1use scirs2_core::random::prelude::*;
19use std::collections::{HashMap, VecDeque};
20use std::sync::{Arc, Mutex, RwLock};
21use std::thread;
22use std::time::{Duration, Instant};
23
24use crate::applications::{ApplicationError, ApplicationResult};
25use crate::braket::{BraketClient, BraketDevice};
26use crate::dwave::DWaveClient;
27use crate::ising::{IsingModel, QuboModel};
28use crate::multi_chip_embedding::{MultiChipConfig, MultiChipCoordinator};
29use crate::simulator::{AnnealingParams, AnnealingResult, ClassicalAnnealingSimulator};
30use crate::HardwareTopology;
31
32#[derive(Debug, Clone)]
34pub struct HybridEngineConfig {
35 pub max_execution_time: Duration,
37 pub quality_threshold: f64,
39 pub cost_budget: Option<f64>,
41 pub allocation_strategy: ResourceAllocationStrategy,
43 pub execution_strategy: ExecutionStrategy,
45 pub optimization_settings: OptimizationSettings,
47 pub fault_tolerance: HybridFaultToleranceConfig,
49 pub monitoring: HybridMonitoringConfig,
51}
52
53impl Default for HybridEngineConfig {
54 fn default() -> Self {
55 Self {
56 max_execution_time: Duration::from_secs(300),
57 quality_threshold: 0.95,
58 cost_budget: Some(100.0),
59 allocation_strategy: ResourceAllocationStrategy::Adaptive,
60 execution_strategy: ExecutionStrategy::Parallel,
61 optimization_settings: OptimizationSettings::default(),
62 fault_tolerance: HybridFaultToleranceConfig::default(),
63 monitoring: HybridMonitoringConfig::default(),
64 }
65 }
66}
67
68#[derive(Debug, Clone, PartialEq, Eq)]
70pub enum ResourceAllocationStrategy {
71 QuantumOnly,
73 ClassicalOnly,
75 Static,
77 Adaptive,
79 CostOptimized,
81 QualityFocused,
83}
84
85#[derive(Debug, Clone, PartialEq, Eq)]
87pub enum ExecutionStrategy {
88 Sequential,
90 Parallel,
92 Competitive,
94 Cooperative,
96 Adaptive,
98 Hierarchical,
100}
101
102#[derive(Debug, Clone)]
104pub struct OptimizationSettings {
105 pub enable_algorithm_selection: bool,
107 pub enable_dynamic_reallocation: bool,
109 pub enable_quality_assessment: bool,
111 pub enable_cost_optimization: bool,
113 pub learning_rate: f64,
115 pub history_window: usize,
117}
118
119impl Default for OptimizationSettings {
120 fn default() -> Self {
121 Self {
122 enable_algorithm_selection: true,
123 enable_dynamic_reallocation: true,
124 enable_quality_assessment: true,
125 enable_cost_optimization: true,
126 learning_rate: 0.1,
127 history_window: 100,
128 }
129 }
130}
131
132#[derive(Debug, Clone)]
134pub struct HybridFaultToleranceConfig {
135 pub enable_classical_fallback: bool,
137 pub enable_result_validation: bool,
139 pub max_retries_per_type: usize,
141 pub individual_timeout: Duration,
143 pub consensus_threshold: f64,
145}
146
147impl Default for HybridFaultToleranceConfig {
148 fn default() -> Self {
149 Self {
150 enable_classical_fallback: true,
151 enable_result_validation: true,
152 max_retries_per_type: 3,
153 individual_timeout: Duration::from_secs(120),
154 consensus_threshold: 0.7,
155 }
156 }
157}
158
159#[derive(Debug, Clone)]
161pub struct HybridMonitoringConfig {
162 pub enable_performance_tracking: bool,
164 pub enable_cost_tracking: bool,
166 pub enable_quality_tracking: bool,
168 pub collection_interval: Duration,
170}
171
172impl Default for HybridMonitoringConfig {
173 fn default() -> Self {
174 Self {
175 enable_performance_tracking: true,
176 enable_cost_tracking: true,
177 enable_quality_tracking: true,
178 collection_interval: Duration::from_secs(5),
179 }
180 }
181}
182
183#[derive(Debug, Clone, PartialEq, Eq)]
185pub enum ResourceType {
186 DWaveQuantum,
188 BraketQuantum,
190 ClassicalSimulator,
192 MultiChipQuantum,
194 GPUClassical,
196 CustomHybrid,
198}
199
200#[derive(Debug, Clone)]
202pub struct ComputeResource {
203 pub id: String,
205 pub resource_type: ResourceType,
207 pub availability: ResourceAvailability,
209 pub performance: ResourcePerformance,
211 pub cost: ResourceCost,
213 pub workload: Option<ResourceWorkload>,
215 pub connection: ResourceConnection,
217}
218
219#[derive(Debug, Clone, PartialEq, Eq)]
221pub enum ResourceAvailability {
222 Available,
224 Busy,
226 Unavailable,
228 Maintenance,
230 Failed,
232}
233
234#[derive(Debug, Clone)]
236pub struct ResourcePerformance {
237 pub throughput: f64,
239 pub latency: Duration,
241 pub success_rate: f64,
243 pub quality_score: f64,
245 pub size_range: (usize, usize),
247 pub history: VecDeque<PerformanceEntry>,
249}
250
251#[derive(Debug, Clone)]
253pub struct PerformanceEntry {
254 pub timestamp: Instant,
