1use std::collections::{BTreeMap, HashMap, VecDeque};
20use std::sync::{Arc, Mutex, RwLock};
21use std::thread;
22use std::time::{Duration, Instant, SystemTime};
23
24use crate::applications::{ApplicationError, ApplicationResult};
25use crate::ising::{IsingModel, QuboModel};
26use crate::quantum_error_correction::{
27 ErrorCorrectionCode, LogicalAnnealingEncoder, MitigationTechnique, SyndromeDetector,
28};
29
30#[derive(Debug, Clone)]
32pub struct AdaptiveQecConfig {
33 pub monitoring_interval: Duration,
35 pub adaptation_threshold: f64,
37 pub performance_window: Duration,
39 pub ml_config: MLNoiseConfig,
41 pub hierarchy_config: HierarchyConfig,
43 pub resource_config: ResourceManagementConfig,
45 pub prediction_config: PredictionConfig,
47}
48
49impl Default for AdaptiveQecConfig {
50 fn default() -> Self {
51 Self {
52 monitoring_interval: Duration::from_millis(100),
53 adaptation_threshold: 0.1,
54 performance_window: Duration::from_secs(30),
55 ml_config: MLNoiseConfig::default(),
56 hierarchy_config: HierarchyConfig::default(),
57 resource_config: ResourceManagementConfig::default(),
58 prediction_config: PredictionConfig::default(),
59 }
60 }
61}
62
63#[derive(Debug, Clone)]
65pub struct MLNoiseConfig {
66 pub enable_neural_prediction: bool,
68 pub network_architecture: NeuralArchitecture,
70 pub training_window: usize,
72 pub prediction_horizon: Duration,
74 pub update_frequency: Duration,
76 pub feature_config: FeatureConfig,
78}
79
80impl Default for MLNoiseConfig {
81 fn default() -> Self {
82 Self {
83 enable_neural_prediction: true,
84 network_architecture: NeuralArchitecture::LSTM,
85 training_window: 1000,
86 prediction_horizon: Duration::from_secs(10),
87 update_frequency: Duration::from_secs(60),
88 feature_config: FeatureConfig::default(),
89 }
90 }
91}
92
93#[derive(Debug, Clone, PartialEq, Eq)]
95pub enum NeuralArchitecture {
96 LSTM,
98 GRU,
100 Transformer,
102 CNN,
104 CNNLstm,
106}
107
108#[derive(Debug, Clone)]
110pub struct FeatureConfig {
111 pub enable_temporal: bool,
113 pub enable_spectral: bool,
115 pub enable_correlation: bool,
117 pub normalization: FeatureNormalization,
119 pub selection_method: FeatureSelection,
121}
122
123impl Default for FeatureConfig {
124 fn default() -> Self {
125 Self {
126 enable_temporal: true,
127 enable_spectral: true,
128 enable_correlation: true,
129 normalization: FeatureNormalization::ZScore,
130 selection_method: FeatureSelection::Automatic,
131 }
132 }
133}
134
135#[derive(Debug, Clone, PartialEq, Eq)]
137pub enum FeatureNormalization {
138 ZScore,
140 MinMax,
142 Robust,
144 None,
146}
147
148#[derive(Debug, Clone, PartialEq, Eq)]
150pub enum FeatureSelection {
151 Automatic,
153 Manual(Vec<String>),
155 PCA,
157 MutualInformation,
159}
160
161#[derive(Debug, Clone)]
163pub struct HierarchyConfig {
164 pub enable_hierarchy: bool,
166 pub num_levels: usize,
168 pub level_thresholds: Vec<f64>,
170 pub level_resources: Vec<f64>,
172 pub communication_protocol: HierarchyCommunication,
174}
175
176impl Default for HierarchyConfig {
177 fn default() -> Self {
178 Self {
179 enable_hierarchy: true,
180 num_levels: 3,
181 level_thresholds: vec![0.01, 0.05, 0.1],
182 level_resources: vec![0.1, 0.3, 0.6],
183 communication_protocol: HierarchyCommunication::Cascade,
184 }
185 }
186}
187
188#[derive(Debug, Clone, PartialEq, Eq)]
190pub enum HierarchyCommunication {
191 Cascade,
193 Parallel,
195 Dynamic,
197 Adaptive,
199}
200
201#[derive(Debug, Clone)]
203pub struct ResourceManagementConfig {
204 pub max_overhead_ratio: f64,
206 pub allocation_strategy: ResourceAllocationStrategy,
208 pub enable_dynamic_adjustment: bool,
210 pub enforce_constraints: bool,
212 pub performance_weight: f64,
214}
215
216impl Default for ResourceManagementConfig {
217 fn default() -> Self {
218 Self {
219 max_overhead_ratio: 0.3,
220 allocation_strategy: ResourceAllocationStrategy::Adaptive,
221 enable_dynamic_adjustment: true,
222 enforce_constraints: true,
223 performance_weight: 0.7,
224 }
225 }
226}
227
228#[derive(Debug, Clone, PartialEq, Eq)]
230pub enum ResourceAllocationStrategy {
231 Fixed,
233 PerformanceBased,
235 Adaptive,
237 Predictive,
239}
240
241#[derive(Debug, Clone)]
243pub struct PredictionConfig {
244 pub enable_trend_prediction: bool,
246 pub enable_performance_forecasting: bool,
248 pub accuracy_threshold: f64,
250 pub confidence_level: f64,
252 pub update_strategy: PredictionUpdateStrategy,
254}
255
256impl Default for PredictionConfig {
257 fn default() -> Self {
258 Self {
259 enable_trend_prediction: true,
260 enable_performance_forecasting: true,
261 accuracy_threshold: 0.8,
262 confidence_level: 0.95,
263 update_strategy: PredictionUpdateStrategy::Continuous,
264 }
265 }
266}
267
268#[derive(Debug, Clone, PartialEq, Eq)]
270pub enum PredictionUpdateStrategy {
271 Continuous,
273 Periodic(Duration),
275 EventDriven,
277 Adaptive,
279}
280
281#[derive(Debug, Clone)]
283pub struct NoiseCharacteristics {
284 pub timestamp: Instant,
286 pub noise_level: f64,
288 pub noise_type: NoiseType,
290 pub temporal_correlation: f64,
292 pub spatial_correlation: f64,
294 pub noise_spectrum: Vec<f64>,
296 pub per_qubit_error_rates: Vec<f64>,
298 pub coherence_times: Vec<f64>,
300 pub gate_fidelities: HashMap<String, f64>,
302}
303
304#[derive(Debug, Clone, PartialEq)]
306pub enum NoiseType {
307 White,
309 Colored,
311 Burst,
313 Drift,
315 Mixed(Vec<Self>),
317}
318
319#[derive(Debug, Clone)]
321pub struct AdaptiveProtocol {
