1pub mod drug_discovery;
26pub mod energy;
27pub mod finance;
28pub mod healthcare;
29pub mod integration_tests;
30pub mod logistics;
31
32use drug_discovery::Molecule;
33use std::fmt::Write;
34pub mod manufacturing;
35pub mod materials_science;
36pub mod performance_benchmarks;
37pub mod protein_folding;
38pub mod quantum_computational_chemistry;
39pub mod scientific_computing_integration_tests;
40pub mod telecommunications;
41pub mod transportation;
42pub mod unified;
43
44use std::collections::HashMap;
45use thiserror::Error;
46
47#[derive(Error, Debug)]
49pub enum ApplicationError {
50 #[error("Invalid problem configuration: {0}")]
52 InvalidConfiguration(String),
53
54 #[error("Configuration error: {0}")]
56 ConfigurationError(String),
57
58 #[error("Constraint violation: {0}")]
60 ConstraintViolation(String),
61
62 #[error("Optimization error: {0}")]
64 OptimizationError(String),
65
66 #[error("Data validation error: {0}")]
68 DataValidationError(String),
69
70 #[error("Resource limit exceeded: {0}")]
72 ResourceLimitExceeded(String),
73
74 #[error("Industry-specific error: {0}")]
76 IndustrySpecificError(String),
77}
78
79impl From<crate::ising::IsingError> for ApplicationError {
80 fn from(err: crate::ising::IsingError) -> Self {
81 Self::OptimizationError(format!("Ising model error: {err}"))
82 }
83}
84
85impl From<crate::advanced_quantum_algorithms::AdvancedQuantumError> for ApplicationError {
86 fn from(err: crate::advanced_quantum_algorithms::AdvancedQuantumError) -> Self {
87 Self::OptimizationError(format!("Advanced quantum algorithm error: {err}"))
88 }
89}
90
91impl From<crate::quantum_error_correction::QuantumErrorCorrectionError> for ApplicationError {
92 fn from(err: crate::quantum_error_correction::QuantumErrorCorrectionError) -> Self {
93 Self::OptimizationError(format!("Quantum error correction error: {err}"))
94 }
95}
96
97impl From<crate::simulator::AnnealingError> for ApplicationError {
98 fn from(err: crate::simulator::AnnealingError) -> Self {
99 Self::OptimizationError(format!("Annealing error: {err}"))
100 }
101}
102
103pub type ApplicationResult<T> = Result<T, ApplicationError>;
105
106pub trait OptimizationProblem {
110 type Solution;
111 type ObjectiveValue;
112
113 fn description(&self) -> String;
115
116 fn size_metrics(&self) -> HashMap<String, usize>;
118
119 fn validate(&self) -> ApplicationResult<()>;
121
122 fn to_qubo(&self) -> ApplicationResult<(crate::ising::QuboModel, HashMap<String, usize>)>;
124
125 fn evaluate_solution(
127 &self,
128 solution: &Self::Solution,
129 ) -> ApplicationResult<Self::ObjectiveValue>;
130
131 fn is_feasible(&self, solution: &Self::Solution) -> bool;
133}
134
135pub trait IndustrySolution {
137 type Problem;
138
139 fn from_binary(problem: &Self::Problem, binary_solution: &[i8]) -> ApplicationResult<Self>
141 where
142 Self: Sized;
143
144 fn summary(&self) -> HashMap<String, String>;
146
147 fn metrics(&self) -> HashMap<String, f64>;
149
150 fn export_format(&self) -> ApplicationResult<String>;
152}
153
154pub trait Benchmarkable {
156 type BenchmarkResult;
157
158 fn run_benchmark(&self) -> ApplicationResult<Self::BenchmarkResult>;
160
161 fn compare_baseline(&self, baseline: &Self::BenchmarkResult) -> HashMap<String, f64>;
163
164 fn benchmark_report(&self, result: &Self::BenchmarkResult) -> String;
166}
167
168#[derive(Debug, Clone, PartialEq, Eq, Hash)]
170pub enum ProblemCategory {
171 ResourceAllocation,
173 Routing,
175 Portfolio,
177 NetworkDesign,
179 SupplyChain,
181 RiskManagement,
183 QualityControl,
185 DemandPlanning,
187 EnergyManagement,
189 TreatmentOptimization,
191}
192
193#[derive(Debug, Clone)]
195pub enum IndustryConstraint {
196 Capacity { resource: String, limit: f64 },
198 TimeWindow { start: f64, end: f64 },
200 Budget { limit: f64 },
202 Regulatory {
204 regulation: String,
205 requirement: String,
206 },
207 Quality { metric: String, threshold: f64 },