256 pub problem_size: usize,
258 pub execution_time: Duration,
260 pub solution_quality: f64,
262 pub cost: f64,
264}
265
266#[derive(Debug, Clone)]
268pub struct ResourceCost {
269 pub fixed_cost: f64,
271 pub variable_cost: f64,
273 pub time_cost: f64,
275 pub quality_premium: f64,
277}
278
279#[derive(Debug, Clone)]
281pub struct ResourceWorkload {
282 pub problem_id: String,
284 pub problem_size: usize,
286 pub start_time: Instant,
288 pub estimated_completion: Instant,
290 pub progress: f64,
292}
293
294#[derive(Debug, Clone)]
296pub enum ResourceConnection {
297 DWave(Arc<Mutex<DWaveClient>>),
299 Braket(Arc<Mutex<BraketClient>>),
301 Classical(Arc<Mutex<ClassicalAnnealingSimulator>>),
303 MultiChip(Arc<Mutex<MultiChipCoordinator>>),
305 Custom(String),
307}
308
309#[derive(Debug, Clone)]
311pub struct HybridExecutionTask {
312 pub id: String,
314 pub problem: IsingModel,
316 pub quality_requirements: QualityRequirements,
318 pub resource_constraints: ResourceConstraints,
320 pub priority: TaskPriority,
322 pub deadline: Option<Instant>,
324}
325
326#[derive(Debug, Clone)]
328pub struct QualityRequirements {
329 pub min_quality: f64,
331 pub target_quality: f64,
333 pub assessment_method: QualityAssessmentMethod,
335 pub min_solutions: usize,
337}
338
339#[derive(Debug, Clone, PartialEq, Eq)]
341pub enum QualityAssessmentMethod {
342 EnergyBased,
344 Consensus,
346 GroundTruth,
348 Custom(String),
350}
351
352#[derive(Debug, Clone)]
354pub struct ResourceConstraints {
355 pub max_cost: Option<f64>,
357 pub max_time: Duration,
359 pub preferred_resources: Vec<ResourceType>,
361 pub excluded_resources: Vec<ResourceType>,
363 pub geographic_constraints: Option<GeographicConstraints>,
365}
366
367#[derive(Debug, Clone)]
369pub struct GeographicConstraints {
370 pub preferred_regions: Vec<String>,
372 pub max_latency: Duration,
374 pub data_locality: bool,
376}
377
378#[derive(Debug, Clone, PartialEq, Eq, PartialOrd)]
380pub enum TaskPriority {
381 Low = 1,
382 Medium = 2,
383 High = 3,
384 Critical = 4,
385}
386
387#[derive(Debug, Clone)]
389pub struct HybridExecutionResult {
390 pub task_id: String,
392 pub best_solution: Vec<i32>,
394 pub best_energy: f64,
396 pub quality_score: f64,
398 pub total_time: Duration,
400 pub total_cost: f64,
402 pub resource_utilization: HashMap<String, ResourceUtilization>,
404 pub individual_results: Vec<IndividualResult>,
406 pub metadata: ExecutionMetadata,
408}
409
410#[derive(Debug, Clone)]
412pub struct ResourceUtilization {
413 pub resource_id: String,
415 pub time_used: Duration,
417 pub cost: f64,
419 pub success: bool,
421 pub quality: f64,
423}
424
425#[derive(Debug, Clone)]
427pub struct IndividualResult {
428 pub resource_id: String,
430 pub solution: Vec<i32>,
432 pub energy: f64,
434 pub quality: f64,
436 pub execution_time: Duration,
438 pub cost: f64,
440 pub metadata: HashMap<String, String>,
442}
443
444#[derive(Debug, Clone)]
446pub struct ExecutionMetadata {
447 pub strategy: ExecutionStrategy,
449 pub resources_used: Vec<String>,
451 pub algorithm_decisions: Vec<String>,
453 pub performance_metrics: HashMap<String, f64>,
455 pub warnings: Vec<String>,
457}
458
459pub struct HeterogeneousHybridEngine {
461 pub config: HybridEngineConfig,
463 pub resources: Arc<RwLock<HashMap<String, ComputeResource>>>,
465 pub task_queue: Arc<Mutex<VecDeque<HybridExecutionTask>>>,
467 pub active_executions: Arc<RwLock<HashMap<String, ActiveExecution>>>,
469 pub monitor: Arc<Mutex<HybridPerformanceMonitor>>,
471 pub scheduler: Arc<Mutex<ResourceScheduler>>,
473 pub aggregator: Arc<Mutex<ResultAggregator>>,
475}
476
477#[derive(Debug)]
479pub struct ActiveExecution {
480 pub task: HybridExecutionTask,
482 pub start_time: Instant,
484 pub assigned_resources: Vec<String>,
486 pub partial_results: Vec<IndividualResult>,
488 pub status: ExecutionStatus,
490}
491
492#[derive(Debug, Clone, PartialEq, Eq)]
494pub enum ExecutionStatus {
495 Queued,
497 Running,
499 Completed,
501 Failed,
503 Cancelled,
505 TimedOut,
507}
508
509pub struct HybridPerformanceMonitor {
511 pub system_metrics: HybridSystemMetrics,
513 pub resource_metrics: HashMap<String, ResourceMetrics>,
515 pub performance_history: VecDeque<PerformanceSnapshot>,
517 pub cost_tracking: CostTracker,
519}
520
521#[derive(Debug, Clone)]
523pub struct HybridSystemMetrics {
524 pub total_tasks: usize,
526 pub avg_completion_time: Duration,
528 pub success_rate: f64,
530 pub avg_quality: f64,
532 pub total_cost: f64,
534 pub resource_efficiency: f64,
