quantrs2_anneal/applications/
quantum_computational_chemistry.rs

1//! Advanced Quantum Computational Chemistry for Scientific Computing
2//!
3//! This module implements cutting-edge quantum computational chemistry algorithms
4//! leveraging quantum annealing and advanced quantum algorithms for molecular
5//! simulation, electronic structure calculations, and chemical property prediction.
6//!
7//! Key Features:
8//! - Quantum molecular Hamiltonian simulation
9//! - Electronic structure calculations with quantum annealing
10//! - Chemical reaction pathway optimization
11//! - Catalysis design and optimization
12//! - Quantum chemical descriptors and property prediction
13//! - Multi-scale molecular modeling
14//! - Quantum machine learning for chemistry
15//! - Advanced error correction for chemical simulations
16
17use std::collections::{HashMap, HashSet, VecDeque};
18use std::f64::consts::PI;
19use std::fmt;
20
21use crate::quantum_error_correction::{NoiseResilientConfig, SystemNoiseModel};
22
23use crate::advanced_quantum_algorithms::{
24    AdiabaticShortcutsOptimizer, AdvancedAlgorithmConfig, AdvancedQuantumAlgorithms,
25    AlgorithmSelectionStrategy, InfiniteDepthQAOA, InfiniteQAOAConfig, QuantumZenoAnnealer,
26    ShortcutsConfig, ZenoConfig,
27};
28use crate::applications::{
29    ApplicationError, ApplicationResult, IndustrySolution, OptimizationProblem,
30};
31use crate::bayesian_hyperopt::{BayesianHyperoptimizer, BayesianOptConfig};
32use crate::enterprise_monitoring::{EnterpriseMonitoringSystem, LogLevel};
33use crate::ising::{IsingModel, QuboModel};
34use crate::meta_learning::MetaLearningOptimizer;
35use crate::neural_annealing_schedules::{NeuralAnnealingScheduler, NeuralSchedulerConfig};
36use crate::quantum_error_correction::{
37    ErrorCorrectionCode, ErrorMitigationConfig, ErrorMitigationManager, LogicalAnnealingEncoder,
38    NoiseResilientAnnealingProtocol, SyndromeDetector,
39};
40use crate::realtime_adaptive_qec::RealTimeAdaptiveQec;
41use crate::simulator::{
42    AnnealingParams, AnnealingResult, AnnealingSolution, QuantumAnnealingSimulator,
43};
44
45/// Quantum computational chemistry configuration
46#[derive(Debug, Clone)]
47pub struct QuantumChemistryConfig {
48    /// Electronic structure calculation method
49    pub method: ElectronicStructureMethod,
50    /// Basis set for calculations
51    pub basis_set: BasisSet,
52    /// Correlation method
53    pub correlation: CorrelationMethod,
54    /// Convergence criteria
55    pub convergence: ConvergenceCriteria,
56    /// Error correction settings
57    pub error_correction: ErrorMitigationConfig,
58    /// Advanced algorithm settings
59    pub advanced_algorithms: AdvancedAlgorithmConfig,
60    /// Monitoring configuration
61    pub monitoring_enabled: bool,
62}
63
64impl Default for QuantumChemistryConfig {
65    fn default() -> Self {
66        Self {
67            method: ElectronicStructureMethod::HartreeFock,
68            basis_set: BasisSet::STO3G,
69            correlation: CorrelationMethod::CCSD,
70            convergence: ConvergenceCriteria::default(),
71            error_correction: ErrorMitigationConfig::default(),
72            advanced_algorithms: AdvancedAlgorithmConfig::default(),
73            monitoring_enabled: true,
74        }
75    }
76}
77
78/// Electronic structure calculation methods
79#[derive(Debug, Clone, PartialEq, Eq)]
80pub enum ElectronicStructureMethod {
81    /// Hartree-Fock method
82    HartreeFock,
83    /// Density Functional Theory
84    DFT(DFTFunctional),
85    /// Configuration Interaction
86    CI(CILevel),
87    /// Coupled Cluster
88    CoupledCluster(CCLevel),
89    /// Multi-Reference methods
90    MultiReference(MRMethod),
91    /// Quantum Monte Carlo
92    QuantumMonteCarlo,
93}
94
95/// DFT functionals
96#[derive(Debug, Clone, PartialEq, Eq)]
97pub enum DFTFunctional {
98    B3LYP,
99    PBE,
100    M06,
101    wB97XD,
102    Custom(String),
103}
104
105/// Configuration Interaction levels
106#[derive(Debug, Clone, PartialEq, Eq)]
107pub enum CILevel {
108    CIS,
109    CISD,
110    CISDT,
111    CISDTQ,
112    FullCI,
113}
114
115/// Coupled Cluster levels
116#[derive(Debug, Clone, PartialEq, Eq)]
117pub enum CCLevel {
118    CCD,
119    CCSD,
120    CCSDT,
121    CCSDTQ,
122}
123
124/// Multi-reference methods
125#[derive(Debug, Clone, PartialEq, Eq)]
126pub enum MRMethod {
127    CASSCF,
128    CASPT2,
129    MRCI,
130    NEVPT2,
131}
132
133/// Basis sets for quantum chemistry calculations
134#[derive(Debug, Clone, PartialEq, Eq)]
135pub enum BasisSet {
136    /// Minimal basis sets
137    STO3G,
138    /// Split-valence basis sets
139    SV,
140    SVP,
141    SVPD,
142    /// Triple-zeta basis sets
143    TZVP,
144    TZVPD,
145    /// Quadruple-zeta basis sets
146    QZVP,
147    QZVPD,
148    /// Correlation-consistent basis sets
149    CCPVDZ,
150    CCPVTZ,
151    CCPVQZ,
152    /// Augmented basis sets
153    AugCCPVDZ,
154    AugCCPVTZ,
155    /// Custom basis set
156    Custom(String),
157}
158
159/// Electron correlation methods
160#[derive(Debug, Clone, PartialEq, Eq)]
161pub enum CorrelationMethod {
162    /// No correlation
163    None,
164    /// Møller-Plesset perturbation theory
165    MP2,
166    MP3,
167    MP4,
168    /// Coupled Cluster
169    CCSD,
170    CCSDT,
171    /// Configuration Interaction
172    CISD,
173    CISDT,
174    /// Random Phase Approximation
175    RPA,
176}
177
178/// Convergence criteria for quantum chemistry calculations
179#[derive(Debug, Clone)]
180pub struct ConvergenceCriteria {
181    /// Energy convergence threshold
182    pub energy_threshold: f64,
183    /// Density matrix convergence threshold
184    pub density_threshold: f64,
185    /// Maximum number of SCF iterations
186    pub max_scf_iterations: usize,
187    /// Orbital gradient threshold
188    pub gradient_threshold: f64,
189    /// DIIS convergence acceleration
190    pub use_diis: bool,
191}
192
193impl Default for ConvergenceCriteria {
194    fn default() -> Self {
195        Self {
196            energy_threshold: 1e-8,
197            density_threshold: 1e-6,
198            max_scf_iterations: 100,
199            gradient_threshold: 1e-6,
200            use_diis: true,
201        }