322 pub id: String,
324 pub current_strategy: ErrorCorrectionStrategy,
326 pub adaptation_rules: Vec<AdaptationRule>,
328 pub performance_metrics: ProtocolPerformance,
330 pub resource_usage: ResourceUsage,
332 pub last_adaptation: Instant,
334}
335
336#[derive(Debug, Clone)]
338pub enum ErrorCorrectionStrategy {
339 None,
341 Detection(DetectionConfig),
343 Correction(CorrectionConfig),
345 Hybrid(HybridConfig),
347 Adaptive(AdaptiveStrategyConfig),
349}
350
351#[derive(Debug, Clone)]
353pub struct DetectionConfig {
354 pub threshold: f64,
356 pub method: DetectionMethod,
358 pub action: DetectionAction,
360}
361
362#[derive(Debug, Clone, PartialEq, Eq)]
364pub enum DetectionMethod {
365 Parity,
367 Syndrome,
369 Statistical,
371 MLClassification,
373}
374
375#[derive(Debug, Clone, PartialEq, Eq)]
377pub enum DetectionAction {
378 Flag,
380 Retry,
382 SwitchProtocol,
384 IncreaseCorrectionLevel,
386}
387
388#[derive(Debug, Clone)]
390pub struct CorrectionConfig {
391 pub code: ErrorCorrectionCode,
393 pub threshold: f64,
395 pub max_attempts: usize,
397 pub efficiency_target: f64,
399}
400
401#[derive(Debug, Clone)]
403pub struct HybridConfig {
404 pub detection: DetectionConfig,
406 pub correction: CorrectionConfig,
408 pub switching_criteria: SwitchingCriteria,
410}
411
412#[derive(Debug, Clone)]
414pub struct AdaptiveStrategyConfig {
415 pub available_strategies: Vec<ErrorCorrectionStrategy>,
417 pub selection_algorithm: StrategySelectionAlgorithm,
419 pub performance_history: Vec<StrategyPerformance>,
421}
422
423#[derive(Debug, Clone, PartialEq, Eq)]
425pub enum StrategySelectionAlgorithm {
426 Greedy,
428 MultiArmedBandit,
430 ReinforcementLearning,
432 BayesianOptimization,
434}
435
436#[derive(Debug, Clone)]
438pub struct StrategyPerformance {
439 pub strategy_id: String,
441 pub performance_score: f64,
443 pub resource_overhead: f64,
445 pub success_rate: f64,
447 pub timestamp: Instant,
449}
450
451#[derive(Debug, Clone)]
453pub struct SwitchingCriteria {
454 pub error_rate_threshold: f64,
456 pub performance_threshold: f64,
458 pub resource_threshold: f64,
460 pub time_based: Option<Duration>,
462}
463
464#[derive(Debug, Clone)]
466pub struct AdaptationRule {
467 pub id: String,
469 pub condition: AdaptationCondition,
471 pub action: AdaptationAction,
473 pub priority: u8,
475 pub cooldown: Duration,
477}
478
479#[derive(Debug, Clone)]
481pub enum AdaptationCondition {
482 NoiseThreshold(f64),
484 PerformanceThreshold(f64),
486 ErrorRateThreshold(f64),
488 ResourceThreshold(f64),
490 TimeBased(Duration),
492 Composite(Vec<Self>),
494}
495
496#[derive(Debug, Clone)]
498pub enum AdaptationAction {
499 SwitchStrategy(ErrorCorrectionStrategy),
501 AdjustThreshold(f64),
503 IncreaseCorrectionLevel,
505 DecreaseCorrectionLevel,
507 ReallocateResources(ResourceReallocation),
509 UpdatePredictionModel,
511}
512
513#[derive(Debug, Clone)]
515pub struct ResourceReallocation {
516 pub allocation_ratios: Vec<f64>,
518 pub target_components: Vec<String>,
520 pub priority: u8,
522}
523
524#[derive(Debug, Clone)]
526pub struct ProtocolPerformance {
527 pub success_rate: f64,
529 pub avg_correction_time: Duration,
531 pub resource_efficiency: f64,
533 pub quality_improvement: f64,
535 pub overhead_ratio: f64,
537 pub adaptation_frequency: f64,
539}
540
541#[derive(Debug, Clone)]
543pub struct ResourceUsage {
544 pub computational: f64,
546 pub memory: f64,
548 pub communication: f64,
550 pub total_overhead: f64,
552 pub usage_history: VecDeque<ResourceSnapshot>,
554}
555
556#[derive(Debug, Clone)]
558pub struct ResourceSnapshot {
559 pub timestamp: Instant,
561 pub usage: HashMap<String, f64>,
563 pub performance: f64,
565}
566
567#[derive(Debug)]
569pub struct NoisePredictionModel {
570 pub model_type: NeuralArchitecture,
572 pub parameters: Vec<f64>,
574 pub training_data: VecDeque<NoiseDataPoint>,
576 pub accuracy: f64,
578 pub last_update: Instant,
580 pub feature_extractor: FeatureExtractor,
582}
583
584#[derive(Debug, Clone)]
586pub struct NoiseDataPoint {
587 pub features: Vec<f64>,
589 pub target: NoiseCharacteristics,
591 pub timestamp: Instant,
593}
594
595#[derive(Debug)]
597pub struct FeatureExtractor {
598 pub config: FeatureConfig,
600 pub feature_definitions: Vec<FeatureDefinition>,
602 pub normalization_params: HashMap<String, NormalizationParams>,
604}
605
606#[derive(Debug, Clone)]
608pub struct FeatureDefinition {
609 pub name: String,
611 pub feature_type: FeatureType,
613 pub parameters: HashMap<String, f64>,
615}
616
617#[derive(Debug, Clone, PartialEq, Eq)]
619pub enum FeatureType {
620 Temporal,
622 Spectral,
624 Correlation,
626 Statistical,
628 Custom(String),
630}
631
632#[derive(Debug, Clone)]
634pub struct NormalizationParams {
635 pub mean: f64,
637 pub std: f64,
639 pub min: f64,
641 pub max: f64,
643}
644
645pub struct RealTimeAdaptiveQec {
647 pub config: AdaptiveQecConfig,
649 pub noise_monitor: Arc<Mutex<NoiseMonitor>>,
651 pub protocol_manager: Arc<RwLock<AdaptiveProtocolManager>>,
653 pub prediction_system: Arc<Mutex<NoisePredictionSystem>>,
655 pub performance_analyzer: Arc<Mutex<PerformanceAnalyzer>>,
657 pub resource_manager: Arc<Mutex<AdaptiveResourceManager>>,
659 pub hierarchy_coordinator: Arc<Mutex<HierarchyCoordinator>>,
661}
662
663pub struct NoiseMonitor {
665 pub current_noise: NoiseCharacteristics,
667 pub noise_history: VecDeque<NoiseCharacteristics>,
669 pub sensors: Vec<NoiseSensor>,
671 pub analyzers: Vec<NoiseAnalyzer>,
673}
674
675#[derive(Debug)]
