85,
1435            horizon: Duration::from_secs(10),
1436            uncertainty_bounds: (predicted_noise_level * 0.9, predicted_noise_level * 1.1),
1437        })
1438    }
1439
1440    /// Select optimal correction strategy
1441    fn select_correction_strategy(
1442        &self,
1443        problem: &IsingModel,
1444        noise_assessment: &NoiseAssessment,
1445        noise_prediction: &NoisePrediction,
1446    ) -> ApplicationResult<ErrorCorrectionStrategy> {
1447        let problem_size = problem.num_qubits;
1448        let noise_level = noise_assessment.current_noise.noise_level;
1449
1450        // Strategy selection based on problem and noise characteristics
1451        let strategy = match (problem_size, noise_level) {
1452            (size, noise) if size <= 100 && noise < 0.01 => {
1453                // Small problem, low noise: minimal correction
1454                ErrorCorrectionStrategy::Detection(DetectionConfig {
1455                    threshold: 0.01,
1456                    method: DetectionMethod::Parity,
1457                    action: DetectionAction::Flag,
1458                })
1459            }
1460            (size, noise) if size < 500 && noise < 0.05 => {
1461                // Medium problem, medium noise: hybrid approach
1462                ErrorCorrectionStrategy::Hybrid(HybridConfig {
1463                    detection: DetectionConfig {
1464                        threshold: 0.02,
1465                        method: DetectionMethod::Syndrome,
1466                        action: DetectionAction::SwitchProtocol,
1467                    },
1468                    correction: CorrectionConfig {
1469                        code: ErrorCorrectionCode::SurfaceCode,
1470                        threshold: 0.05,
1471                        max_attempts: 3,
1472                        efficiency_target: 0.9,
1473                    },
1474                    switching_criteria: SwitchingCriteria {
1475                        error_rate_threshold: 0.03,
1476                        performance_threshold: 0.8,
1477                        resource_threshold: 0.5,
1478                        time_based: Some(Duration::from_secs(5)),
1479                    },
1480                })
1481            }
1482            _ => {
1483                // Large problem or high noise: full correction
1484                ErrorCorrectionStrategy::Correction(CorrectionConfig {
1485                    code: ErrorCorrectionCode::SurfaceCode,
1486                    threshold: 0.1,
1487                    max_attempts: 5,
1488                    efficiency_target: 0.95,
1489                })
1490            }
1491        };
1492
1493        println!(
1494            "Selected error correction strategy based on problem size {problem_size} and noise level {noise_level:.4}"
1495        );
1496        Ok(strategy)
1497    }
1498
1499    /// Apply correction with real-time monitoring
1500    fn apply_correction_with_monitoring(
1501        &self,
1502        problem: &IsingModel,
1503        strategy: &ErrorCorrectionStrategy,
1504    ) -> ApplicationResult<CorrectedProblem> {
1505        let start_time = Instant::now();
1506
1507        // Apply the selected strategy
1508        let corrected_data = match strategy {
1509            ErrorCorrectionStrategy::None => {
1510                // No correction applied
1511                CorrectionResult {
1512                    corrected_problem: problem.clone(),
1513                    correction_overhead: 0.0,
1514                    errors_detected: 0,
1515                    errors_corrected: 0,
1516                }
1517            }
1518            ErrorCorrectionStrategy::Detection(config) => {
1519                self.apply_detection_only(problem, config)?
1520            }
1521            ErrorCorrectionStrategy::Correction(config) => {
1522                self.apply_full_correction(problem, config)?
1523            }
1524            ErrorCorrectionStrategy::Hybrid(config) => {
1525                self.apply_hybrid_correction(problem, config)?
1526            }
1527            ErrorCorrectionStrategy::Adaptive(config) => {
1528                self.apply_adaptive_strategy(problem, config)?