202    }
203}
204
205/// Molecular system for quantum chemistry calculations
206#[derive(Debug, Clone)]
207pub struct MolecularSystem {
208    /// System identifier
209    pub id: String,
210    /// Atoms in the system
211    pub atoms: Vec<Atom>,
212    /// Total charge of the system
213    pub charge: i32,
214    /// Spin multiplicity
215    pub multiplicity: usize,
216    /// Molecular geometry
217    pub geometry: MolecularGeometry,
218    /// External fields
219    pub external_fields: Vec<ExternalField>,
220    /// Constraints
221    pub constraints: Vec<GeometryConstraint>,
222}
223
224/// Atom in molecular system
225#[derive(Debug, Clone)]
226pub struct Atom {
227    /// Atomic number
228    pub atomic_number: u8,
229    /// Element symbol
230    pub symbol: String,
231    /// Atomic mass
232    pub mass: f64,
233    /// Position in 3D space
234    pub position: [f64; 3],
235    /// Partial charge
236    pub partial_charge: Option<f64>,
237    /// Basis functions
238    pub basis_functions: Vec<BasisFunction>,
239}
240
241/// Molecular geometry representation
242#[derive(Debug, Clone)]
243pub struct MolecularGeometry {
244    /// Coordinate system
245    pub coordinate_system: CoordinateSystem,
246    /// Bond lengths
247    pub bonds: Vec<Bond>,
248    /// Bond angles
249    pub angles: Vec<Angle>,
250    /// Dihedral angles
251    pub dihedrals: Vec<Dihedral>,
252    /// Point group symmetry
253    pub point_group: Option<String>,
254}
255
256/// Coordinate systems
257#[derive(Debug, Clone, PartialEq, Eq)]
258pub enum CoordinateSystem {
259    Cartesian,
260    ZMatrix,
261    Internal,
262    Redundant,
263}
264
265/// Chemical bond
266#[derive(Debug, Clone)]
267pub struct Bond {
268    pub atom1: usize,
269    pub atom2: usize,
270    pub length: f64,
271    pub order: BondOrder,
272    pub strength: f64,
273}
274
275/// Bond order types
276#[derive(Debug, Clone, PartialEq)]
277pub enum BondOrder {
278    Single,
279    Double,
280    Triple,
281    Aromatic,
282    Partial(f64),
283}
284
285/// Bond angle
286#[derive(Debug, Clone)]
287pub struct Angle {
288    pub atom1: usize,
289    pub atom2: usize,
290    pub atom3: usize,
291    pub angle: f64, // in radians
292}
293
294/// Dihedral angle
295#[derive(Debug, Clone)]
296pub struct Dihedral {
297    pub atom1: usize,
298    pub atom2: usize,
299    pub atom3: usize,
300    pub atom4: usize,
301    pub angle: f64, // in radians
302}
303
304/// External fields affecting the molecular system
305#[derive(Debug, Clone)]
306pub enum ExternalField {
307    Electric {
308        field: [f64; 3],
309        frequency: Option<f64>,
310    },
311    Magnetic {
312        field: [f64; 3],
313    },
314    Pressure {
315        pressure: f64,
316    },
317    Temperature {
318        temperature: f64,
319    },
320}
321
322/// Geometry constraints
323#[derive(Debug, Clone)]
324pub enum GeometryConstraint {
325    FixedAtom(usize),
326    FixedBond {
327        atom1: usize,
328        atom2: usize,
329        length: f64,
330    },
331    FixedAngle {
332        atom1: usize,
333        atom2: usize,
334        atom3: usize,
335        angle: f64,
336    },
337    FixedDihedral {
338        atom1: usize,
339        atom2: usize,
340        atom3: usize,
341        atom4: usize,
342        angle: f64,
343    },
344}
345
346/// Basis function for quantum calculations
347#[derive(Debug, Clone)]
348pub struct BasisFunction {
349    /// Function type
350    pub function_type: BasisFunctionType,
351    /// Angular momentum quantum numbers
352    pub angular_momentum: (u32, i32, i32), // (l, m_l, m_s)
353    /// Exponent
354    pub exponent: f64,
355    /// Contraction coefficients
356    pub coefficients: Vec<f64>,
357    /// Center position
358    pub center: [f64; 3],
359}
360
361/// Types of basis functions
362#[derive(Debug, Clone, PartialEq, Eq)]
363pub enum BasisFunctionType {
364    /// Slater-type orbital
365    STO,
366    /// Gaussian-type orbital
367    GTO,
368    /// Plane wave
369    PlaneWave,
370    /// Numerical atomic orbital
371    NAO,
372}
373
374/// Quantum computational chemistry optimizer
375pub struct QuantumChemistryOptimizer {
376    /// Configuration
377    pub config: QuantumChemistryConfig,
378    /// Advanced quantum algorithms
379    pub advanced_algorithms: AdvancedQuantumAlgorithms,
380    /// Error correction system
381    pub error_correction: NoiseResilientAnnealingProtocol,
382    /// Real-time adaptive QEC
383    pub adaptive_qec: RealTimeAdaptiveQec,
384    /// Meta-learning optimizer
385    pub meta_learning: MetaLearningOptimizer,
386    /// Neural annealing scheduler
387    pub neural_scheduler: NeuralAnnealingScheduler,
388    /// Enterprise monitoring
389    pub monitoring: Option<EnterpriseMonitoringSystem>,
390    /// Calculated systems cache
391    pub system_cache: HashMap<String, QuantumChemistryResult>,
392}
393
394/// Results from quantum chemistry calculations
395#[derive(Debug, Clone)]
396pub struct QuantumChemistryResult {
397    /// System identifier
398    pub system_id: String,
399    /// Electronic energy
400    pub electronic_energy: f64,
401    /// Nuclear repulsion energy
402    pub nuclear_repulsion: f64,
403    /// Total energy
404    pub total_energy: f64,
405    /// Molecular orbitals
406    pub molecular_orbitals: Vec<MolecularOrbital>,
407    /// Electronic density
408    pub electron_density: ElectronDensity,
409    /// Dipole moment
410    pub dipole_moment: [f64; 3],
411    /// Polarizability tensor
412    pub polarizability: [[f64; 3]; 3],
413    /// Vibrational frequencies
414    pub vibrational_frequencies: Vec<f64>,
415    /// Thermochemical properties
416    pub thermochemistry: ThermochemicalProperties,
417    /// Calculation metadata
418    pub metadata: CalculationMetadata,
419}
420
421/// Molecular orbital representation
422#[derive(Debug, Clone)]
423pub struct MolecularOrbital {
424    /// Orbital energy
425    pub energy: f64,
426    /// Orbital coefficients
427    pub coefficients: Vec<f64>,
428    /// Occupation number
429    pub occupation: f64,
430    /// Orbital symmetry
431    pub symmetry: Option<String>,
432    /// Orbital type
433    pub orbital_type: OrbitalType,
434}
435
436/// Types of molecular orbitals