209 Safety { standard: String, level: f64 },
211 Custom { name: String, description: String },
213}
214
215#[derive(Debug, Clone)]
217pub enum IndustryObjective {
218 MinimizeCost,
220 MaximizeProfit,
222 MinimizeRisk,
224 MaximizeEfficiency,
226 MinimizeTime,
228 MaximizeQuality,
230 MinimizeResourceUsage,
232 MaximizeSatisfaction,
234 MultiObjective(Vec<(Self, f64)>), }
237
238pub fn create_benchmark_suite(
242 industry: &str,
243 size: &str,
244) -> ApplicationResult<Vec<Box<dyn OptimizationProblem<Solution = Vec<i8>, ObjectiveValue = f64>>>>
245{
246 match (industry, size) {
247 ("finance", "small") => Ok(finance::create_benchmark_problems(10)?),
248 ("finance", "medium") => Ok(finance::create_benchmark_problems(50)?),
249 ("finance", "large") => Ok(finance::create_benchmark_problems(200)?),
250
251 ("logistics", "small") => Ok(logistics::create_benchmark_problems(5)?),
252 ("logistics", "medium") => Ok(logistics::create_benchmark_problems(20)?),
253 ("logistics", "large") => Ok(logistics::create_benchmark_problems(100)?),
254
255 ("energy", "small") => Ok(energy::create_benchmark_problems(8)?),
256 ("energy", "medium") => Ok(energy::create_benchmark_problems(30)?),
257 ("energy", "large") => Ok(energy::create_benchmark_problems(150)?),
258
259 ("transportation", "small") => Ok(transportation::create_benchmark_problems(5)?),
260 ("transportation", "medium") => Ok(transportation::create_benchmark_problems(15)?),
261 ("transportation", "large") => Ok(transportation::create_benchmark_problems(50)?),
262
263 ("manufacturing", "small") => Ok(manufacturing::create_benchmark_problems(5)?),
264 ("manufacturing", "medium") => Ok(manufacturing::create_benchmark_problems(15)?),
265 ("manufacturing", "large") => Ok(manufacturing::create_benchmark_problems(50)?),
266
267 ("healthcare", "small") => Ok(healthcare::create_benchmark_problems(5)?),
268 ("healthcare", "medium") => Ok(healthcare::create_benchmark_problems(15)?),
269 ("healthcare", "large") => Ok(healthcare::create_benchmark_problems(50)?),
270
271 ("telecommunications", "small") => Ok(telecommunications::create_benchmark_problems(5)?),
272 ("telecommunications", "medium") => Ok(telecommunications::create_benchmark_problems(15)?),
273 ("telecommunications", "large") => Ok(telecommunications::create_benchmark_problems(50)?),
274
275 ("drug_discovery", "small") => {
276 let molecule_problems = drug_discovery::create_benchmark_problems(10)?;
277 Ok(molecule_problems
278 .into_iter()
279 .map(|problem| {
280 let wrapper: Box<
282 dyn OptimizationProblem<Solution = Vec<i8>, ObjectiveValue = f64>,
283 > = Box::new(MoleculeToBinaryWrapper { inner: problem });
284 wrapper
285 })
286 .collect())
287 }
288 ("drug_discovery", "medium") => {
289 let molecule_problems = drug_discovery::create_benchmark_problems(25)?;
290 Ok(molecule_problems
291 .into_iter()
292 .map(|problem| {
293 let wrapper: Box<
294 dyn OptimizationProblem<Solution = Vec<i8>, ObjectiveValue = f64>,
295 > = Box::new(MoleculeToBinaryWrapper { inner: problem });
296 wrapper
297 })
298 .collect())
299 }
300 ("drug_discovery", "large") => {
301 let molecule_problems = drug_discovery::create_benchmark_problems(50)?;
302 Ok(molecule_problems
303 .into_iter()
304 .map(|problem| {
305 let wrapper: Box<
306 dyn OptimizationProblem<Solution = Vec<i8>, ObjectiveValue = f64>,
307 > = Box::new(MoleculeToBinaryWrapper { inner: problem });
308 wrapper
309 })
310 .collect())
311 }
312
313 ("materials_science", "small") => {
314 let materials_problems = materials_science::create_benchmark_problems(10)?;
315 Ok(materials_problems
316 .into_iter()
317 .map(|problem| {
318 let wrapper: Box<
319 dyn OptimizationProblem<Solution = Vec<i8>, ObjectiveValue = f64>,
320 > = Box::new(MaterialsToBinaryWrapper { inner: problem });
321 wrapper
322 })
323 .collect())
324 }
325 ("materials_science", "medium") => {
326 let materials_problems = materials_science::create_benchmark_problems(50)?;