536}
537
538#[derive(Debug, Clone)]
540pub struct ResourceMetrics {
541 pub resource_id: String,
543 pub tasks_processed: usize,
545 pub success_rate: f64,
547 pub avg_quality: f64,
549 pub total_cost: f64,
551 pub utilization_rate: f64,
553}
554
555#[derive(Debug, Clone)]
557pub struct PerformanceSnapshot {
558 pub timestamp: Instant,
560 pub system_metrics: HybridSystemMetrics,
562 pub resource_metrics: HashMap<String, ResourceMetrics>,
564}
565
566#[derive(Debug, Clone)]
568pub struct CostTracker {
569 pub current_budget: f64,
571 pub spent_amount: f64,
573 pub cost_breakdown: HashMap<ResourceType, f64>,
575 pub cost_predictions: HashMap<String, f64>,
577}
578
579pub struct ResourceScheduler {
581 pub strategy: ResourceAllocationStrategy,
583 pub availability_cache: HashMap<String, Instant>,
585 pub performance_predictions: HashMap<String, f64>,
587 pub load_balancing: LoadBalancingDecisions,
589}
590
591#[derive(Debug, Clone)]
593pub struct LoadBalancingDecisions {
594 pub recent_decisions: VecDeque<SchedulingDecision>,
596 pub resource_success_rates: HashMap<String, f64>,
598 pub performance_trends: HashMap<String, f64>,
600}
601
602#[derive(Debug, Clone)]
604pub struct SchedulingDecision {
605 pub timestamp: Instant,
607 pub task_id: String,
609 pub resource_id: String,
611 pub rationale: String,
613 pub predicted_performance: f64,
615}
616
617pub struct ResultAggregator {
619 pub strategy: ResultAggregationStrategy,
621 pub quality_assessor: QualityAssessor,
623 pub consensus_algorithm: ConsensusAlgorithm,
625}
626
627#[derive(Debug, Clone, PartialEq, Eq)]
629pub enum ResultAggregationStrategy {
630 BestResult,
632 MajorityConsensus,
634 WeightedAverage,
636 QualityBased,
638 Ensemble,
640}
641
642#[derive(Debug)]
644pub struct QualityAssessor {
645 pub methods: Vec<QualityAssessmentMethod>,
647 pub thresholds: HashMap<QualityAssessmentMethod, f64>,
649 pub quality_history: VecDeque<QualityMeasurement>,
651}
652
653#[derive(Debug, Clone)]
655pub struct QualityMeasurement {
656 pub timestamp: Instant,
658 pub resource_id: String,
660 pub quality_score: f64,
662 pub method: QualityAssessmentMethod,
664}
665
666#[derive(Debug)]
668pub struct ConsensusAlgorithm {
669 pub threshold: f64,
671 pub voting_weights: HashMap<String, f64>,
673 pub consensus_history: VecDeque<ConsensusResult>,
675}
676
677#[derive(Debug, Clone)]
679pub struct ConsensusResult {
680 pub task_id: String,
682 pub consensus_solution: Vec<i32>,
684 pub confidence: f64,
686 pub participants: Vec<String>,
688 pub agreement_score: f64,
690}
691
692impl HeterogeneousHybridEngine {
693 #[must_use]
695 pub fn new(config: HybridEngineConfig) -> Self {
696 Self {
697 config,
698 resources: Arc::new(RwLock::new(HashMap::new())),
699 task_queue: Arc::new(Mutex::new(VecDeque::new())),
700 active_executions: Arc::new(RwLock::new(HashMap::new())),
701 monitor: Arc::new(Mutex::new(HybridPerformanceMonitor::new())),
702 scheduler: Arc::new(Mutex::new(ResourceScheduler::new())),
703 aggregator: Arc::new(Mutex::new(ResultAggregator::new())),
704 }
705 }
706
707 pub fn register_resource(&self, resource: ComputeResource) -> ApplicationResult<()> {
709 let resource_id = resource.id.clone();
710 let mut resources = self.resources.write().map_err(|_| {
711 ApplicationError::OptimizationError(
712 "Failed to acquire resource registry lock".to_string(),
713 )
714 })?;
715
716 resources.insert(resource_id.clone(), resource);
717
718 println!(
719 "Registered compute resource: {} ({:?})",
720 resource_id, resources[&resource_id].resource_type
721 );
722 Ok(())
723 }
724
725 pub fn submit_task(&self, task: HybridExecutionTask) -> ApplicationResult<String> {
727 let task_id = task.id.clone();
728 let mut queue = self.task_queue.lock().map_err(|_| {
729 ApplicationError::OptimizationError("Failed to acquire task queue lock".to_string())
730 })?;
731
732 queue.push_back(task);
733 println!("Task {task_id} submitted to hybrid execution queue");
734 Ok(task_id)
735 }
736
737 pub fn execute_task(&self, task_id: &str) -> ApplicationResult<HybridExecutionResult> {
739 println!("Starting hybrid execution for task: {task_id}");
740
741 let task = self.get_task_from_queue(task_id)?;
743
744 let execution_plan = self.create_execution_plan(&task)?;
746
747 let resource_assignments = self.schedule_resources(&task, &execution_plan)?;
749
750 let individual_results = self.execute_on_resources(&task, &resource_assignments)?;
752
753 let final_result = self.aggregate_results(&task, individual_results)?;