437#[derive(Debug, Clone, PartialEq, Eq)]
438pub enum OrbitalType {
439    Core,
440    Valence,
441    Virtual,
442    HOMO,
443    LUMO,
444}
445
446/// Electron density representation
447#[derive(Debug, Clone)]
448pub struct ElectronDensity {
449    /// Grid points
450    pub grid_points: Vec<[f64; 3]>,
451    /// Density values at grid points
452    pub density_values: Vec<f64>,
453    /// Density matrix
454    pub density_matrix: Vec<Vec<f64>>,
455    /// Mulliken charges
456    pub mulliken_charges: Vec<f64>,
457    /// Electrostatic potential
458    pub electrostatic_potential: Vec<f64>,
459}
460
461/// Thermochemical properties
462#[derive(Debug, Clone)]
463pub struct ThermochemicalProperties {
464    /// Zero-point vibrational energy
465    pub zero_point_energy: f64,
466    /// Thermal energy correction
467    pub thermal_energy: f64,
468    /// Enthalpy
469    pub enthalpy: f64,
470    /// Entropy
471    pub entropy: f64,
472    /// Free energy
473    pub free_energy: f64,
474    /// Heat capacity
475    pub heat_capacity: f64,
476    /// Temperature for calculations
477    pub temperature: f64,
478}
479
480/// Calculation metadata
481#[derive(Debug, Clone)]
482pub struct CalculationMetadata {
483    /// Calculation method used
484    pub method: ElectronicStructureMethod,
485    /// Basis set used
486    pub basis_set: BasisSet,
487    /// SCF convergence achieved
488    pub scf_converged: bool,
489    /// Number of SCF iterations
490    pub scf_iterations: usize,
491    /// CPU time
492    pub cpu_time: f64,
493    /// Wall time
494    pub wall_time: f64,
495    /// Memory usage
496    pub memory_usage: usize,
497    /// Error correction applied
498    pub error_correction_applied: bool,
499}
500
501/// Chemical reaction representation
502#[derive(Debug, Clone)]
503pub struct ChemicalReaction {
504    /// Reaction identifier
505    pub id: String,
506    /// Reactant molecules
507    pub reactants: Vec<MolecularSystem>,
508    /// Product molecules
509    pub products: Vec<MolecularSystem>,
510    /// Transition state
511    pub transition_state: Option<MolecularSystem>,
512    /// Catalysts
513    pub catalysts: Vec<MolecularSystem>,
514    /// Reaction conditions
515    pub conditions: ReactionConditions,
516    /// Reaction mechanism
517    pub mechanism: ReactionMechanism,
518}
519
520/// Reaction conditions
521#[derive(Debug, Clone)]
522pub struct ReactionConditions {
523    /// Temperature
524    pub temperature: f64,
525    /// Pressure
526    pub pressure: f64,
527    /// Solvent
528    pub solvent: Option<String>,
529    /// pH
530    pub ph: Option<f64>,
531    /// Concentration
532    pub concentrations: HashMap<String, f64>,
533}
534
535/// Reaction mechanism
536#[derive(Debug, Clone)]
537pub struct ReactionMechanism {
538    /// Elementary steps
539    pub steps: Vec<ElementaryStep>,
540    /// Rate constants
541    pub rate_constants: Vec<f64>,
542    /// Activation energies
543    pub activation_energies: Vec<f64>,
544    /// Pre-exponential factors
545    pub pre_exponential_factors: Vec<f64>,
546}
547
548/// Elementary reaction step
549#[derive(Debug, Clone)]
550pub struct ElementaryStep {
551    /// Step identifier
552    pub id: String,
553    /// Reactants in this step
554    pub reactants: Vec<String>,
555    /// Products in this step
556    pub products: Vec<String>,
557    /// Transition state for this step
558    pub transition_state: Option<String>,
559    /// Step type
560    pub step_type: StepType,
561}
562
563/// Types of elementary steps
564#[derive(Debug, Clone, PartialEq, Eq)]
565pub enum StepType {
566    Association,
567    Dissociation,
568    Substitution,
569    Elimination,
570    Addition,
571    Rearrangement,
572    ElectronTransfer,
573    ProtonTransfer,
574}
575
576/// Catalysis optimization problem
577#[derive(Debug, Clone)]
578pub struct CatalysisOptimization {
579    /// Target reaction
580    pub reaction: ChemicalReaction,
581    /// Catalyst candidates
582    pub catalyst_candidates: Vec<MolecularSystem>,
583    /// Optimization objectives
584    pub objectives: Vec<CatalysisObjective>,
585    /// Constraints
586    pub constraints: Vec<CatalysisConstraint>,
587    /// Screening parameters
588    pub screening_params: CatalysisScreeningParams,
589}
590
591/// Catalysis optimization objectives
592#[derive(Debug, Clone)]
593pub enum CatalysisObjective {
594    /// Minimize activation energy
595    MinimizeActivationEnergy,
596    /// Maximize turnover frequency
597    MaximizeTurnoverFrequency,
598    /// Maximize selectivity
599    MaximizeSelectivity,
600    /// Minimize cost
601    MinimizeCost,
602    /// Maximize stability
603    MaximizeStability,
604}
605
606/// Catalysis constraints
607#[derive(Debug, Clone)]
608pub enum CatalysisConstraint {
609    /// Maximum cost constraint
610    MaxCost(f64),
611    /// Minimum stability
612    MinStability(f64),
613    /// Environmental constraints
614    Environmental(Vec<String>),
615    /// Synthesis constraints
616    SynthesisComplexity(f64),
617}
618
619/// Catalysis screening parameters
620#[derive(Debug, Clone)]
621pub struct CatalysisScreeningParams {
622    /// Maximum number of candidates to evaluate
623    pub max_candidates: usize,
624    /// Accuracy threshold
625    pub accuracy_threshold: f64,
626    /// Use machine learning screening
627    pub use_ml_screening: bool,
628    /// Active learning enabled
629    pub active_learning: bool,
630}
631
632impl QuantumChemistryOptimizer {
633    /// Create new quantum chemistry optimizer
634    pub fn new(config: QuantumChemistryConfig) -> ApplicationResult<Self> {
635        let advanced_algorithms = AdvancedQuantumAlgorithms::new();
636        let error_correction = NoiseResilientAnnealingProtocol::new(
637            AnnealingParams::new(),
638            SystemNoiseModel::default(),
639            NoiseResilientConfig::default(),
640        )?;
641        let adaptive_qec = RealTimeAdaptiveQec::new(Default::default());
642        let meta_learning = MetaLearningOptimizer::new(Default::default());
643        let neural_scheduler = NeuralAnnealingScheduler::new(NeuralSchedulerConfig::default())
644            .map_err(|e| ApplicationError::ConfigurationError(e))?;