1529            }
1530        };
1531
1532        let execution_time = start_time.elapsed();
1533
1534        Ok(CorrectedProblem {
1535            original_problem: problem.clone(),
1536            corrected_problem: corrected_data.corrected_problem,
1537            correction_metadata: CorrectionMetadata {
1538                strategy_used: strategy.clone(),
1539                execution_time,
1540                correction_overhead: corrected_data.correction_overhead,
1541                errors_detected: corrected_data.errors_detected,
1542                errors_corrected: corrected_data.errors_corrected,
1543                confidence: 0.9,
1544            },
1545        })
1546    }
1547
1548    /// Apply detection-only strategy
1549    fn apply_detection_only(
1550        &self,
1551        problem: &IsingModel,
1552        config: &DetectionConfig,
1553    ) -> ApplicationResult<CorrectionResult> {
1554        // Simulate error detection
1555        thread::sleep(Duration::from_millis(5));
1556
1557        let errors_detected = (problem.num_qubits as f64 * 0.01) as usize;
1558
1559        Ok(CorrectionResult {
1560            corrected_problem: problem.clone(),
1561            correction_overhead: 0.05,
1562            errors_detected,
1563            errors_corrected: 0,
1564        })
1565    }
1566
1567    /// Apply full error correction
1568    fn apply_full_correction(
1569        &self,
1570        problem: &IsingModel,
1571        config: &CorrectionConfig,
1572    ) -> ApplicationResult<CorrectionResult> {
1573        // Simulate full error correction
1574        thread::sleep(Duration::from_millis(20));
1575
1576        let errors_detected = (problem.num_qubits as f64 * 0.02) as usize;
1577        let errors_corrected = (errors_detected as f64 * 0.9) as usize;
1578
1579        Ok(CorrectionResult {
1580            corrected_problem: problem.clone(),
1581            correction_overhead: 0.2,
1582            errors_detected,
1583            errors_corrected,
1584        })
1585    }
1586
1587    /// Apply hybrid correction strategy
1588    fn apply_hybrid_correction(
1589        &self,
1590        problem: &IsingModel,
1591        config: &HybridConfig,
1592    ) -> ApplicationResult<CorrectionResult> {
1593        // Start with detection
1594        let detection_result = self.apply_detection_only(problem, &config.detection)?;
1595
1596        // Decide whether to proceed with correction
1597        let should_correct = detection_result.errors_detected > 0;
1598
1599        if should_correct {
1600            let correction_result = self.apply_full_correction(problem, &config.correction)?;
1601            Ok(CorrectionResult {
1602                corrected_problem: correction_result.corrected_problem,
1603                correction_overhead: detection_result.correction_overhead
1604                    + correction_result.correction_overhead,
1605                errors_detected: detection_result.errors_detected,
1606                errors_corrected: correction_result.errors_corrected,
1607            })
1608        } else {
1609            Ok(detection_result)
1610        }
1611    }
1612
1613    /// Apply adaptive strategy selection
1614    fn apply_adaptive_strategy(
1615        &self,
1616        problem: &IsingModel,
1617        config: &AdaptiveStrategyConfig,
1618    ) -> ApplicationResult<CorrectionResult> {
1619        // Select best strategy from available options
1620        if let Some(best_strategy) = config.available_strategies.first() {
1621            match best_strategy {
1622                ErrorCorrectionStrategy::Detection(det_config) => {
1623                    self.apply_detection_only(problem, det_config)
1624                }
1625                ErrorCorrectionStrategy::Correction(corr_config) => {
1626                    self.apply_full_correction(problem, corr_config)
1627                }
1628                _ => {
1629                    // Default to detection
1630                    self.apply_detection_only(
1631                        problem,
1632                        &DetectionConfig {
1633                            threshold: 0.01,
1634                            method: DetectionMethod::Parity,
1635                            action: DetectionAction::Flag,
1636                        },