755
756 self.update_performance_metrics(&task, &final_result)?;
758
759 println!("Hybrid execution completed for task: {task_id}");
760 Ok(final_result)
761 }
762
763 fn get_task_from_queue(&self, task_id: &str) -> ApplicationResult<HybridExecutionTask> {
765 let mut queue = self.task_queue.lock().map_err(|_| {
766 ApplicationError::OptimizationError("Failed to acquire task queue lock".to_string())
767 })?;
768
769 let task_index = queue
771 .iter()
772 .position(|task| task.id == task_id)
773 .ok_or_else(|| {
774 ApplicationError::InvalidConfiguration(format!("Task {task_id} not found in queue"))
775 })?;
776
777 Ok(queue
780 .remove(task_index)
781 .expect("Task index was just found via position()"))
782 }
783
784 fn create_execution_plan(
786 &self,
787 task: &HybridExecutionTask,
788 ) -> ApplicationResult<ExecutionPlan> {
789 let problem_size = task.problem.num_qubits;
790 let quality_requirements = &task.quality_requirements;
791
792 let problem_complexity = self.analyze_problem_complexity(&task.problem)?;
794
795 let strategy = match (&self.config.execution_strategy, problem_complexity) {
797 (ExecutionStrategy::Adaptive, ProblemComplexity::Simple) => {
798 ExecutionStrategy::Sequential
799 }
800 (ExecutionStrategy::Adaptive, ProblemComplexity::Complex) => {
801 ExecutionStrategy::Parallel
802 }
803 (strategy, _) => strategy.clone(),
804 };
805
806 let resource_requirements = self.determine_resource_requirements(task)?;
808
809 Ok(ExecutionPlan {
810 strategy,
811 resource_requirements,
812 estimated_time: Duration::from_secs(60),
813 estimated_cost: 10.0,
814 quality_target: quality_requirements.target_quality,
815 })
816 }
817
818 fn analyze_problem_complexity(
820 &self,
821 problem: &IsingModel,
822 ) -> ApplicationResult<ProblemComplexity> {
823 let num_qubits = problem.num_qubits;
824 let density = self.calculate_coupling_density(problem);
825
826 if num_qubits < 100 && density < 0.1 {
827 Ok(ProblemComplexity::Simple)
828 } else if num_qubits < 1000 && density < 0.5 {
829 Ok(ProblemComplexity::Medium)
830 } else {
831 Ok(ProblemComplexity::Complex)
832 }
833 }
834
835 fn calculate_coupling_density(&self, problem: &IsingModel) -> f64 {
837 let total_possible = problem.num_qubits * (problem.num_qubits - 1) / 2;
838
839 let couplings = problem.couplings();
840 let actual_couplings = couplings
841 .iter()
842 .filter(|coupling| coupling.strength != 0.0)
843 .count();
844
845 if total_possible > 0 {
846 actual_couplings as f64 / total_possible as f64
847 } else {
848 0.0
849 }
850 }
851
852 fn determine_resource_requirements(
854 &self,
855 task: &HybridExecutionTask,
856 ) -> ApplicationResult<ResourceRequirements> {
857 let problem_size = task.problem.num_qubits;
858
859 let mut suitable_types = Vec::new();
861
862 if problem_size <= 5000 {
863 suitable_types.push(ResourceType::DWaveQuantum);
864 }
865 if problem_size <= 2000 {
866 suitable_types.push(ResourceType::BraketQuantum);
867 }
868 suitable_types.push(ResourceType::ClassicalSimulator);
869
870 if problem_size > 1000 {
871 suitable_types.push(ResourceType::MultiChipQuantum);
872 }
873
874 Ok(ResourceRequirements {
875 suitable_types,
876 min_resources: 1,
877 max_resources: 3,
878 performance_requirements: PerformanceRequirements {
879 min_throughput: 0.1,
880 max_latency: Duration::from_secs(120),
881 min_quality: task.quality_requirements.min_quality,
882 },
883 })
884 }
885
886 fn schedule_resources(
888 &self,
889 task: &HybridExecutionTask,
890 plan: &ExecutionPlan,
891 ) -> ApplicationResult<Vec<String>> {
892 let mut scheduler = self.scheduler.lock().map_err(|_| {
893 ApplicationError::OptimizationError("Failed to acquire scheduler lock".to_string())
894 })?;
895
896 let resources = self.resources.read().map_err(|_| {
897 ApplicationError::OptimizationError("Failed to read resource registry".to_string())
898 })?;
899
900 let available_resources: Vec<_> = resources
902 .values()
903 .filter(|resource| resource.availability == ResourceAvailability::Available)
904 .filter(|resource| {
905 plan.resource_requirements
906 .suitable_types
907 .contains(&resource.resource_type)
908 })
909 .collect();
910
911 if available_resources.is_empty() {
912 return Err(ApplicationError::ResourceLimitExceeded(
913 "No suitable resources available".to_string(),
914 ));
915 }
916
917 let selected = match self.config.allocation_strategy {
919 ResourceAllocationStrategy::Adaptive => {
920 self.select_adaptive_resources(&available_resources, task)?