677pub struct NoiseSensor {
678 pub id: String,
680 pub sensor_type: SensorType,
682 pub frequency: f64,
684 pub last_measurement: Option<Instant>,
686 pub calibration: SensorCalibration,
688}
689
690#[derive(Debug, Clone, PartialEq, Eq)]
692pub enum SensorType {
693 ErrorRate,
695 CoherenceTime,
697 GateFidelity,
699 Environmental,
701 ProcessTomography,
703}
704
705#[derive(Debug, Clone)]
707pub struct SensorCalibration {
708 pub timestamp: Instant,
710 pub parameters: HashMap<String, f64>,
712 pub accuracy: f64,
714}
715
716#[derive(Debug)]
718pub struct NoiseAnalyzer {
719 pub id: String,
721 pub algorithm: AnalysisAlgorithm,
723 pub parameters: HashMap<String, f64>,
725}
726
727#[derive(Debug, Clone, PartialEq, Eq)]
729pub enum AnalysisAlgorithm {
730 Spectral,
732 Correlation,
734 Statistical,
736 MLClassification,
738 Fourier,
740}
741
742pub struct AdaptiveProtocolManager {
744 pub active_protocols: HashMap<String, AdaptiveProtocol>,
746 pub protocol_history: VecDeque<ProtocolEvent>,
748 pub adaptation_engine: AdaptationEngine,
750}
751
752#[derive(Debug, Clone)]
754pub struct ProtocolEvent {
755 pub timestamp: Instant,
757 pub event_type: ProtocolEventType,
759 pub protocol_id: String,
761 pub details: HashMap<String, String>,
763}
764
765#[derive(Debug, Clone, PartialEq, Eq)]
767pub enum ProtocolEventType {
768 Activation,
770 Deactivation,
772 Adaptation,
774 PerformanceUpdate,
776 ErrorDetected,
778 ErrorCorrected,
780}
781
782#[derive(Debug)]
784pub struct AdaptationEngine {
785 pub algorithm: AdaptationAlgorithm,
787 pub parameters: HashMap<String, f64>,
789 pub decision_history: VecDeque<AdaptationDecision>,
791}
792
793#[derive(Debug, Clone, PartialEq, Eq)]
795pub enum AdaptationAlgorithm {
796 RuleBased,
798 MachineLearning,
800 ReinforcementLearning,
802 BayesianOptimization,
804 Hybrid,
806}
807
808#[derive(Debug, Clone)]
810pub struct AdaptationDecision {
811 pub timestamp: Instant,
813 pub rationale: String,
815 pub actions: Vec<AdaptationAction>,
817 pub expected_impact: f64,
819 pub actual_impact: Option<f64>,
821}
822
823pub struct NoisePredictionSystem {
825 pub models: HashMap<String, NoisePredictionModel>,
827 pub ensemble: ModelEnsemble,
829 pub prediction_cache: HashMap<String, PredictionResult>,
831}
832
833#[derive(Debug)]
835pub struct ModelEnsemble {
836 pub method: EnsembleMethod,
838 pub weights: HashMap<String, f64>,
840 pub performance_history: VecDeque<EnsemblePerformance>,
842}
843
844#[derive(Debug, Clone, PartialEq, Eq)]
846pub enum EnsembleMethod {
847 Average,
849 WeightedAverage,
851 Voting,
853 Stacking,
855 Boosting,
857}
858
859#[derive(Debug, Clone)]
861pub struct EnsemblePerformance {
862 pub timestamp: Instant,
864 pub accuracy: f64,
866 pub confidence: f64,
868 pub model_contributions: HashMap<String, f64>,
870}
871
872#[derive(Debug, Clone)]
874pub struct PredictionResult {
875 pub predicted_noise: NoiseCharacteristics,
877 pub confidence: f64,
879 pub horizon: Duration,
881 pub uncertainty_bounds: (f64, f64),
883 pub timestamp: Instant,
885}
886
887pub struct PerformanceAnalyzer {
889 pub metrics: PerformanceMetrics,
891 pub analyzers: Vec<PerformanceAnalysisAlgorithm>,
893 pub benchmarks: HashMap<String, BenchmarkResult>,
895}
896
897#[derive(Debug, Clone)]
899pub struct PerformanceMetrics {
900 pub correction_efficiency: f64,
902 pub resource_efficiency: f64,
904 pub adaptation_responsiveness: f64,
906 pub prediction_accuracy: f64,
908 pub overall_performance: f64,
910 pub performance_history: VecDeque<PerformanceSnapshot>,
912}
913
914#[derive(Debug, Clone)]
916pub struct PerformanceSnapshot {
917 pub timestamp: Instant,
919 pub metrics: HashMap<String, f64>,
921 pub system_state: SystemState,
923}
924
925#[derive(Debug, Clone)]
927pub struct SystemState {
928 pub active_protocols: Vec<String>,
930 pub noise_level: f64,
932 pub resource_usage: f64,
934 pub performance_score: f64,
936}
937
938#[derive(Debug)]
940pub struct PerformanceAnalysisAlgorithm {
941 pub id: String,
943 pub analysis_type: AnalysisType,
945 pub parameters: HashMap<String, f64>,
947}
948
949#[derive(Debug, Clone, PartialEq, Eq)]
951pub enum AnalysisType {
952 Trend,
954 AnomalyDetection,
956 Correlation,
958 Comparative,
960 Predictive,
962}
963
964#[derive(Debug, Clone)]
966pub struct BenchmarkResult {
967 pub name: String,
969 pub score: f64,
971 pub baseline: f64,
973 pub improvement_factor: f64,
975 pub timestamp: Instant,
977}
978
979pub struct AdaptiveResourceManager {
981 pub allocation: ResourceAllocation,
983 pub constraints: ResourceConstraints,
985 pub optimizers: Vec<ResourceOptimizer>,
987}
988
989#[derive(Debug, Clone)]
991pub struct ResourceAllocation {
992 pub allocation_map: HashMap<String, f64>,
994 pub total_allocated: f64,
996 pub available_resources: f64,
998 pub allocation_history: VecDeque<AllocationSnapshot>,
1000}
1001
1002#[derive(Debug, Clone)]
1004pub struct AllocationSnapshot {
1005 pub timestamp: Instant,
1007 pub allocation: HashMap<String, f64>,
1009 pub performance: f64,
1011}
1012
1013#[derive(Debug, Clone)]
1015pub struct ResourceConstraints {
1016 pub max_total: f64,
1018 pub per_component: HashMap<String, f64>,
1020 pub min_performance: f64,
1022 pub enforcement_method: ConstraintEnforcement,
1024}
1025
1026#[derive(Debug, Clone, PartialEq, Eq)]
1028pub enum ConstraintEnforcement {
1029 Hard,
1031 Soft,
1033 Adaptive,
1035}
1036
1037#[derive(Debug)]
1039pub struct ResourceOptimizer {
1040 pub id: String,