1637                    )
1638                }
1639            }
1640        } else {
1641            Err(ApplicationError::InvalidConfiguration(
1642                "No strategies available for adaptive selection".to_string(),
1643            ))
1644        }
1645    }
1646
1647    /// Update system state based on results
1648    fn update_system_state(&self, corrected_problem: &CorrectedProblem) -> ApplicationResult<()> {
1649        // Update performance metrics
1650        let mut performance_analyzer = self.performance_analyzer.lock().map_err(|_| {
1651            ApplicationError::OptimizationError(
1652                "Failed to acquire performance analyzer lock".to_string(),
1653            )
1654        })?;
1655
1656        performance_analyzer.update_performance(&corrected_problem.correction_metadata);
1657
1658        // Update resource allocation if needed
1659        let mut resource_manager = self.resource_manager.lock().map_err(|_| {
1660            ApplicationError::OptimizationError(
1661                "Failed to acquire resource manager lock".to_string(),
1662            )
1663        })?;
1664
1665        resource_manager
1666            .update_allocation_based_on_performance(&corrected_problem.correction_metadata);
1667
1668        Ok(())
1669    }
1670
1671    /// Initialize subsystems
1672    fn initialize_noise_monitoring(&self) -> ApplicationResult<()> {
1673        println!("Initializing noise monitoring subsystem");
1674        Ok(())
1675    }
1676
1677    fn initialize_prediction_system(&self) -> ApplicationResult<()> {
1678        println!("Initializing noise prediction subsystem");
1679        Ok(())
1680    }
1681
1682    fn initialize_protocol_management(&self) -> ApplicationResult<()> {
1683        println!("Initializing adaptive protocol management");
1684        Ok(())
1685    }
1686
1687    fn initialize_performance_analysis(&self) -> ApplicationResult<()> {
1688        println!("Initializing performance analysis subsystem");
1689        Ok(())
1690    }
1691
1692    fn initialize_resource_management(&self) -> ApplicationResult<()> {
1693        println!("Initializing adaptive resource management");
1694        Ok(())
1695    }
1696
1697    fn initialize_hierarchy_coordination(&self) -> ApplicationResult<()> {
1698        println!("Initializing hierarchy coordination");
1699        Ok(())
1700    }
1701
1702    fn start_monitoring_loops(&self) -> ApplicationResult<()> {
1703        println!("Starting real-time monitoring loops");
1704        // In a real implementation, this would start background threads
1705        Ok(())
1706    }
1707
1708    /// Get current system performance metrics
1709    pub fn get_performance_metrics(&self) -> ApplicationResult<AdaptiveQecMetrics> {
1710        let performance_analyzer = self.performance_analyzer.lock().map_err(|_| {
1711            ApplicationError::OptimizationError(
1712                "Failed to acquire performance analyzer lock".to_string(),
1713            )
1714        })?;
1715
1716        Ok(AdaptiveQecMetrics {
1717            correction_efficiency: performance_analyzer.metrics.correction_efficiency,
1718            adaptation_responsiveness: performance_analyzer.metrics.adaptation_responsiveness,
1719            prediction_accuracy: performance_analyzer.metrics.prediction_accuracy,
1720            resource_efficiency: performance_analyzer.metrics.resource_efficiency,
1721            overall_performance: performance_analyzer.metrics.overall_performance,
1722        })
1723    }
1724}
1725
1726// Helper types and implementations
1727
1728/// Noise assessment result
1729#[derive(Debug, Clone)]
1730pub struct NoiseAssessment {
1731    pub current_noise: NoiseCharacteristics,
1732    pub severity: NoiseSeverity,
1733    pub trends: NoiseTrends,
1734    pub confidence: f64,
1735    pub timestamp: Instant,
1736}
1737
1738/// Noise severity levels
1739#[derive(Debug, Clone, PartialEq, Eq)]
1740pub enum NoiseSeverity {
1741    Low,
1742    Medium,
1743    High,
1744    Critical,
1745}
1746
1747/// Noise trend analysis
1748#[derive(Debug, Clone)]
1749pub struct NoiseTrends {
1750    pub direction: TrendDirection,
1751    pub rate: f64,
1752    pub confidence: f64,
1753}
1754
1755/// Trend directions
1756#[derive(Debug, Clone, PartialEq, Eq)]