645
646        let monitoring = if config.monitoring_enabled {
647            Some(crate::enterprise_monitoring::create_example_enterprise_monitoring()?)
648        } else {
649            None
650        };
651
652        Ok(Self {
653            config,
654            advanced_algorithms,
655            error_correction,
656            adaptive_qec,
657            meta_learning,
658            neural_scheduler,
659            monitoring,
660            system_cache: HashMap::new(),
661        })
662    }
663
664    /// Calculate electronic structure
665    pub fn calculate_electronic_structure(
666        &mut self,
667        system: &MolecularSystem,
668    ) -> ApplicationResult<QuantumChemistryResult> {
669        if let Some(monitoring) = &self.monitoring {
670            monitoring.log(
671                LogLevel::Info,
672                &format!(
673                    "Starting electronic structure calculation for system {}",
674                    system.id
675                ),
676                None,
677            )?;
678        }
679
680        // Check cache first
681        if let Some(cached_result) = self.system_cache.get(&system.id) {
682            return Ok(cached_result.clone());
683        }
684
685        // Convert molecular system to quantum problem
686        let (qubo_model, _) = self.molecular_system_to_qubo(system)?;
687
688        // Apply error correction
689        let corrected_model = self.error_correction.encode_problem(&qubo_model)?;
690
691        // Optimize using advanced algorithms
692        let optimization_result = self
693            .advanced_algorithms
694            .optimize_problem(&corrected_model)?;
695
696        // Convert back to chemistry result
697        let chemistry_result = self.interpret_quantum_result(system, &optimization_result)?;
698
699        // Cache result
700        self.system_cache
701            .insert(system.id.clone(), chemistry_result.clone());
702
703        if let Some(monitoring) = &self.monitoring {
704            monitoring.log(
705                LogLevel::Info,
706                &format!(
707                    "Completed electronic structure calculation for system {}",
708                    system.id
709                ),
710                None,
711            )?;
712        }
713
714        Ok(chemistry_result)
715    }
716
717    /// Optimize catalysis design
718    pub fn optimize_catalysis(
719        &mut self,
720        problem: &CatalysisOptimization,
721    ) -> ApplicationResult<CatalysisOptimizationResult> {
722        use std::time::Instant;
723        let start_time = Instant::now();
724
725        if let Some(monitoring) = &self.monitoring {
726            monitoring.log(
727                LogLevel::Info,
728                &format!(
729                    "Starting catalysis optimization for reaction {}",
730                    problem.reaction.id
731                ),
732                None,
733            )?;
734        }
735
736        let mut best_catalyst = None;
737        let mut best_score = f64::NEG_INFINITY;
738        let mut evaluated_candidates = Vec::new();
739
740        // Screen catalyst candidates
741        for (i, candidate) in problem.catalyst_candidates.iter().enumerate() {
742            if i >= problem.screening_params.max_candidates {
743                break;
744            }
745
746            // Calculate reaction energetics with this catalyst
747            let energetics =
748                self.calculate_reaction_energetics(&problem.reaction, Some(candidate))?;
749
750            // Evaluate objectives
751            let score = self.evaluate_catalysis_objectives(&problem.objectives, &energetics)?;
752
753            evaluated_candidates.push(CatalystEvaluation {
754                catalyst: candidate.clone(),
755                energetics,
756                score,
757                meets_constraints: self.check_catalysis_constraints(
758                    &problem.constraints,
759                    candidate,
760                    score,
761                )?,
762            });
763
764            if score > best_score {
765                best_score = score;
766                best_catalyst = Some(candidate.clone());
767            }
768        }
769
770        if let Some(monitoring) = &self.monitoring {
771            monitoring.log(
772                LogLevel::Info,
773                &format!(
774                    "Completed catalysis optimization, evaluated {} candidates",
775                    evaluated_candidates.len()
776                ),
777                None,
778            )?;
779        }
780
781        let optimization_time = start_time.elapsed().as_secs_f64();
782
783        Ok(CatalysisOptimizationResult {
784            best_catalyst,
785            best_score,
786            evaluated_candidates,
787            optimization_time,
788        })
789    }
790
791    /// Calculate reaction energetics
792    pub fn calculate_reaction_energetics(
793        &mut self,
794        reaction: &ChemicalReaction,
795        catalyst: Option<&MolecularSystem>,
796    ) -> ApplicationResult<ReactionEnergetics> {
797        let mut reactant_energies = Vec::new();
798        let mut product_energies = Vec::new();
799
800        // Calculate energies for reactants
801        for reactant in &reaction.reactants {
802            let result = self.calculate_electronic_structure(reactant)?;
803            reactant_energies.push(result.total_energy);
804        }
805
806        // Calculate energies for products
807        for product in &reaction.products {
808            let result = self.calculate_electronic_structure(product)?;
809            product_energies.push(result.total_energy);
810        }
811
812        // Calculate transition state energy if available
813        let transition_state_energy = if let Some(ts) = &reaction.transition_state {
814            Some(self.calculate_electronic_structure(ts)?.total_energy)
815        } else {
816            None
817        };
818
819        // Calculate catalyst binding energies if present
820        let catalyst_binding_energy = if let Some(cat) = catalyst {
821            Some(self.calculate_electronic_structure(cat)?.total_energy)
822        } else {
823            None
824        };
825
826        let total_reactant_energy: f64 = reactant_energies.iter().sum();
827        let total_product_energy: f64 = product_energies.iter().sum();
828        let reaction_energy = total_product_energy - total_reactant_energy;
829
830        let activation_energy = if let Some(ts_energy) = transition_state_energy {
831            ts_energy - total_reactant_energy
832        } else {
833            // Estimate activation energy using Bell-Evans-Polanyi relation
834            0.3f64.mul_add(reaction_energy.abs(), 20.0) // kcal/mol
835        };
836
837        // Estimate reaction entropy using empirical formula
838        // ΔS ≈ R * ln(n_products/n_reactants) + contribution from reaction type
839        let gas_constant = 8.314; // J/(mol·K)
840        let n_reactants = reaction.reactants.len() as f64;
841        let n_products = reaction.products.len() as f64;
842
843        // Base entropy change from stoichiometry
844        let stoichiometric_entropy = gas_constant * (n_products / n_reactants).ln();
845
846        // Additional entropy contribution from molecular complexity
847        // More atoms typically correlate with higher entropy
848        let reactant_atoms: usize = reaction.reactants.iter().map(|r| r.atoms.len()).sum();
849        let product_atoms: usize = reaction.products.iter().map(|p| p.atoms.len()).sum();
850        let complexity_entropy = 0.5 * (product_atoms as f64 - reactant_atoms as f64);
851
852        let reaction_entropy = stoichiometric_entropy + complexity_entropy;
853
854        Ok(ReactionEnergetics {
855            reactant_energies,
856            product_energies,
857            transition_state_energy,
858            catalyst_binding_energy,
859            reaction_energy,
860            activation_energy,
861            reaction_enthalpy: reaction_energy, // Simplified
862            reaction_entropy,
863        })
864    }
865
866    /// Private helper methods
867    fn molecular_system_to_qubo(
868        &self,
869        system: &MolecularSystem,
870    ) -> ApplicationResult<(QuboModel, HashMap<String, usize>)> {
871        let n_atoms = system.atoms.len();
872        let n_basis = system
873            .atoms
874            .iter()
875            .map(|a| a.basis_functions.len())
876            .sum::<usize>();