1042 pub algorithm: OptimizationAlgorithm,
1044 pub parameters: HashMap<String, f64>,
1046}
1047
1048#[derive(Debug, Clone, PartialEq, Eq)]
1050pub enum OptimizationAlgorithm {
1051 GradientDescent,
1053 GeneticAlgorithm,
1055 SimulatedAnnealing,
1057 ParticleSwarm,
1059 BayesianOptimization,
1061}
1062
1063pub struct HierarchyCoordinator {
1065 pub levels: Vec<HierarchyLevel>,
1067 pub communication: HierarchyCommunicationManager,
1069 pub coordinators: Vec<CoordinationAlgorithm>,
1071}
1072
1073#[derive(Debug, Clone)]
1075pub struct HierarchyLevel {
1076 pub id: usize,
1078 pub priority: u8,
1080 pub protocols: Vec<String>,
1082 pub resources: f64,
1084 pub performance: LevelPerformance,
1086}
1087
1088#[derive(Debug, Clone)]
1090pub struct LevelPerformance {
1091 pub accuracy: f64,
1093 pub response_time: Duration,
1095 pub efficiency: f64,
1097 pub coordination_effectiveness: f64,
1099}
1100
1101#[derive(Debug)]
1103pub struct HierarchyCommunicationManager {
1104 pub channels: HashMap<(usize, usize), CommunicationChannel>,
1106 pub message_queues: HashMap<usize, VecDeque<HierarchyMessage>>,
1108 pub statistics: CommunicationStatistics,
1110}
1111
1112#[derive(Debug)]
1114pub struct CommunicationChannel {
1115 pub source: usize,
1117 pub target: usize,
1119 pub capacity: f64,
1121 pub utilization: f64,
1123 pub latency: Duration,
1125}
1126
1127#[derive(Debug, Clone)]
1129pub struct HierarchyMessage {
1130 pub id: String,
1132 pub source: usize,
1134 pub target: usize,
1136 pub message_type: MessageType,
1138 pub payload: MessagePayload,
1140 pub timestamp: Instant,
1142 pub priority: u8,
1144}
1145
1146#[derive(Debug, Clone, PartialEq, Eq)]
1148pub enum MessageType {
1149 ErrorReport,
1151 CorrectionRequest,
1153 ResourceRequest,
1155 PerformanceUpdate,
1157 CoordinationSignal,
1159}
1160
1161#[derive(Debug, Clone)]
1163pub enum MessagePayload {
1164 ErrorInfo(ErrorInfo),
1166 ResourceRequest(ResourceRequestDetails),
1168 PerformanceData(PerformanceData),
1170 CoordinationInstructions(CoordinationInstructions),
1172 Generic(Vec<u8>),
1174}
1175
1176#[derive(Debug, Clone)]
1178pub struct ErrorInfo {
1179 pub error_type: String,
1181 pub location: Vec<usize>,
1183 pub severity: f64,
1185 pub suggested_correction: Option<String>,
1187}
1188
1189#[derive(Debug, Clone)]
1191pub struct ResourceRequestDetails {
1192 pub requested_resources: HashMap<String, f64>,
1194 pub priority: u8,
1196 pub deadline: Option<Instant>,
1198 pub justification: String,
1200}
1201
1202#[derive(Debug, Clone)]
1204pub struct PerformanceData {
1205 pub metrics: HashMap<String, f64>,
1207 pub timestamp: Instant,
1209 pub source: String,
1211}
1212
1213#[derive(Debug, Clone)]
1215pub struct CoordinationInstructions {
1216 pub instructions: Vec<String>,
1218 pub targets: Vec<String>,
1220 pub priority: u8,
1222}
1223
1224#[derive(Debug, Clone)]
1226pub struct CommunicationStatistics {
1227 pub throughput: f64,
1229 pub avg_latency: Duration,
1231 pub success_rate: f64,
1233 pub channel_utilization: HashMap<(usize, usize), f64>,
1235}
1236
1237#[derive(Debug)]
1239pub struct CoordinationAlgorithm {
1240 pub id: String,
1242 pub strategy: CoordinationStrategy,
1244 pub parameters: HashMap<String, f64>,
1246}
1247
1248#[derive(Debug, Clone, PartialEq, Eq)]
1250pub enum CoordinationStrategy {
1251 Centralized,
1253 Distributed,
1255 Hierarchical,
1257 Consensus,
1259 MarketBased,
1261}
1262
1263impl RealTimeAdaptiveQec {
1264 #[must_use]
1266 pub fn new(config: AdaptiveQecConfig) -> Self {
1267 Self {
1268 config: config.clone(),
1269 noise_monitor: Arc::new(Mutex::new(NoiseMonitor::new())),
1270 protocol_manager: Arc::new(RwLock::new(AdaptiveProtocolManager::new())),
1271 prediction_system: Arc::new(Mutex::new(NoisePredictionSystem::new(config.ml_config))),
1272 performance_analyzer: Arc::new(Mutex::new(PerformanceAnalyzer::new())),
1273 resource_manager: Arc::new(Mutex::new(AdaptiveResourceManager::new(
1274 config.resource_config,
1275 ))),
1276 hierarchy_coordinator: Arc::new(Mutex::new(HierarchyCoordinator::new(
1277 config.hierarchy_config,
1278 ))),
1279 }
1280 }
1281
1282 pub fn start(&self) -> ApplicationResult<()> {
1284 println!("Starting real-time adaptive quantum error correction system");
1285
1286 self.initialize_noise_monitoring()?;
1288 self.initialize_prediction_system()?;
1289 self.initialize_protocol_management()?;
1290 self.initialize_performance_analysis()?;
1291 self.initialize_resource_management()?;
1292 self.initialize_hierarchy_coordination()?;
1293
1294 self.start_monitoring_loops()?;
1296
1297 println!("Real-time adaptive QEC system started successfully");
1298 Ok(())
1299 }
1300
1301 pub fn apply_adaptive_correction(
1303 &self,
1304 problem: &IsingModel,
1305 ) -> ApplicationResult<CorrectedProblem> {
1306 println!("Applying adaptive error correction to Ising problem");
1307
1308 let noise_assessment = self.assess_noise_conditions()?;
1310
1311 let noise_prediction = self.predict_noise_evolution(&noise_assessment)?;
1313
1314 let correction_strategy =
1316 self.select_correction_strategy(problem, &noise_assessment, &noise_prediction)?;
1317
1318 let corrected_problem =
1320 self.apply_correction_with_monitoring(problem, &correction_strategy)?;
1321
1322 self.update_system_state(&corrected_problem)?;
1324
1325 println!("Adaptive error correction applied successfully");
1326 Ok(corrected_problem)
1327 }
1328
1329 fn assess_noise_conditions(&self) -> ApplicationResult<NoiseAssessment> {