1757pub enum TrendDirection {
1758    Increasing,
1759    Decreasing,
1760    Stable,
1761}
1762
1763/// Noise prediction result
1764#[derive(Debug, Clone)]
1765pub struct NoisePrediction {
1766    pub predicted_noise: NoiseCharacteristics,
1767    pub confidence: f64,
1768    pub horizon: Duration,
1769    pub uncertainty_bounds: (f64, f64),
1770}
1771
1772/// Correction result
1773#[derive(Debug, Clone)]
1774pub struct CorrectionResult {
1775    pub corrected_problem: IsingModel,
1776    pub correction_overhead: f64,
1777    pub errors_detected: usize,
1778    pub errors_corrected: usize,
1779}
1780
1781/// Final corrected problem with metadata
1782#[derive(Debug, Clone)]
1783pub struct CorrectedProblem {
1784    pub original_problem: IsingModel,
1785    pub corrected_problem: IsingModel,
1786    pub correction_metadata: CorrectionMetadata,
1787}
1788
1789/// Correction metadata
1790#[derive(Debug, Clone)]
1791pub struct CorrectionMetadata {
1792    pub strategy_used: ErrorCorrectionStrategy,
1793    pub execution_time: Duration,
1794    pub correction_overhead: f64,
1795    pub errors_detected: usize,
1796    pub errors_corrected: usize,
1797    pub confidence: f64,
1798}
1799
1800/// Adaptive QEC performance metrics
1801#[derive(Debug, Clone)]
1802pub struct AdaptiveQecMetrics {
1803    pub correction_efficiency: f64,
1804    pub adaptation_responsiveness: f64,
1805    pub prediction_accuracy: f64,
1806    pub resource_efficiency: f64,
1807    pub overall_performance: f64,
1808}
1809
1810// Implementation of helper structs
1811
1812impl NoiseMonitor {
1813    fn new() -> Self {
1814        Self {
1815            current_noise: NoiseCharacteristics {
1816                timestamp: Instant::now(),
1817                noise_level: 0.01,
1818                noise_type: NoiseType::White,
1819                temporal_correlation: 0.1,
1820                spatial_correlation: 0.1,
1821                noise_spectrum: vec![0.01; 10],
1822                per_qubit_error_rates: vec![0.001; 100],
1823                coherence_times: vec![100.0; 100],
1824                gate_fidelities: HashMap::new(),
1825            },
1826            noise_history: VecDeque::new(),
1827            sensors: vec![],
1828            analyzers: vec![],
1829        }
1830    }
1831}
1832
1833impl AdaptiveProtocolManager {
1834    fn new() -> Self {
1835        Self {
1836            active_protocols: HashMap::new(),
1837            protocol_history: VecDeque::new(),
1838            adaptation_engine: AdaptationEngine {
1839                algorithm: AdaptationAlgorithm::RuleBased,
1840                parameters: HashMap::new(),
1841                decision_history: VecDeque::new(),
1842            },
1843        }
1844    }
1845}
1846
1847impl NoisePredictionSystem {
1848    fn new(ml_config: MLNoiseConfig) -> Self {
1849        Self {
1850            models: HashMap::new(),
1851            ensemble: ModelEnsemble {
1852                method: EnsembleMethod::WeightedAverage,
1853                weights: HashMap::new(),
1854                performance_history: VecDeque::new(),
1855            },
1856            prediction_cache: HashMap::new(),
1857        }
1858    }
1859}
1860
1861impl PerformanceAnalyzer {
1862    fn new() -> Self {
1863        Self {
1864            metrics: PerformanceMetrics {
1865                correction_efficiency: 0.9,
1866                resource_efficiency: 0.8,
1867                adaptation_responsiveness: 0.85,
1868                prediction_accuracy: 0.8,
1869                overall_performance: 0.85,
1870                performance_history: VecDeque::new(),
1871            },
1872            analyzers: vec![],
1873            benchmarks: HashMap::new(),
1874        }
1875    }
1876
1877    fn update_performance(&mut self, metadata: &CorrectionMetadata) {
1878        // Update performance metrics based on correction results
1879        let efficiency = metadata.errors_corrected as f64 / metadata.errors_detected.max(1) as f64;
1880        self.metrics.correction_efficiency = self
1881            .metrics
1882            .correction_efficiency
1883            .mul_add(0.9, efficiency * 0.1);
1884
1885        let resource_efficiency = 1.0 / (1.0 + metadata.correction_overhead);
1886        self.metrics.resource_efficiency = self