877
878        // Create QUBO model with variables for molecular orbitals
879        let mut qubo = QuboModel::new(n_basis);
880        let mut variable_mapping = HashMap::new();
881
882        // Add electronic structure terms
883        for i in 0..n_basis {
884            // Kinetic energy terms
885            qubo.set_linear(i, -1.0)?;
886            variable_mapping.insert(format!("orbital_{i}"), i);
887
888            // Electron-electron repulsion
889            for j in (i + 1)..n_basis {
890                qubo.set_quadratic(i, j, 0.5)?;
891            }
892        }
893
894        // Add nuclear-electron attraction terms
895        for (atom_idx, atom) in system.atoms.iter().enumerate() {
896            for i in 0..n_basis {
897                let attraction = -f64::from(atom.atomic_number) / (atom_idx + 1) as f64;
898                qubo.add_linear(i, attraction)?;
899            }
900        }
901
902        Ok((qubo, variable_mapping))
903    }
904
905    fn interpret_quantum_result(
906        &self,
907        system: &MolecularSystem,
908        result: &AnnealingResult<AnnealingSolution>,
909    ) -> ApplicationResult<QuantumChemistryResult> {
910        let n_atoms = system.atoms.len();
911        let n_basis = system
912            .atoms
913            .iter()
914            .map(|a| a.basis_functions.len())
915            .sum::<usize>();
916
917        // Extract molecular orbitals from solution
918        let solution = result
919            .as_ref()
920            .map_err(|e| ApplicationError::OptimizationError(e.to_string()))?;
921        let mut molecular_orbitals = Vec::new();
922        for i in 0..n_basis {
923            let occupation = if i < solution.best_spins.len() {
924                if solution.best_spins[i] == 1 {
925                    2.0
926                } else {
927                    0.0
928                }
929            } else {
930                0.0
931            };
932
933            molecular_orbitals.push(MolecularOrbital {
934                energy: -1.0 * i as f64, // Simplified
935                coefficients: vec![1.0; n_basis],
936                occupation,
937                symmetry: None,
938                orbital_type: if i < n_atoms / 2 {
939                    OrbitalType::Core
940                } else if i < n_atoms {
941                    OrbitalType::Valence
942                } else {
943                    OrbitalType::Virtual
944                },
945            });
946        }
947
948        // Calculate electron density
949        let electron_density = ElectronDensity {
950            grid_points: vec![[0.0, 0.0, 0.0]; 100],
951            density_values: vec![1.0; 100],
952            density_matrix: vec![vec![0.0; n_basis]; n_basis],
953            mulliken_charges: vec![0.0; n_atoms],
954            electrostatic_potential: vec![0.0; 100],
955        };
956
957        // Calculate properties
958        let electronic_energy = solution.best_energy;
959        let nuclear_repulsion = self.calculate_nuclear_repulsion(system);
960        let total_energy = electronic_energy + nuclear_repulsion;
961
962        Ok(QuantumChemistryResult {
963            system_id: system.id.clone(),
964            electronic_energy,
965            nuclear_repulsion,
966            total_energy,
967            molecular_orbitals,
968            electron_density,
969            dipole_moment: [0.0, 0.0, 0.0],
970            polarizability: [[0.0; 3]; 3],
971            vibrational_frequencies: vec![],
972            thermochemistry: ThermochemicalProperties {
973                zero_point_energy: 0.0,
974                thermal_energy: 0.0,
975                enthalpy: total_energy,
976                entropy: 0.0,
977                free_energy: total_energy,
978                heat_capacity: 0.0,
979                temperature: 298.15,
980            },
981            metadata: CalculationMetadata {
982                method: self.config.method.clone(),
983                basis_set: self.config.basis_set.clone(),
984                scf_converged: true,
985                scf_iterations: 1,
986                cpu_time: 1.0,
987                wall_time: 1.0,
988                memory_usage: 1024,
989                error_correction_applied: true,
990            },
991        })
992    }
993
994    fn calculate_nuclear_repulsion(&self, system: &MolecularSystem) -> f64 {
995        let mut repulsion = 0.0;
996
997        for (i, atom1) in system.atoms.iter().enumerate() {
998            for (j, atom2) in system.atoms.iter().enumerate() {
999                if i < j {
1000                    let dx = atom1.position[0] - atom2.position[0];
1001                    let dy = atom1.position[1] - atom2.position[1];
1002                    let dz = atom1.position[2] - atom2.position[2];
1003                    let distance = dz.mul_add(dz, dx.mul_add(dx, dy * dy)).sqrt();
1004
1005                    if distance > 1e-10 {
1006                        repulsion +=
1007                            f64::from(atom1.atomic_number * atom2.atomic_number) / distance;
1008                    }
1009                }
1010            }
1011        }
1012
1013        repulsion
1014    }
1015
1016    fn evaluate_catalysis_objectives(
1017        &self,
1018        objectives: &[CatalysisObjective],
1019        energetics: &ReactionEnergetics,
1020    ) -> ApplicationResult<f64> {
1021        let mut total_score = 0.0;
1022
1023        for objective in objectives {
1024            let score = match objective {
1025                CatalysisObjective::MinimizeActivationEnergy => {
1026                    -energetics.activation_energy / 100.0 // Normalize
1027                }
1028                CatalysisObjective::MaximizeTurnoverFrequency => {
1029                    // TOF ∝ exp(-Ea/RT)
1030                    let rt = 0.592; // kcal/mol at 298K
1031                    (-energetics.activation_energy / rt).exp()
1032                }
1033                CatalysisObjective::MaximizeSelectivity => {
1034                    // Simplified selectivity based on activation energy difference
1035                    1.0 / (1.0 + energetics.activation_energy.abs())
1036                }
1037                CatalysisObjective::MinimizeCost => {
1038                    // Cost estimate based on catalyst binding energy
1039                    // Higher binding energy often correlates with rare/expensive catalytic elements
1040                    let cost_estimate = energetics.catalyst_binding_energy.unwrap_or(1.0).abs();
1041                    // Normalize to 0-1 range for objective function (lower is better)
1042                    -cost_estimate / 100.0 // Negative because we minimize
1043                }
1044                CatalysisObjective::MaximizeStability => {
1045                    // Stability related to binding energy
1046                    energetics.catalyst_binding_energy.unwrap_or(0.0).abs() / 10.0
1047                }
1048            };
1049            total_score += score;
1050        }
1051
1052        Ok(total_score / objectives.len() as f64)
1053    }
1054
1055    fn check_catalysis_constraints(
1056        &self,
1057        constraints: &[CatalysisConstraint],
1058        catalyst: &MolecularSystem,
1059        score: f64,
1060    ) -> ApplicationResult<bool> {
1061        for constraint in constraints {
1062            match constraint {
1063                CatalysisConstraint::MaxCost(max_cost) => {
1064                    // Calculate catalyst cost based on atomic composition
1065                    // Rare elements (e.g., Pt, Pd, Rh) have higher costs
1066                    let cost = self.calculate_catalyst_cost(catalyst)?;
1067                    if cost > *max_cost {
1068                        return Ok(false);
1069                    }
1070                }
1071                CatalysisConstraint::MinStability(min_stability) => {
1072                    if score < *min_stability {
1073                        return Ok(false);
1074                    }
1075                }
1076                CatalysisConstraint::Environmental(requirements) => {
1077                    // Check environmental constraints
1078                    let env_score = self.calculate_environmental_impact(catalyst)?;
1079                    // Check if toxicity is acceptable (max toxicity = 5.0)
1080                    let max_acceptable_toxicity = 5.0;
1081                    if env_score > max_acceptable_toxicity
1082                        || !self.check_sustainability_requirements(catalyst, requirements)?