921 }
922 ResourceAllocationStrategy::CostOptimized => {
923 self.select_cost_optimized_resources(&available_resources, task)?
924 }
925 ResourceAllocationStrategy::QualityFocused => {
926 self.select_quality_focused_resources(&available_resources, task)?
927 }
928 _ => {
929 available_resources
931 .iter()
932 .max_by(|a, b| {
933 a.performance
934 .throughput
935 .partial_cmp(&b.performance.throughput)
936 .unwrap_or(std::cmp::Ordering::Equal)
937 })
938 .map(|r| vec![r.id.clone()])
939 .unwrap_or_default()
940 }
941 };
942
943 Ok(selected)
944 }
945
946 fn select_adaptive_resources(
948 &self,
949 available: &[&ComputeResource],
950 task: &HybridExecutionTask,
951 ) -> ApplicationResult<Vec<String>> {
952 let mut scored_resources: Vec<_> = available
954 .iter()
955 .map(|resource| {
956 let performance_score =
957 resource.performance.throughput * resource.performance.success_rate;
958 let quality_score = resource.performance.quality_score;
959 let cost_score = 1.0
960 / resource.cost.variable_cost.mul_add(
961 task.problem.num_qubits as f64,
962 1.0 + resource.cost.fixed_cost,
963 );
964
965 let total_score =
966 performance_score.mul_add(0.4, quality_score * 0.4) + cost_score * 0.2;
967 (resource.id.clone(), total_score)
968 })
969 .collect();
970
971 scored_resources.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap_or(std::cmp::Ordering::Equal));
973
974 let num_resources = (scored_resources.len().min(3)).max(1);
976 Ok(scored_resources
977 .into_iter()
978 .take(num_resources)
979 .map(|(id, _)| id)
980 .collect())
981 }
982
983 fn select_cost_optimized_resources(
985 &self,
986 available: &[&ComputeResource],
987 task: &HybridExecutionTask,
988 ) -> ApplicationResult<Vec<String>> {
989 let mut cost_sorted: Vec<_> = available
990 .iter()
991 .map(|resource| {
992 let total_cost = resource
993 .cost
994 .variable_cost
995 .mul_add(task.problem.num_qubits as f64, resource.cost.fixed_cost);
996 (resource.id.clone(), total_cost)
997 })
998 .collect();
999
1000 cost_sorted.sort_by(|a, b| a.1.partial_cmp(&b.1).unwrap_or(std::cmp::Ordering::Equal));
1001
1002 for (resource_id, _cost) in &cost_sorted {
1004 if let Some(resource) = available.iter().find(|r| &r.id == resource_id) {
1005 if resource.performance.quality_score >= task.quality_requirements.min_quality {
1006 return Ok(vec![resource_id.clone()]);
1007 }
1008 }
1009 }
1010
1011 Ok(vec![cost_sorted[0].0.clone()])
1013 }
1014
1015 fn select_quality_focused_resources(
1017 &self,
1018 available: &[&ComputeResource],
1019 task: &HybridExecutionTask,
1020 ) -> ApplicationResult<Vec<String>> {
1021 let mut quality_sorted: Vec<_> = available
1022 .iter()
1023 .map(|resource| (resource.id.clone(), resource.performance.quality_score))
1024 .collect();
1025
1026 quality_sorted.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap_or(std::cmp::Ordering::Equal));
1027
1028 let num_resources = quality_sorted.len().min(2);
1030 Ok(quality_sorted
1031 .into_iter()
1032 .take(num_resources)
1033 .map(|(id, _)| id)
1034 .collect())
1035 }
1036
1037 fn execute_on_resources(
1039 &self,
1040 task: &HybridExecutionTask,
1041 resources: &[String],
1042 ) -> ApplicationResult<Vec<IndividualResult>> {
1043 let mut results = Vec::new();
1044
1045 match self.config.execution_strategy {
1047 ExecutionStrategy::Sequential => {
1048 results.extend(self.execute_sequential(task, resources)?);
1049 }
1050 ExecutionStrategy::Parallel => {
1051 results.extend(self.execute_parallel(task, resources)?);
1052 }
1053 ExecutionStrategy::Competitive => {
1054 results.extend(self.execute_competitive(task, resources)?);
1055 }
1056 _ => {
1057 results.extend(self.execute_parallel(task, resources)?);
1059 }
1060 }
1061
1062 Ok(results)
1063 }
1064
1065 fn execute_sequential(
1067 &self,
1068 task: &HybridExecutionTask,
1069 resources: &[String],
1070 ) -> ApplicationResult<Vec<IndividualResult>> {
1071 let mut results = Vec::new();
1072
1073 for resource_id in resources {
1074 let result = self.execute_on_single_resource(task, resource_id)?;
1075 results.push(result.clone());
1076
1077 if result.quality >= task.quality_requirements.target_quality {
1079 break;
1080 }
1081 }
1082
1083 Ok(results)
1084 }
1085
1086 fn execute_parallel(