1331 let noise_monitor = self.noise_monitor.lock().map_err(|_| {
1332 ApplicationError::OptimizationError("Failed to acquire noise monitor lock".to_string())
1333 })?;
1334
1335 let current_noise = &noise_monitor.current_noise;
1336
1337 let noise_level = current_noise.noise_level;
1339 let noise_type = current_noise.noise_type.clone();
1340 let temporal_correlation = current_noise.temporal_correlation;
1341
1342 let severity = if noise_level < 0.01 {
1344 NoiseSeverity::Low
1345 } else if noise_level < 0.05 {
1346 NoiseSeverity::Medium
1347 } else {
1348 NoiseSeverity::High
1349 };
1350
1351 Ok(NoiseAssessment {
1352 current_noise: current_noise.clone(),
1353 severity,
1354 trends: self.analyze_noise_trends(&noise_monitor)?,
1355 confidence: 0.9,
1356 timestamp: Instant::now(),
1357 })
1358 }
1359
1360 fn analyze_noise_trends(&self, noise_monitor: &NoiseMonitor) -> ApplicationResult<NoiseTrends> {
1362 let history = &noise_monitor.noise_history;
1363
1364 if history.len() < 2 {
1365 return Ok(NoiseTrends {
1366 direction: TrendDirection::Stable,
1367 rate: 0.0,
1368 confidence: 0.5,
1369 });
1370 }
1371
1372 let recent = &history[history.len() - 1];
1374 let previous = &history[history.len() - 2];
1375
1376 let noise_change = recent.noise_level - previous.noise_level;
1377 let direction = if noise_change > 0.001 {
1378 TrendDirection::Increasing
1379 } else if noise_change < -0.001 {
1380 TrendDirection::Decreasing
1381 } else {
1382 TrendDirection::Stable
1383 };
1384
1385 Ok(NoiseTrends {
1386 direction,
1387 rate: noise_change.abs(),
1388 confidence: 0.8,
1389 })
1390 }
1391
1392 fn predict_noise_evolution(
1394 &self,
1395 assessment: &NoiseAssessment,
1396 ) -> ApplicationResult<NoisePrediction> {
1397 let prediction_system = self.prediction_system.lock().map_err(|_| {
1398 ApplicationError::OptimizationError(
1399 "Failed to acquire prediction system lock".to_string(),
1400 )
1401 })?;
1402
1403 let predicted_noise_level = match assessment.trends.direction {
1405 TrendDirection::Increasing => assessment
1406 .trends
1407 .rate
1408 .mul_add(2.0, assessment.current_noise.noise_level),
1409 TrendDirection::Decreasing => assessment
1410 .trends
1411 .rate
1412 .mul_add(-2.0, assessment.current_noise.noise_level)
1413 .max(0.0),
1414 TrendDirection::Stable => assessment.current_noise.noise_level,
1415 };
1416
1417 let predicted_noise = NoiseCharacteristics {
1418 timestamp: Instant::now()
1419 + Duration::from_millis(
1420 (self.config.prediction_config.accuracy_threshold * 1000.0) as u64,
1421 ),
1422 noise_level: predicted_noise_level,
1423 noise_type: assessment.current_noise.noise_type.clone(),
1424 temporal_correlation: assessment.current_noise.temporal_correlation,
1425 spatial_correlation: assessment.current_noise.spatial_correlation,
1426 noise_spectrum: assessment.current_noise.noise_spectrum.clone(),
1427 per_qubit_error_rates: assessment.current_noise.per_qubit_error_rates.clone(),
1428 coherence_times: assessment.current_noise.coherence_times.clone(),
1429 gate_fidelities: assessment.current_noise.gate_fidelities.clone(),
1430 };
1431
1432 Ok(NoisePrediction {
1433 predicted_noise,
1434 confidence: 0.85,
1435 horizon: Duration::from_secs(10),
1436 uncertainty_bounds: (predicted_noise_level * 0.9, predicted_noise_level * 1.1),
1437 })
1438 }
1439
1440 fn select_correction_strategy(
1442 &self,
1443 problem: &IsingModel,
1444 noise_assessment: &NoiseAssessment,
1445 noise_prediction: &NoisePrediction,
1446 ) -> ApplicationResult<ErrorCorrectionStrategy> {
1447 let problem_size = problem.num_qubits;
1448 let noise_level = noise_assessment.current_noise.noise_level;
1449
1450 let strategy = match (problem_size, noise_level) {
1452 (size, noise) if size <= 100 && noise < 0.01 => {
1453 ErrorCorrectionStrategy::Detection(DetectionConfig {
1455 threshold: 0.01,
1456 method: DetectionMethod::Parity,
1457 action: DetectionAction::Flag,
1458 })
1459 }
1460 (size, noise) if size < 500 && noise < 0.05 => {
1461 ErrorCorrectionStrategy::Hybrid(HybridConfig {
1463 detection: DetectionConfig {
1464 threshold: 0.02,
1465 method: DetectionMethod::Syndrome,
1466 action: DetectionAction::SwitchProtocol,
1467 },
1468 correction: CorrectionConfig {
1469 code: ErrorCorrectionCode::SurfaceCode,
1470 threshold: 0.05,
1471 max_attempts: 3,
1472 efficiency_target: 0.9,
1473 },
1474 switching_criteria: SwitchingCriteria {
1475 error_rate_threshold: 0.03,
1476 performance_threshold: 0.8,
1477 resource_threshold: 0.5,
1478 time_based: Some(Duration::from_secs(5)),
1479 },
1480 })
1481 }
1482 _ => {
1483 ErrorCorrectionStrategy::Correction(CorrectionConfig {
1485 code: ErrorCorrectionCode::SurfaceCode,
1486 threshold: 0.1,
1487 max_attempts: 5,
1488 efficiency_target: 0.95,
1489 })
1490 }
1491 };
1492
1493 println!(
1494 "Selected error correction strategy based on problem size {problem_size} and noise level {noise_level:.4}"
1495 );
1496 Ok(strategy)
1497 }
1498
1499 fn apply_correction_with_monitoring(
1501 &self,
1502 problem: &IsingModel,
1503 strategy: &ErrorCorrectionStrategy,
1504 ) -> ApplicationResult<CorrectedProblem> {
1505 let start_time = Instant::now();
1506
1507 let corrected_data = match strategy {
1509 ErrorCorrectionStrategy::None => {
1510 CorrectionResult {
1512 corrected_problem: problem.clone(),
1513 correction_overhead: 0.0,
1514 errors_detected: 0,
1515 errors_corrected: 0,
1516 }
1517 }
1518 ErrorCorrectionStrategy::Detection(config) => {
1519 self.apply_detection_only(problem, config)?