1083                    {
1084                        return Ok(false);
1085                    }
1086                }
1087                CatalysisConstraint::SynthesisComplexity(max_complexity) => {
1088                    // Calculate synthesis complexity
1089                    let complexity = self.calculate_synthesis_complexity(catalyst)?;
1090                    if complexity > *max_complexity {
1091                        return Ok(false);
1092                    }
1093                }
1094            }
1095        }
1096        Ok(true)
1097    }
1098
1099    /// Calculate catalyst cost based on elemental composition
1100    fn calculate_catalyst_cost(&self, catalyst: &MolecularSystem) -> ApplicationResult<f64> {
1101        // Cost per gram for common catalytic elements (USD/g, approximate)
1102        let element_costs: HashMap<String, f64> = [
1103            ("H".to_string(), 0.001),
1104            ("C".to_string(), 0.05),
1105            ("N".to_string(), 0.01),
1106            ("O".to_string(), 0.01),
1107            ("Fe".to_string(), 0.1),
1108            ("Ni".to_string(), 1.0),
1109            ("Cu".to_string(), 0.5),
1110            ("Pd".to_string(), 50.0),
1111            ("Pt".to_string(), 100.0),
1112            ("Rh".to_string(), 150.0),
1113            ("Ru".to_string(), 20.0),
1114        ]
1115        .iter()
1116        .cloned()
1117        .collect();
1118
1119        let mut total_cost = 0.0;
1120        for atom in &catalyst.atoms {
1121            let cost_per_gram = element_costs.get(&atom.symbol).unwrap_or(&1.0);
1122            total_cost += cost_per_gram;
1123        }
1124
1125        Ok(total_cost)
1126    }
1127
1128    /// Calculate environmental impact score
1129    fn calculate_environmental_impact(&self, catalyst: &MolecularSystem) -> ApplicationResult<f64> {
1130        // Toxicity scores for elements (0 = benign, 10 = highly toxic)
1131        let element_toxicity: HashMap<String, f64> = [
1132            ("H".to_string(), 0.0),
1133            ("C".to_string(), 0.0),
1134            ("N".to_string(), 1.0),
1135            ("O".to_string(), 0.0),
1136            ("Fe".to_string(), 1.0),
1137            ("Ni".to_string(), 3.0),
1138            ("Cu".to_string(), 2.0),
1139            ("Pd".to_string(), 2.0),
1140            ("Pt".to_string(), 2.0),
1141            ("Rh".to_string(), 3.0),
1142            ("Ru".to_string(), 3.0),
1143            ("Hg".to_string(), 9.0),
1144            ("Pb".to_string(), 8.0),
1145            ("Cd".to_string(), 8.0),
1146            ("As".to_string(), 9.0),
1147        ]
1148        .iter()
1149        .cloned()
1150        .collect();
1151
1152        let mut max_toxicity = 0.0;
1153        for atom in &catalyst.atoms {
1154            let toxicity = element_toxicity.get(&atom.symbol).unwrap_or(&5.0);
1155            if *toxicity > max_toxicity {
1156                max_toxicity = *toxicity;
1157            }
1158        }
1159
1160        Ok(max_toxicity)
1161    }
1162
1163    /// Check sustainability requirements
1164    fn check_sustainability_requirements(
1165        &self,
1166        catalyst: &MolecularSystem,
1167        requirements: &Vec<String>,
1168    ) -> ApplicationResult<bool> {
1169        // Check if catalyst uses abundant elements
1170        let abundant_elements = ["H", "C", "N", "O", "Fe", "Si", "Al"];
1171        let total_atoms = catalyst.atoms.len();
1172        let abundant_count = catalyst
1173            .atoms
1174            .iter()
1175            .filter(|a| abundant_elements.contains(&a.symbol.as_str()))
1176            .count();
1177
1178        // Check if specific requirements are met
1179        for req in requirements {
1180            if req == "no_heavy_metals" {
1181                let heavy_metals = ["Hg", "Pb", "Cd", "As"];
1182                if catalyst
1183                    .atoms
1184                    .iter()
1185                    .any(|a| heavy_metals.contains(&a.symbol.as_str()))
1186                {
1187                    return Ok(false);
1188                }
1189            }
1190        }
1191
1192        // At least 70% should be from abundant elements for sustainability
1193        Ok(abundant_count as f64 / total_atoms as f64 > 0.7)
1194    }
1195
1196    /// Calculate synthesis complexity
1197    fn calculate_synthesis_complexity(&self, catalyst: &MolecularSystem) -> ApplicationResult<f64> {
1198        // Complexity based on:
1199        // 1. Number of different elements
1200        // 2. Total number of atoms
1201        // 3. Structural complexity (estimated)
1202
1203        let mut unique_elements = HashSet::new();
1204        for atom in &catalyst.atoms {
1205            unique_elements.insert(&atom.symbol);
1206        }
1207
1208        let element_diversity = unique_elements.len() as f64;
1209        let size_factor = (catalyst.atoms.len() as f64).sqrt();
1210
1211        // Simple complexity metric
1212        let complexity = element_diversity.mul_add(0.5, size_factor * 0.3);
1213
1214        Ok(complexity)
1215    }
1216}
1217
1218/// Reaction energetics
1219#[derive(Debug, Clone)]
1220pub struct ReactionEnergetics {
1221    /// Energies of reactants
1222    pub reactant_energies: Vec<f64>,
1223    /// Energies of products
1224    pub product_energies: Vec<f64>,
1225    /// Transition state energy
1226    pub transition_state_energy: Option<f64>,
1227    /// Catalyst binding energy
1228    pub catalyst_binding_energy: Option<f64>,
1229    /// Overall reaction energy
1230    pub reaction_energy: f64,
1231    /// Activation energy
1232    pub activation_energy: f64,
1233    /// Reaction enthalpy
1234    pub reaction_enthalpy: f64,
1235    /// Reaction entropy
1236    pub reaction_entropy: f64,
1237}
1238
1239/// Catalyst evaluation result
1240#[derive(Debug, Clone)]
1241pub struct CatalystEvaluation {
1242    /// Catalyst system
1243    pub catalyst: MolecularSystem,
1244    /// Calculated energetics
1245    pub energetics: ReactionEnergetics,
1246    /// Overall score
1247    pub score: f64,
1248    /// Whether constraints are satisfied
1249    pub meets_constraints: bool,
1250}
1251
1252/// Catalysis optimization result
1253#[derive(Debug, Clone)]
1254pub struct CatalysisOptimizationResult {
1255    /// Best catalyst found
1256    pub best_catalyst: Option<MolecularSystem>,
1257    /// Best score achieved
1258    pub best_score: f64,
1259    /// All evaluated candidates
1260    pub evaluated_candidates: Vec<CatalystEvaluation>,
1261    /// Optimization time
1262    pub optimization_time: f64,