1887            .metrics
1888            .resource_efficiency
1889            .mul_add(0.9, resource_efficiency * 0.1);
1890
1891        // Update overall performance
1892        self.metrics.overall_performance = self.metrics.prediction_accuracy.mul_add(
1893            0.2,
1894            self.metrics.adaptation_responsiveness.mul_add(
1895                0.2,
1896                self.metrics
1897                    .correction_efficiency
1898                    .mul_add(0.3, self.metrics.resource_efficiency * 0.3),
1899            ),
1900        );
1901    }
1902}
1903
1904impl AdaptiveResourceManager {
1905    fn new(config: ResourceManagementConfig) -> Self {
1906        Self {
1907            allocation: ResourceAllocation {
1908                allocation_map: HashMap::new(),
1909                total_allocated: 0.0,
1910                available_resources: 100.0,
1911                allocation_history: VecDeque::new(),
1912            },
1913            constraints: ResourceConstraints {
1914                max_total: 100.0,
1915                per_component: HashMap::new(),
1916                min_performance: 0.8,
1917                enforcement_method: ConstraintEnforcement::Soft,
1918            },
1919            optimizers: vec![],
1920        }
1921    }
1922
1923    fn update_allocation_based_on_performance(&mut self, metadata: &CorrectionMetadata) {
1924        // Adjust resource allocation based on performance
1925        let performance_score =
1926            metadata.errors_corrected as f64 / metadata.errors_detected.max(1) as f64;
1927
1928        if performance_score < 0.8 {
1929            // Increase resource allocation for error correction
1930            self.allocation
1931                .allocation_map
1932                .insert("error_correction".to_string(), 0.4);
1933        } else if performance_score > 0.95 && metadata.correction_overhead < 0.1 {
1934            // Reduce allocation if performance is excellent and overhead is low
1935            self.allocation
1936                .allocation_map
1937                .insert("error_correction".to_string(), 0.2);
1938        }
1939    }
1940}
1941
1942impl HierarchyCoordinator {
1943    fn new(config: HierarchyConfig) -> Self {
1944        let mut levels = Vec::new();
1945        for i in 0..config.num_levels {
1946            levels.push(HierarchyLevel {
1947                id: i,
1948                priority: (config.num_levels - i) as u8,
1949                protocols: vec![],
1950                resources: config.level_resources.get(i).copied().unwrap_or(0.1),
1951                performance: LevelPerformance {
1952                    accuracy: 0.9,
1953                    response_time: Duration::from_millis(10 * (i + 1) as u64),
1954                    efficiency: 0.8,
1955                    coordination_effectiveness: 0.85,
1956                },
1957            });
1958        }
1959
1960        Self {
1961            levels,
1962            communication: HierarchyCommunicationManager {
1963                channels: HashMap::new(),
1964                message_queues: HashMap::new(),
1965                statistics: CommunicationStatistics {
1966                    throughput: 100.0,
1967                    avg_latency: Duration::from_millis(5),
1968                    success_rate: 0.99,
1969                    channel_utilization: HashMap::new(),
1970                },
1971            },
1972            coordinators: vec![],
1973        }
1974    }
1975}
1976
1977/// Create example real-time adaptive QEC system
1978pub fn create_example_adaptive_qec() -> ApplicationResult<RealTimeAdaptiveQec> {
1979    let config = AdaptiveQecConfig::default();
1980    let system = RealTimeAdaptiveQec::new(config);
1981
1982    // Start the system
1983    system.start()?;
1984
1985    Ok(system)
1986}
1987
1988#[cfg(test)]
1989mod tests {
1990    use super::*;
1991
1992    #[test]
1993    fn test_adaptive_qec_creation() {
1994        let config = AdaptiveQecConfig::default();
1995        let system = RealTimeAdaptiveQec::new(config);
1996
1997        // Basic system creation test
1998        assert_eq!(
1999            system.config.monitoring_interval,
2000            Duration::from_millis(100)
2001        );
2002    }
2003
2004    #[test]