1520 }
1521 ErrorCorrectionStrategy::Correction(config) => {
1522 self.apply_full_correction(problem, config)?
1523 }
1524 ErrorCorrectionStrategy::Hybrid(config) => {
1525 self.apply_hybrid_correction(problem, config)?
1526 }
1527 ErrorCorrectionStrategy::Adaptive(config) => {
1528 self.apply_adaptive_strategy(problem, config)?
1529 }
1530 };
1531
1532 let execution_time = start_time.elapsed();
1533
1534 Ok(CorrectedProblem {
1535 original_problem: problem.clone(),
1536 corrected_problem: corrected_data.corrected_problem,
1537 correction_metadata: CorrectionMetadata {
1538 strategy_used: strategy.clone(),
1539 execution_time,
1540 correction_overhead: corrected_data.correction_overhead,
1541 errors_detected: corrected_data.errors_detected,
1542 errors_corrected: corrected_data.errors_corrected,
1543 confidence: 0.9,
1544 },
1545 })
1546 }
1547
1548 fn apply_detection_only(
1550 &self,
1551 problem: &IsingModel,
1552 config: &DetectionConfig,
1553 ) -> ApplicationResult<CorrectionResult> {
1554 thread::sleep(Duration::from_millis(5));
1556
1557 let errors_detected = (problem.num_qubits as f64 * 0.01) as usize;
1558
1559 Ok(CorrectionResult {
1560 corrected_problem: problem.clone(),
1561 correction_overhead: 0.05,
1562 errors_detected,
1563 errors_corrected: 0,
1564 })
1565 }
1566
1567 fn apply_full_correction(
1569 &self,
1570 problem: &IsingModel,
1571 config: &CorrectionConfig,
1572 ) -> ApplicationResult<CorrectionResult> {
1573 thread::sleep(Duration::from_millis(20));
1575
1576 let errors_detected = (problem.num_qubits as f64 * 0.02) as usize;
1577 let errors_corrected = (errors_detected as f64 * 0.9) as usize;
1578
1579 Ok(CorrectionResult {
1580 corrected_problem: problem.clone(),
1581 correction_overhead: 0.2,
1582 errors_detected,
1583 errors_corrected,
1584 })
1585 }
1586
1587 fn apply_hybrid_correction(
1589 &self,
1590 problem: &IsingModel,
1591 config: &HybridConfig,
1592 ) -> ApplicationResult<CorrectionResult> {
1593 let detection_result = self.apply_detection_only(problem, &config.detection)?;
1595
1596 let should_correct = detection_result.errors_detected > 0;
1598
1599 if should_correct {
1600 let correction_result = self.apply_full_correction(problem, &config.correction)?;
1601 Ok(CorrectionResult {
1602 corrected_problem: correction_result.corrected_problem,
1603 correction_overhead: detection_result.correction_overhead
1604 + correction_result.correction_overhead,
1605 errors_detected: detection_result.errors_detected,
1606 errors_corrected: correction_result.errors_corrected,
1607 })
1608 } else {
1609 Ok(detection_result)
1610 }
1611 }
1612
1613 fn apply_adaptive_strategy(
1615 &self,
1616 problem: &IsingModel,
1617 config: &AdaptiveStrategyConfig,
1618 ) -> ApplicationResult<CorrectionResult> {
1619 if let Some(best_strategy) = config.available_strategies.first() {
1621 match best_strategy {
1622 ErrorCorrectionStrategy::Detection(det_config) => {
1623 self.apply_detection_only(problem, det_config)
1624 }
1625 ErrorCorrectionStrategy::Correction(corr_config) => {
1626 self.apply_full_correction(problem, corr_config)
1627 }
1628 _ => {
1629 self.apply_detection_only(
1631 problem,
1632 &DetectionConfig {
1633 threshold: 0.01,
1634 method: DetectionMethod::Parity,
1635 action: DetectionAction::Flag,
1636 },
1637 )
1638 }
1639 }
1640 } else {
1641 Err(ApplicationError::InvalidConfiguration(
1642 "No strategies available for adaptive selection".to_string(),
1643 ))
1644 }
1645 }
1646
1647 fn update_system_state(&self, corrected_problem: &CorrectedProblem) -> ApplicationResult<()> {
1649 let mut performance_analyzer = self.performance_analyzer.lock().map_err(|_| {
1651 ApplicationError::OptimizationError(
1652 "Failed to acquire performance analyzer lock".to_string(),
1653 )
1654 })?;
1655
1656 performance_analyzer.update_performance(&corrected_problem.correction_metadata);
1657
1658 let mut resource_manager = self.resource_manager.lock().map_err(|_| {
1660 ApplicationError::OptimizationError(
1661 "Failed to acquire resource manager lock".to_string(),
1662 )
1663 })?;
1664
1665 resource_manager
1666 .update_allocation_based_on_performance(&corrected_problem.correction_metadata);
1667
1668 Ok(())
1669 }
1670
1671 fn initialize_noise_monitoring(&self) -> ApplicationResult<()> {
1673 println!("Initializing noise monitoring subsystem");
1674 Ok(())
1675 }
1676
1677 fn initialize_prediction_system(&self) -> ApplicationResult<()> {
1678 println!("Initializing noise prediction subsystem");
1679 Ok(())
1680 }
1681
1682 fn initialize_protocol_management(&self) -> ApplicationResult<()> {
1683 println!("Initializing adaptive protocol management");
1684 Ok(())
1685 }
1686
1687 fn initialize_performance_analysis(&self) -> ApplicationResult<()> {
1688 println!("Initializing performance analysis subsystem");
1689 Ok(())
1690 }
1691
1692 fn initialize_resource_management(&self) -> ApplicationResult<()> {
1693 println!("Initializing adaptive resource management");
1694 Ok(())
1695 }
1696
1697 fn initialize_hierarchy_coordination(&self) -> ApplicationResult<()> {
1698 println!("Initializing hierarchy coordination");
1699 Ok(())
1700 }
1701
1702 fn start_monitoring_loops(&self) -> ApplicationResult<()> {
1703 println!("Starting real-time monitoring loops");
1704 Ok(())
1706 }
1707
1708 pub fn get_performance_metrics(&self) -> ApplicationResult<AdaptiveQecMetrics> {