1263}
1264
1265/// Create example molecular systems for testing
1266pub fn create_example_molecular_systems() -> ApplicationResult<Vec<MolecularSystem>> {
1267    let mut systems = Vec::new();
1268
1269    // Water molecule
1270    let water = MolecularSystem {
1271        id: "water".to_string(),
1272        charge: 0,
1273        multiplicity: 1,
1274        atoms: vec![
1275            Atom {
1276                atomic_number: 8,
1277                symbol: "O".to_string(),
1278                mass: 15.999,
1279                position: [0.0, 0.0, 0.0],
1280                partial_charge: Some(-0.834),
1281                basis_functions: vec![BasisFunction {
1282                    function_type: BasisFunctionType::GTO,
1283                    angular_momentum: (0, 0, 0),
1284                    exponent: 130.7093,
1285                    coefficients: vec![0.1543],
1286                    center: [0.0, 0.0, 0.0],
1287                }],
1288            },
1289            Atom {
1290                atomic_number: 1,
1291                symbol: "H".to_string(),
1292                mass: 1.008,
1293                position: [0.758, 0.0, 0.586],
1294                partial_charge: Some(0.417),
1295                basis_functions: vec![BasisFunction {
1296                    function_type: BasisFunctionType::GTO,
1297                    angular_momentum: (0, 0, 0),
1298                    exponent: 3.425_251,
1299                    coefficients: vec![0.1543],
1300                    center: [0.758, 0.0, 0.586],
1301                }],
1302            },
1303            Atom {
1304                atomic_number: 1,
1305                symbol: "H".to_string(),
1306                mass: 1.008,
1307                position: [-0.758, 0.0, 0.586],
1308                partial_charge: Some(0.417),
1309                basis_functions: vec![BasisFunction {
1310                    function_type: BasisFunctionType::GTO,
1311                    angular_momentum: (0, 0, 0),
1312                    exponent: 3.425_251,
1313                    coefficients: vec![0.1543],
1314                    center: [-0.758, 0.0, 0.586],
1315                }],
1316            },
1317        ],
1318        geometry: MolecularGeometry {
1319            coordinate_system: CoordinateSystem::Cartesian,
1320            bonds: vec![
1321                Bond {
1322                    atom1: 0,
1323                    atom2: 1,
1324                    length: 0.96,
1325                    order: BondOrder::Single,
1326                    strength: 460.0,
1327                },
1328                Bond {
1329                    atom1: 0,
1330                    atom2: 2,
1331                    length: 0.96,
1332                    order: BondOrder::Single,
1333                    strength: 460.0,
1334                },
1335            ],
1336            angles: vec![Angle {
1337                atom1: 1,
1338                atom2: 0,
1339                atom3: 2,
1340                angle: 104.5_f64.to_radians(),
1341            }],
1342            dihedrals: vec![],
1343            point_group: Some("C2v".to_string()),
1344        },
1345        external_fields: vec![],
1346        constraints: vec![],
1347    };
1348    systems.push(water);
1349
1350    // Methane molecule
1351    let methane = MolecularSystem {
1352        id: "methane".to_string(),
1353        charge: 0,
1354        multiplicity: 1,
1355        atoms: vec![
1356            Atom {
1357                atomic_number: 6,
1358                symbol: "C".to_string(),
1359                mass: 12.011,
1360                position: [0.0, 0.0, 0.0],
1361                partial_charge: Some(-0.4),
1362                basis_functions: vec![BasisFunction {
1363                    function_type: BasisFunctionType::GTO,
1364                    angular_momentum: (0, 0, 0),
1365                    exponent: 71.6168,
1366                    coefficients: vec![0.1543],
1367                    center: [0.0, 0.0, 0.0],
1368                }],
1369            },
1370            Atom {
1371                atomic_number: 1,
1372                symbol: "H".to_string(),
1373                mass: 1.008,
1374                position: [0.629, 0.629, 0.629],
1375                partial_charge: Some(0.1),
1376                basis_functions: vec![BasisFunction {
1377                    function_type: BasisFunctionType::GTO,
1378                    angular_momentum: (0, 0, 0),
1379                    exponent: 3.425_251,
1380                    coefficients: vec![0.1543],
1381                    center: [0.629, 0.629, 0.629],
1382                }],
1383            },
1384            Atom {
1385                atomic_number: 1,
1386                symbol: "H".to_string(),
1387                mass: 1.008,
1388                position: [-0.629, -0.629, 0.629],
1389                partial_charge: Some(0.1),
1390                basis_functions: vec![BasisFunction {
1391                    function_type: BasisFunctionType::GTO,
1392                    angular_momentum: (0, 0, 0),
1393                    exponent: 3.425_251,
1394                    coefficients: vec![0.1543],
1395                    center: [-0.629, -0.629, 0.629],
1396                }],
1397            },
1398            Atom {
1399                atomic_number: 1,
1400                symbol: "H".to_string(),
1401                mass: 1.008,
1402                position: [-0.629, 0.629, -0.629],
1403                partial_charge: Some(0.1),
1404                basis_functions: vec![BasisFunction {
1405                    function_type: BasisFunctionType::GTO,
1406                    angular_momentum: (0, 0, 0),
1407                    exponent: 3.425_251,
1408                    coefficients: vec![0.1543],
1409                    center: [-0.629, 0.629, -0.629],
1410                }],
1411            },
1412            Atom {
1413                atomic_number: 1,
1414                symbol: "H".to_string(),
1415                mass: 1.008,
1416                position: [0.629, -0.629, -0.629],
1417                partial_charge: Some(0.1),
1418                basis_functions: vec![BasisFunction {
1419                    function_type: BasisFunctionType::GTO,
1420                    angular_momentum: (0, 0, 0),
1421                    exponent: 3.425_251,
1422                    coefficients: vec![0.1543],
1423                    center: [0.629, -0.629, -0.629],
1424                }],
1425            },
1426        ],
1427        geometry: MolecularGeometry {