1088 &self,
1089 task: &HybridExecutionTask,
1090 resources: &[String],
1091 ) -> ApplicationResult<Vec<IndividualResult>> {
1092 let mut results = Vec::new();
1093
1094 for resource_id in resources {
1096 let result = self.execute_on_single_resource(task, resource_id)?;
1097 results.push(result);
1098 }
1099
1100 Ok(results)
1101 }
1102
1103 fn execute_competitive(
1105 &self,
1106 task: &HybridExecutionTask,
1107 resources: &[String],
1108 ) -> ApplicationResult<Vec<IndividualResult>> {
1109 let all_results = self.execute_parallel(task, resources)?;
1111
1112 if let Some(best) = all_results.iter().max_by(|a, b| {
1114 a.quality
1115 .partial_cmp(&b.quality)
1116 .unwrap_or(std::cmp::Ordering::Equal)
1117 }) {
1118 Ok(vec![best.clone()])
1119 } else {
1120 Ok(all_results)
1121 }
1122 }
1123
1124 fn execute_on_single_resource(
1126 &self,
1127 task: &HybridExecutionTask,
1128 resource_id: &str,
1129 ) -> ApplicationResult<IndividualResult> {
1130 let start_time = Instant::now();
1131
1132 let resources = self.resources.read().map_err(|_| {
1134 ApplicationError::OptimizationError("Failed to read resource registry".to_string())
1135 })?;
1136
1137 let resource = resources.get(resource_id).ok_or_else(|| {
1138 ApplicationError::InvalidConfiguration(format!("Resource {resource_id} not found"))
1139 })?;
1140
1141 let execution_time =
1143 Duration::from_millis((1000.0 / resource.performance.throughput) as u64);
1144 thread::sleep(Duration::from_millis(10)); let solution = self.generate_simulated_solution(task, resource)?;
1148 let energy = self.calculate_energy(&task.problem, &solution)?;
1149 let quality =
1150 resource.performance.quality_score * thread_rng().gen::<f64>().mul_add(0.4, 0.8);
1151 let cost = resource
1152 .cost
1153 .variable_cost
1154 .mul_add(task.problem.num_qubits as f64, resource.cost.fixed_cost);
1155
1156 Ok(IndividualResult {
1157 resource_id: resource_id.to_string(),
1158 solution,
1159 energy,
1160 quality,
1161 execution_time,
1162 cost,
1163 metadata: HashMap::new(),
1164 })
1165 }
1166
1167 fn generate_simulated_solution(
1169 &self,
1170 task: &HybridExecutionTask,
1171 resource: &ComputeResource,
1172 ) -> ApplicationResult<Vec<i32>> {
1173 let num_vars = task.problem.num_qubits;
1174 let mut solution = vec![1; num_vars];
1175
1176 for i in 0..num_vars {
1178 if thread_rng().gen::<f64>() < 0.5 {
1179 solution[i] = -1;
1180 }
1181 }
1182
1183 Ok(solution)
1184 }
1185
1186 fn calculate_energy(&self, problem: &IsingModel, solution: &[i32]) -> ApplicationResult<f64> {
1188 let mut energy = 0.0;
1189
1190 for (i, &spin) in solution.iter().enumerate() {
1192 let biases = problem.biases();
1193 for (qubit_index, bias_value) in biases {
1194 if qubit_index == i {
1195 energy += bias_value * f64::from(spin);
1196 break;
1197 }
1198 }
1199 }
1200
1201 let couplings = problem.couplings();
1203 for coupling in couplings {
1204 if coupling.i < solution.len() && coupling.j < solution.len() {
1205 energy += coupling.strength
1206 * f64::from(solution[coupling.i])
1207 * f64::from(solution[coupling.j]);
1208 }
1209 }
1210
1211 Ok(energy)
1212 }
1213
1214 fn aggregate_results(
1216 &self,
1217 task: &HybridExecutionTask,
1218 results: Vec<IndividualResult>,
1219 ) -> ApplicationResult<HybridExecutionResult> {
1220 let mut aggregator = self.aggregator.lock().map_err(|_| {
1221 ApplicationError::OptimizationError("Failed to acquire aggregator lock".to_string())
1222 })?;
1223
1224 let best_result = results
1225 .iter()
1226 .min_by(|a, b| {
1227 a.energy
1228 .partial_cmp(&b.energy)
1229 .unwrap_or(std::cmp::Ordering::Equal)
1230 })
1231 .cloned()
1232 .unwrap_or_else(|| IndividualResult {
1233 resource_id: "none".to_string(),
1234 solution: vec![],
1235 energy: f64::INFINITY,
1236 quality: 0.0,
1237 execution_time: Duration::from_secs(0),
1238 cost: 0.0,
1239 metadata: HashMap::new(),
1240 });
1241
1242 let total_time = results
1243 .iter()
1244 .map(|r| r.execution_time)
1245 .max()
1246 .unwrap_or(Duration::from_secs(0));
1247
1248 let total_cost = results.iter().map(|r| r.cost).sum();
1249
1250 let mut resource_utilization = HashMap::new();
1251 for result in &results {
1252 resource_utilization.insert(
1253 result.resource_id.clone(),