1710 let performance_analyzer = self.performance_analyzer.lock().map_err(|_| {
1711 ApplicationError::OptimizationError(
1712 "Failed to acquire performance analyzer lock".to_string(),
1713 )
1714 })?;
1715
1716 Ok(AdaptiveQecMetrics {
1717 correction_efficiency: performance_analyzer.metrics.correction_efficiency,
1718 adaptation_responsiveness: performance_analyzer.metrics.adaptation_responsiveness,
1719 prediction_accuracy: performance_analyzer.metrics.prediction_accuracy,
1720 resource_efficiency: performance_analyzer.metrics.resource_efficiency,
1721 overall_performance: performance_analyzer.metrics.overall_performance,
1722 })
1723 }
1724}
1725
1726#[derive(Debug, Clone)]
1730pub struct NoiseAssessment {
1731 pub current_noise: NoiseCharacteristics,
1732 pub severity: NoiseSeverity,
1733 pub trends: NoiseTrends,
1734 pub confidence: f64,
1735 pub timestamp: Instant,
1736}
1737
1738#[derive(Debug, Clone, PartialEq, Eq)]
1740pub enum NoiseSeverity {
1741 Low,
1742 Medium,
1743 High,
1744 Critical,
1745}
1746
1747#[derive(Debug, Clone)]
1749pub struct NoiseTrends {
1750 pub direction: TrendDirection,
1751 pub rate: f64,
1752 pub confidence: f64,
1753}
1754
1755#[derive(Debug, Clone, PartialEq, Eq)]
1757pub enum TrendDirection {
1758 Increasing,
1759 Decreasing,
1760 Stable,
1761}
1762
1763#[derive(Debug, Clone)]
1765pub struct NoisePrediction {
1766 pub predicted_noise: NoiseCharacteristics,
1767 pub confidence: f64,
1768 pub horizon: Duration,
1769 pub uncertainty_bounds: (f64, f64),
1770}
1771
1772#[derive(Debug, Clone)]
1774pub struct CorrectionResult {
1775 pub corrected_problem: IsingModel,
1776 pub correction_overhead: f64,
1777 pub errors_detected: usize,
1778 pub errors_corrected: usize,
1779}
1780
1781#[derive(Debug, Clone)]
1783pub struct CorrectedProblem {
1784 pub original_problem: IsingModel,
1785 pub corrected_problem: IsingModel,
1786 pub correction_metadata: CorrectionMetadata,
1787}
1788
1789#[derive(Debug, Clone)]
1791pub struct CorrectionMetadata {
1792 pub strategy_used: ErrorCorrectionStrategy,
1793 pub execution_time: Duration,
1794 pub correction_overhead: f64,
1795 pub errors_detected: usize,
1796 pub errors_corrected: usize,
1797 pub confidence: f64,
1798}
1799
1800#[derive(Debug, Clone)]
1802pub struct AdaptiveQecMetrics {
1803 pub correction_efficiency: f64,
1804 pub adaptation_responsiveness: f64,
1805 pub prediction_accuracy: f64,
1806 pub resource_efficiency: f64,
1807 pub overall_performance: f64,
1808}
1809
1810impl NoiseMonitor {
1813 fn new() -> Self {
1814 Self {
1815 current_noise: NoiseCharacteristics {
1816 timestamp: Instant::now(),
1817 noise_level: 0.01,
1818 noise_type: NoiseType::White,
1819 temporal_correlation: 0.1,
1820 spatial_correlation: 0.1,
1821 noise_spectrum: vec![0.01; 10],
1822 per_qubit_error_rates: vec![0.001; 100],
1823 coherence_times: vec![100.0; 100],
1824 gate_fidelities: HashMap::new(),
1825 },
1826 noise_history: VecDeque::new(),
1827 sensors: vec![],
1828 analyzers: vec![],
1829 }
1830 }
1831}
1832
1833impl AdaptiveProtocolManager {
1834 fn new() -> Self {
1835 Self {
1836 active_protocols: HashMap::new(),
1837 protocol_history: VecDeque::new(),
1838 adaptation_engine: AdaptationEngine {
1839 algorithm: AdaptationAlgorithm::RuleBased,
1840 parameters: HashMap::new(),
1841 decision_history: VecDeque::new(),
1842 },
1843 }
1844 }
1845}
1846
1847impl NoisePredictionSystem {
1848 fn new(ml_config: MLNoiseConfig) -> Self {
1849 Self {
1850 models: HashMap::new(),
1851 ensemble: ModelEnsemble {
1852 method: EnsembleMethod::WeightedAverage,
1853 weights: HashMap::new(),
1854 performance_history: VecDeque::new(),
1855 },
1856 prediction_cache: HashMap::new(),
1857 }
1858 }
1859}
1860
1861impl PerformanceAnalyzer {
1862 fn new() -> Self {
1863 Self {
1864 metrics: PerformanceMetrics {
1865 correction_efficiency: 0.9,
1866 resource_efficiency: 0.8,
1867 adaptation_responsiveness: 0.85,
1868 prediction_accuracy: 0.8,
1869 overall_performance: 0.85,
1870 performance_history: VecDeque::new(),
1871 },
1872 analyzers: vec![],
1873 benchmarks: HashMap::new(),
1874 }
1875 }
1876
1877 fn update_performance(&mut self, metadata: &CorrectionMetadata) {
1878 let efficiency = metadata.errors_corrected as f64 / metadata.errors_detected.max(1) as f64;
1880 self.metrics.correction_efficiency = self
1881 .metrics
1882 .correction_efficiency
1883 .mul_add(0.9, efficiency * 0.1);
1884
1885 let resource_efficiency = 1.0 / (1.0 + metadata.correction_overhead);
1886 self.metrics.resource_efficiency = self
1887 .metrics
1888 .resource_efficiency
1889 .mul_add(0.9, resource_efficiency * 0.1);
1890
1891 self.metrics.overall_performance = self.metrics.prediction_accuracy.mul_add(
1893 0.2,
1894 self.metrics.adaptation_responsiveness.mul_add(
1895 0.2,
1896 self.metrics
1897 .correction_efficiency
1898 .mul_add(0.3, self.metrics.resource_efficiency * 0.3),
1899 ),
1900 );
1901 }
1902}
1903
1904impl AdaptiveResourceManager {
1905 fn new(config: ResourceManagementConfig) -> Self {
1906 Self {
1907 allocation: ResourceAllocation {
1908 allocation_map: HashMap::new(),
1909 total_allocated: 0.0,
1910 available_resources: 100.0,
1911 allocation_history: VecDeque::new(),
1912 },
1913 constraints: ResourceConstraints {
1914 max_total: 100.0,
1915 per_component: HashMap::new(),
1916 min_performance: 0.8,
1917 enforcement_method: ConstraintEnforcement::Soft,
1918 },
1919 optimizers: vec![],