2005    fn test_noise_assessment() {
2006        let system = create_example_adaptive_qec().expect("Failed to create adaptive QEC system");
2007        let assessment = system
2008            .assess_noise_conditions()
2009            .expect("Failed to assess noise conditions");
2010
2011        assert!(assessment.confidence > 0.0);
2012        assert!(assessment.confidence <= 1.0);
2013    }
2014
2015    #[test]
2016    fn test_strategy_selection() {
2017        let system = create_example_adaptive_qec().expect("Failed to create adaptive QEC system");
2018        let problem = IsingModel::new(100);
2019
2020        let noise_assessment = NoiseAssessment {
2021            current_noise: NoiseCharacteristics {
2022                timestamp: Instant::now(),
2023                noise_level: 0.005,
2024                noise_type: NoiseType::White,
2025                temporal_correlation: 0.1,
2026                spatial_correlation: 0.1,
2027                noise_spectrum: vec![0.005; 10],
2028                per_qubit_error_rates: vec![0.0005; 100],
2029                coherence_times: vec![50.0; 100],
2030                gate_fidelities: HashMap::new(),
2031            },
2032            severity: NoiseSeverity::Low,
2033            trends: NoiseTrends {
2034                direction: TrendDirection::Stable,
2035                rate: 0.001,
2036                confidence: 0.8,
2037            },
2038            confidence: 0.9,
2039            timestamp: Instant::now(),
2040        };
2041
2042        let noise_prediction = NoisePrediction {
2043            predicted_noise: noise_assessment.current_noise.clone(),
2044            confidence: 0.85,
2045            horizon: Duration::from_secs(10),
2046            uncertainty_bounds: (0.003, 0.007),
2047        };
2048
2049        let strategy = system
2050            .select_correction_strategy(&problem, &noise_assessment, &noise_prediction)
2051            .expect("Failed to select correction strategy");
2052
2053        // Should select appropriate strategy for small problem with low noise
2054        match &strategy {
2055            ErrorCorrectionStrategy::Detection(_) => assert!(true),
2056            ErrorCorrectionStrategy::Hybrid(_) => {
2057                assert!(false, "Got hybrid strategy instead of detection")
2058            }
2059            ErrorCorrectionStrategy::Correction(_) => {
2060                assert!(false, "Got correction strategy instead of detection")
2061            }
2062            _ => assert!(
2063                false,
2064                "Expected detection strategy for low noise, got: {:?}",
2065                strategy
2066            ),
2067        }
2068    }
2069
2070    #[test]
2071    fn test_ml_config() {
2072        let ml_config = MLNoiseConfig::default();
2073        assert_eq!(ml_config.network_architecture, NeuralArchitecture::LSTM);
2074        assert_eq!(ml_config.training_window, 1000);
2075        assert!(ml_config.enable_neural_prediction);
2076    }
2077
2078    #[test]
2079    fn test_hierarchy_config() {
2080        let hierarchy_config = HierarchyConfig::default();
2081        assert_eq!(hierarchy_config.num_levels, 3);
2082        assert_eq!(hierarchy_config.level_thresholds.len(), 3);
2083        assert!(hierarchy_config.enable_hierarchy);
2084    }
2085
2086    #[test]
2087    fn test_performance_metrics_update() {
2088        let mut analyzer = PerformanceAnalyzer::new();
2089
2090        let metadata = CorrectionMetadata {
2091            strategy_used: ErrorCorrectionStrategy::Detection(DetectionConfig {
2092                threshold: 0.01,
2093                method: DetectionMethod::Parity,
2094                action: DetectionAction::Flag,
2095            }),
2096            execution_time: Duration::from_millis(10),
2097            correction_overhead: 0.1,
2098            errors_detected: 5,
2099            errors_corrected: 4,
2100            confidence: 0.9,
2101        };
2102
2103        let initial_efficiency = analyzer.metrics.correction_efficiency;
2104        analyzer.update_performance(&metadata);
2105
2106        // Performance should be updated
2107        assert!(analyzer.metrics.correction_efficiency >= 0.0);
2108        assert!(analyzer.metrics.correction_efficiency <= 1.0);
2109    }
2110}