1254 ResourceUtilization {
1255 resource_id: result.resource_id.clone(),
1256 time_used: result.execution_time,
1257 cost: result.cost,
1258 success: result.quality > task.quality_requirements.min_quality,
1259 quality: result.quality,
1260 },
1261 );
1262 }
1263
1264 Ok(HybridExecutionResult {
1265 task_id: task.id.clone(),
1266 best_solution: best_result.solution,
1267 best_energy: best_result.energy,
1268 quality_score: best_result.quality,
1269 total_time,
1270 total_cost,
1271 resource_utilization: resource_utilization.clone(),
1272 individual_results: results,
1273 metadata: ExecutionMetadata {
1274 strategy: self.config.execution_strategy.clone(),
1275 resources_used: resource_utilization.keys().cloned().collect(),
1276 algorithm_decisions: vec!["adaptive_selection".to_string()],
1277 performance_metrics: HashMap::new(),
1278 warnings: vec![],
1279 },
1280 })
1281 }
1282
1283 fn update_performance_metrics(
1285 &self,
1286 task: &HybridExecutionTask,
1287 result: &HybridExecutionResult,
1288 ) -> ApplicationResult<()> {
1289 let mut monitor = self.monitor.lock().map_err(|_| {
1290 ApplicationError::OptimizationError("Failed to acquire monitor lock".to_string())
1291 })?;
1292
1293 monitor.update_metrics(task, result);
1294 Ok(())
1295 }
1296
1297 pub fn get_system_performance(&self) -> ApplicationResult<HybridSystemMetrics> {
1299 let monitor = self.monitor.lock().map_err(|_| {
1300 ApplicationError::OptimizationError("Failed to acquire monitor lock".to_string())
1301 })?;
1302
1303 Ok(monitor.system_metrics.clone())
1304 }
1305}
1306
1307#[derive(Debug, Clone)]
1309pub struct ExecutionPlan {
1310 pub strategy: ExecutionStrategy,
1311 pub resource_requirements: ResourceRequirements,
1312 pub estimated_time: Duration,
1313 pub estimated_cost: f64,
1314 pub quality_target: f64,
1315}
1316
1317#[derive(Debug, Clone)]
1318pub struct ResourceRequirements {
1319 pub suitable_types: Vec<ResourceType>,
1320 pub min_resources: usize,
1321 pub max_resources: usize,
1322 pub performance_requirements: PerformanceRequirements,
1323}
1324
1325#[derive(Debug, Clone)]
1326pub struct PerformanceRequirements {
1327 pub min_throughput: f64,
1328 pub max_latency: Duration,
1329 pub min_quality: f64,
1330}
1331
1332#[derive(Debug, Clone, PartialEq, Eq)]
1333pub enum ProblemComplexity {
1334 Simple,
1335 Medium,
1336 Complex,
1337}
1338
1339impl HybridPerformanceMonitor {
1340 fn new() -> Self {
1341 Self {
1342 system_metrics: HybridSystemMetrics {
1343 total_tasks: 0,
1344 avg_completion_time: Duration::from_secs(0),
1345 success_rate: 1.0,
1346 avg_quality: 0.0,
1347 total_cost: 0.0,
1348 resource_efficiency: 1.0,
1349 },
1350 resource_metrics: HashMap::new(),
1351 performance_history: VecDeque::new(),
1352 cost_tracking: CostTracker {
1353 current_budget: 1000.0,
1354 spent_amount: 0.0,
1355 cost_breakdown: HashMap::new(),
1356 cost_predictions: HashMap::new(),
1357 },
1358 }
1359 }
1360
1361 fn update_metrics(&mut self, task: &HybridExecutionTask, result: &HybridExecutionResult) {
1362 self.system_metrics.total_tasks += 1;
1363 self.system_metrics.total_cost += result.total_cost;
1364 self.system_metrics.avg_quality = self.system_metrics.avg_quality.mul_add(
1365 (self.system_metrics.total_tasks - 1) as f64,
1366 result.quality_score,
1367 ) / self.system_metrics.total_tasks as f64;
1368
1369 self.cost_tracking.spent_amount += result.total_cost;
1370
1371 println!("Updated performance metrics for task {}", task.id);
1372 }
1373}
1374
1375impl ResourceScheduler {
1376 fn new() -> Self {
1377 Self {
1378 strategy: ResourceAllocationStrategy::Adaptive,
1379 availability_cache: HashMap::new(),
1380 performance_predictions: HashMap::new(),
1381 load_balancing: LoadBalancingDecisions {
1382 recent_decisions: VecDeque::new(),
1383 resource_success_rates: HashMap::new(),
1384 performance_trends: HashMap::new(),
1385 },
1386 }
1387 }
1388}
1389
1390impl ResultAggregator {
1391 fn new() -> Self {
1392 Self {
1393 strategy: ResultAggregationStrategy::BestResult,
1394 quality_assessor: QualityAssessor {
1395 methods: vec![QualityAssessmentMethod::EnergyBased],
1396 thresholds: HashMap::new(),
1397 quality_history: VecDeque::new(),
1398 },
1399 consensus_algorithm: ConsensusAlgorithm {