1920 }
1921 }
1922
1923 fn update_allocation_based_on_performance(&mut self, metadata: &CorrectionMetadata) {
1924 let performance_score =
1926 metadata.errors_corrected as f64 / metadata.errors_detected.max(1) as f64;
1927
1928 if performance_score < 0.8 {
1929 self.allocation
1931 .allocation_map
1932 .insert("error_correction".to_string(), 0.4);
1933 } else if performance_score > 0.95 && metadata.correction_overhead < 0.1 {
1934 self.allocation
1936 .allocation_map
1937 .insert("error_correction".to_string(), 0.2);
1938 }
1939 }
1940}
1941
1942impl HierarchyCoordinator {
1943 fn new(config: HierarchyConfig) -> Self {
1944 let mut levels = Vec::new();
1945 for i in 0..config.num_levels {
1946 levels.push(HierarchyLevel {
1947 id: i,
1948 priority: (config.num_levels - i) as u8,
1949 protocols: vec![],
1950 resources: config.level_resources.get(i).copied().unwrap_or(0.1),
1951 performance: LevelPerformance {
1952 accuracy: 0.9,
1953 response_time: Duration::from_millis(10 * (i + 1) as u64),
1954 efficiency: 0.8,
1955 coordination_effectiveness: 0.85,
1956 },
1957 });
1958 }
1959
1960 Self {
1961 levels,
1962 communication: HierarchyCommunicationManager {
1963 channels: HashMap::new(),
1964 message_queues: HashMap::new(),
1965 statistics: CommunicationStatistics {
1966 throughput: 100.0,
1967 avg_latency: Duration::from_millis(5),
1968 success_rate: 0.99,
1969 channel_utilization: HashMap::new(),
1970 },
1971 },
1972 coordinators: vec![],
1973 }
1974 }
1975}
1976
1977pub fn create_example_adaptive_qec() -> ApplicationResult<RealTimeAdaptiveQec> {
1979 let config = AdaptiveQecConfig::default();
1980 let system = RealTimeAdaptiveQec::new(config);
1981
1982 system.start()?;
1984
1985 Ok(system)
1986}
1987
1988#[cfg(test)]
1989mod tests {
1990 use super::*;
1991
1992 #[test]
1993 fn test_adaptive_qec_creation() {
1994 let config = AdaptiveQecConfig::default();
1995 let system = RealTimeAdaptiveQec::new(config);
1996
1997 assert_eq!(
1999 system.config.monitoring_interval,
2000 Duration::from_millis(100)
2001 );
2002 }
2003
2004 #[test]
2005 fn test_noise_assessment() {
2006 let system = create_example_adaptive_qec().expect("Failed to create adaptive QEC system");
2007 let assessment = system
2008 .assess_noise_conditions()
2009 .expect("Failed to assess noise conditions");
2010
2011 assert!(assessment.confidence > 0.0);
2012 assert!(assessment.confidence <= 1.0);
2013 }
2014
2015 #[test]
2016 fn test_strategy_selection() {
2017 let system = create_example_adaptive_qec().expect("Failed to create adaptive QEC system");
2018 let problem = IsingModel::new(100);
2019
2020 let noise_assessment = NoiseAssessment {
2021 current_noise: NoiseCharacteristics {
2022 timestamp: Instant::now(),
2023 noise_level: 0.005,
2024 noise_type: NoiseType::White,
2025 temporal_correlation: 0.1,
2026 spatial_correlation: 0.1,
2027 noise_spectrum: vec![0.005; 10],
2028 per_qubit_error_rates: vec![0.0005; 100],
2029 coherence_times: vec![50.0; 100],
2030 gate_fidelities: HashMap::new(),
2031 },
2032 severity: NoiseSeverity::Low,
2033 trends: NoiseTrends {
2034 direction: TrendDirection::Stable,
2035 rate: 0.001,
2036 confidence: 0.8,
2037 },
2038 confidence: 0.9,
2039 timestamp: Instant::now(),
2040 };
2041
2042 let noise_prediction = NoisePrediction {
2043 predicted_noise: noise_assessment.current_noise.clone(),
2044 confidence: 0.85,
2045 horizon: Duration::from_secs(10),
2046 uncertainty_bounds: (0.003, 0.007),
2047 };
2048
2049 let strategy = system
2050 .select_correction_strategy(&problem, &noise_assessment, &noise_prediction)
2051 .expect("Failed to select correction strategy");
2052
2053 match &strategy {
2055 ErrorCorrectionStrategy::Detection(_) => assert!(true),
2056 ErrorCorrectionStrategy::Hybrid(_) => {
2057 assert!(false, "Got hybrid strategy instead of detection")
2058 }
2059 ErrorCorrectionStrategy::Correction(_) => {
2060 assert!(false, "Got correction strategy instead of detection")
2061 }
2062 _ => assert!(
2063 false,
2064 "Expected detection strategy for low noise, got: {:?}",
2065 strategy
2066 ),
2067 }
2068 }
2069
2070 #[test]
2071 fn test_ml_config() {
2072 let ml_config = MLNoiseConfig::default();
2073 assert_eq!(ml_config.network_architecture, NeuralArchitecture::LSTM);
2074 assert_eq!(ml_config.training_window, 1000);
2075 assert!(ml_config.enable_neural_prediction);
2076 }
2077
2078 #[test]
2079 fn test_hierarchy_config() {
2080 let hierarchy_config = HierarchyConfig::default();
2081 assert_eq!(hierarchy_config.num_levels, 3);
2082 assert_eq!(hierarchy_config.level_thresholds.len(), 3);
2083 assert!(hierarchy_config.enable_hierarchy);
2084 }
2085
2086 #[test]
2087 fn test_performance_metrics_update() {
2088 let mut analyzer = PerformanceAnalyzer::new();
2089
2090 let metadata = CorrectionMetadata {
2091 strategy_used: ErrorCorrectionStrategy::Detection(DetectionConfig {
2092 threshold: 0.01,
2093 method: DetectionMethod::Parity,
2094 action: DetectionAction::Flag,
2095 }),
2096 execution_time: Duration::from_millis(10),
2097 correction_overhead: 0.1,
2098 errors_detected: 5,
2099 errors_corrected: 4,
2100 confidence: 0.9,
2101 };
2102
2103 let initial_efficiency = analyzer.metrics.correction_efficiency;
2104 analyzer.update_performance(&metadata);
2105
2106 assert!(analyzer.metrics.correction_efficiency >= 0.0);
2108 assert!(analyzer.metrics.correction_efficiency <= 1.0);
2109 }
2110}