1428            coordinate_system: CoordinateSystem::Cartesian,
1429            bonds: vec![
1430                Bond {
1431                    atom1: 0,
1432                    atom2: 1,
1433                    length: 1.09,
1434                    order: BondOrder::Single,
1435                    strength: 414.0,
1436                },
1437                Bond {
1438                    atom1: 0,
1439                    atom2: 2,
1440                    length: 1.09,
1441                    order: BondOrder::Single,
1442                    strength: 414.0,
1443                },
1444                Bond {
1445                    atom1: 0,
1446                    atom2: 3,
1447                    length: 1.09,
1448                    order: BondOrder::Single,
1449                    strength: 414.0,
1450                },
1451                Bond {
1452                    atom1: 0,
1453                    atom2: 4,
1454                    length: 1.09,
1455                    order: BondOrder::Single,
1456                    strength: 414.0,
1457                },
1458            ],
1459            angles: vec![],
1460            dihedrals: vec![],
1461            point_group: Some("Td".to_string()),
1462        },
1463        external_fields: vec![],
1464        constraints: vec![],
1465    };
1466    systems.push(methane);
1467
1468    Ok(systems)
1469}
1470
1471/// Create benchmark problems for quantum computational chemistry
1472pub fn create_benchmark_problems(
1473    num_problems: usize,
1474) -> ApplicationResult<
1475    Vec<Box<dyn OptimizationProblem<Solution = QuantumChemistryResult, ObjectiveValue = f64>>>,
1476> {
1477    let mut problems = Vec::new();
1478    let systems = create_example_molecular_systems()?;
1479
1480    for i in 0..num_problems {
1481        let system = systems[i % systems.len()].clone();
1482        let problem = QuantumChemistryProblem {
1483            system,
1484            config: QuantumChemistryConfig::default(),
1485            objectives: vec![ChemistryObjective::MinimizeEnergy],
1486        };
1487        problems.push(Box::new(problem)
1488            as Box<
1489                dyn OptimizationProblem<Solution = QuantumChemistryResult, ObjectiveValue = f64>,
1490            >);
1491    }
1492
1493    Ok(problems)
1494}
1495
1496/// Quantum chemistry optimization problem
1497#[derive(Debug, Clone)]
1498pub struct QuantumChemistryProblem {
1499    pub system: MolecularSystem,
1500    pub config: QuantumChemistryConfig,
1501    pub objectives: Vec<ChemistryObjective>,
1502}
1503
1504/// Chemistry optimization objectives
1505#[derive(Debug, Clone)]
1506pub enum ChemistryObjective {
1507    MinimizeEnergy,
1508    MaximizeStability,
1509    OptimizeGeometry,
1510    MinimizeInteractionEnergy,
1511}
1512
1513impl OptimizationProblem for QuantumChemistryProblem {
1514    type Solution = QuantumChemistryResult;
1515    type ObjectiveValue = f64;
1516
1517    fn description(&self) -> String {
1518        format!(
1519            "Quantum computational chemistry optimization for system: {}",
1520            self.system.id
1521        )
1522    }
1523
1524    fn size_metrics(&self) -> HashMap<String, usize> {
1525        let mut metrics = HashMap::new();
1526        metrics.insert("atoms".to_string(), self.system.atoms.len());
1527        metrics.insert(
1528            "basis_functions".to_string(),
1529            self.system
1530                .atoms
1531                .iter()
1532                .map(|a| a.basis_functions.len())
1533                .sum(),
1534        );
1535        metrics
1536    }
1537
1538    fn validate(&self) -> ApplicationResult<()> {
1539        if self.system.atoms.is_empty() {
1540            return Err(ApplicationError::InvalidConfiguration(
1541                "No atoms in molecular system".to_string(),
1542            ));
1543        }
1544        Ok(())
1545    }
1546
1547    fn to_qubo(&self) -> ApplicationResult<(QuboModel, HashMap<String, usize>)> {
1548        let mut optimizer = QuantumChemistryOptimizer::new(self.config.clone())?;
1549        optimizer.molecular_system_to_qubo(&self.system)
1550    }
1551
1552    fn evaluate_solution(
1553        &self,
1554        solution: &Self::Solution,
1555    ) -> ApplicationResult<Self::ObjectiveValue> {
1556        let mut score = 0.0;
1557
1558        for objective in &self.objectives {
1559            let obj_score = match objective {
1560                ChemistryObjective::MinimizeEnergy => -solution.total_energy,
1561                ChemistryObjective::MaximizeStability => solution.total_energy.abs(),
1562                ChemistryObjective::OptimizeGeometry => solution.total_energy.abs() / 10.0,
1563                ChemistryObjective::MinimizeInteractionEnergy => -solution.electronic_energy,
1564            };
1565            score += obj_score;
1566        }
1567
1568        Ok(score / self.objectives.len() as f64)
1569    }
1570
1571    fn is_feasible(&self, solution: &Self::Solution) -> bool {
1572        solution.metadata.scf_converged && solution.total_energy.is_finite()
1573    }
1574}
1575
1576#[cfg(test)]
1577mod tests {
1578    use super::*;
1579
1580    #[test]
1581    fn test_quantum_chemistry_optimizer_creation() {
1582        let config = QuantumChemistryConfig::default();
1583        let optimizer = QuantumChemistryOptimizer::new(config);
1584        assert!(optimizer.is_ok());
1585    }
1586
1587    #[test]
1588    fn test_molecular_system_creation() {
1589        let systems =
1590            create_example_molecular_systems().expect("should create example molecular systems");
1591        assert_eq!(systems.len(), 2);
1592        assert_eq!(systems[0].id, "water");
1593        assert_eq!(systems[1].id, "methane");
1594    }
1595
1596    #[test]
1597    fn test_benchmark_problems() {
1598        let problems = create_benchmark_problems(5).expect("should create benchmark problems");
1599        assert_eq!(problems.len(), 5);
1600    }
1601
1602    #[test]
1603    fn test_quantum_chemistry_problem_validation() {
1604        let systems =
1605            create_example_molecular_systems().expect("should create molecular systems for test");
1606        let problem = QuantumChemistryProblem {
1607            system: systems[0].clone(),
1608            config: QuantumChemistryConfig::default(),
1609            objectives: vec![ChemistryObjective::MinimizeEnergy],
1610        };
1611
1612        assert!(problem.validate().is_ok());
1613        assert!(!problem.description().is_empty());
1614    }
1615}