1400 threshold: 0.7,
1401 voting_weights: HashMap::new(),
1402 consensus_history: VecDeque::new(),
1403 },
1404 }
1405 }
1406}
1407
1408pub fn create_example_hybrid_engine() -> ApplicationResult<HeterogeneousHybridEngine> {
1410 let config = HybridEngineConfig::default();
1411 let engine = HeterogeneousHybridEngine::new(config);
1412
1413 let dwave_resource = ComputeResource {
1415 id: "dwave_advantage".to_string(),
1416 resource_type: ResourceType::DWaveQuantum,
1417 availability: ResourceAvailability::Available,
1418 performance: ResourcePerformance {
1419 throughput: 0.1,
1420 latency: Duration::from_secs(20),
1421 success_rate: 0.95,
1422 quality_score: 0.9,
1423 size_range: (10, 5000),
1424 history: VecDeque::new(),
1425 },
1426 cost: ResourceCost {
1427 fixed_cost: 1.0,
1428 variable_cost: 0.001,
1429 time_cost: 0.1,
1430 quality_premium: 1.2,
1431 },
1432 workload: None,
1433 connection: ResourceConnection::Custom("dwave_cloud".to_string()),
1434 };
1435
1436 let classical_resource = ComputeResource {
1438 id: "classical_simulator".to_string(),
1439 resource_type: ResourceType::ClassicalSimulator,
1440 availability: ResourceAvailability::Available,
1441 performance: ResourcePerformance {
1442 throughput: 1.0,
1443 latency: Duration::from_secs(5),
1444 success_rate: 0.99,
1445 quality_score: 0.8,
1446 size_range: (1, 10_000),
1447 history: VecDeque::new(),
1448 },
1449 cost: ResourceCost {
1450 fixed_cost: 0.1,
1451 variable_cost: 0.0001,
1452 time_cost: 0.01,
1453 quality_premium: 1.0,
1454 },
1455 workload: None,
1456 connection: ResourceConnection::Custom("local".to_string()),
1457 };
1458
1459 engine.register_resource(dwave_resource)?;
1460 engine.register_resource(classical_resource)?;
1461
1462 Ok(engine)
1463}
1464
1465#[cfg(test)]
1466mod tests {
1467 use super::*;
1468
1469 #[test]
1470 fn test_hybrid_engine_creation() {
1471 let config = HybridEngineConfig::default();
1472 let engine = HeterogeneousHybridEngine::new(config);
1473
1474 let resources = engine.resources.read().unwrap_or_else(|e| e.into_inner());
1475 assert!(resources.is_empty());
1476 }
1477
1478 #[test]
1479 fn test_resource_registration() {
1480 let engine =
1481 create_example_hybrid_engine().expect("Example hybrid engine creation should succeed");
1482
1483 let resources = engine.resources.read().unwrap_or_else(|e| e.into_inner());
1484 assert_eq!(resources.len(), 2);
1485 assert!(resources.contains_key("dwave_advantage"));
1486 assert!(resources.contains_key("classical_simulator"));
1487 }
1488
1489 #[test]
1490 fn test_task_submission() {
1491 let engine =
1492 create_example_hybrid_engine().expect("Example hybrid engine creation should succeed");
1493
1494 let problem = IsingModel::new(100);
1495 let task = HybridExecutionTask {
1496 id: "test_task".to_string(),
1497 problem,
1498 quality_requirements: QualityRequirements {
1499 min_quality: 0.8,
1500 target_quality: 0.9,
1501 assessment_method: QualityAssessmentMethod::EnergyBased,
1502 min_solutions: 1,
1503 },
1504 resource_constraints: ResourceConstraints {
1505 max_cost: Some(10.0),
1506 max_time: Duration::from_secs(60),
1507 preferred_resources: vec![ResourceType::ClassicalSimulator],
1508 excluded_resources: vec![],
1509 geographic_constraints: None,
1510 },
1511 priority: TaskPriority::Medium,
1512 deadline: None,
1513 };
1514
1515 let result = engine.submit_task(task);
1516 assert!(result.is_ok());
1517 assert_eq!(result.expect("Task submission should succeed"), "test_task");
1518 }
1519
1520 #[test]
1521 fn test_execution_strategies() {
1522 let config = HybridEngineConfig {
1523 execution_strategy: ExecutionStrategy::Parallel,
1524 ..Default::default()
1525 };
1526
1527 assert_eq!(config.execution_strategy, ExecutionStrategy::Parallel);
1528 }
1529
1530 #[test]
1531 fn test_resource_allocation_strategies() {
1532 let strategies = vec![
1533 ResourceAllocationStrategy::Adaptive,
1534 ResourceAllocationStrategy::CostOptimized,
1535 ResourceAllocationStrategy::QualityFocused,
1536 ];
1537
1538 for strategy in strategies {
1539 let config = HybridEngineConfig {
1540 allocation_strategy: strategy.clone(),
1541 ..Default::default()
1542 };
1543 assert_eq!(config.allocation_strategy, strategy);
1544 }
1545 }
1546}