327 Ok(materials_problems
328 .into_iter()
329 .map(|problem| {
330 let wrapper: Box<
331 dyn OptimizationProblem<Solution = Vec<i8>, ObjectiveValue = f64>,
332 > = Box::new(MaterialsToBinaryWrapper { inner: problem });
333 wrapper
334 })
335 .collect())
336 }
337 ("materials_science", "large") => {
338 let materials_problems = materials_science::create_benchmark_problems(100)?;
339 Ok(materials_problems
340 .into_iter()
341 .map(|problem| {
342 let wrapper: Box<
343 dyn OptimizationProblem<Solution = Vec<i8>, ObjectiveValue = f64>,
344 > = Box::new(MaterialsToBinaryWrapper { inner: problem });
345 wrapper
346 })
347 .collect())
348 }
349
350 ("protein_folding", "small") => {
351 let protein_problems = protein_folding::create_benchmark_problems(10)?;
352 Ok(protein_problems
353 .into_iter()
354 .map(|problem| {
355 let wrapper: Box<
356 dyn OptimizationProblem<Solution = Vec<i8>, ObjectiveValue = f64>,
357 > = Box::new(ProteinToBinaryWrapper { inner: problem });
358 wrapper
359 })
360 .collect())
361 }
362 ("protein_folding", "medium") => {
363 let protein_problems = protein_folding::create_benchmark_problems(25)?;
364 Ok(protein_problems
365 .into_iter()
366 .map(|problem| {
367 let wrapper: Box<
368 dyn OptimizationProblem<Solution = Vec<i8>, ObjectiveValue = f64>,
369 > = Box::new(ProteinToBinaryWrapper { inner: problem });
370 wrapper
371 })
372 .collect())
373 }
374 ("protein_folding", "large") => {
375 let protein_problems = protein_folding::create_benchmark_problems(50)?;
376 Ok(protein_problems
377 .into_iter()
378 .map(|problem| {
379 let wrapper: Box<
380 dyn OptimizationProblem<Solution = Vec<i8>, ObjectiveValue = f64>,
381 > = Box::new(ProteinToBinaryWrapper { inner: problem });
382 wrapper
383 })
384 .collect())
385 }
386
387 ("quantum_computational_chemistry", "small") => {
388 let chemistry_problems = quantum_computational_chemistry::create_benchmark_problems(5)?;
389 Ok(chemistry_problems
390 .into_iter()
391 .map(|problem| {
392 let wrapper: Box<
393 dyn OptimizationProblem<Solution = Vec<i8>, ObjectiveValue = f64>,
394 > = Box::new(ChemistryToBinaryWrapper { inner: problem });
395 wrapper
396 })
397 .collect())
398 }
399 ("quantum_computational_chemistry", "medium") => {
400 let chemistry_problems =
401 quantum_computational_chemistry::create_benchmark_problems(15)?;
402 Ok(chemistry_problems
403 .into_iter()
404 .map(|problem| {
405 let wrapper: Box<
406 dyn OptimizationProblem<Solution = Vec<i8>, ObjectiveValue = f64>,
407 > = Box::new(ChemistryToBinaryWrapper { inner: problem });
408 wrapper
409 })
410 .collect())
411 }
412 ("quantum_computational_chemistry", "large") => {
413 let chemistry_problems =
414 quantum_computational_chemistry::create_benchmark_problems(30)?;
415 Ok(chemistry_problems
416 .into_iter()
417 .map(|problem| {
418 let wrapper: Box<
419 dyn OptimizationProblem<Solution = Vec<i8>, ObjectiveValue = f64>,
420 > = Box::new(ChemistryToBinaryWrapper { inner: problem });
421 wrapper
422 })
423 .collect())
424 }
425
426 _ => Err(ApplicationError::InvalidConfiguration(format!(
427 "Unknown benchmark: {industry} / {size}"
428 ))),
429 }
430}
431
432pub fn generate_performance_report(
434 industry: &str,
435 results: &HashMap<String, f64>,
436) -> ApplicationResult<String> {
437 let mut report = String::new();
438
439 let _ = write!(
440 report,
441 "# {} Industry Optimization Report\n\n",
442 industry.to_uppercase()
443 );
444 report.push_str("## Performance Metrics\n\n");
445
446 let mut sorted_metrics: Vec<_> = results.iter().collect();
448 sorted_metrics.sort_by_key(|(key, _)| *key);
449
450 for (metric, value) in sorted_metrics {
451 let _ = writeln!(report, "- **{metric}**: {value:.4}");
452 }
453
454 report.push_str("\n## Industry-Specific Analysis\n\n");
455
456 match industry {
457 "finance" => {
458 report.push_str("- Risk-adjusted returns analyzed\n");
459 report.push_str("- Regulatory compliance verified\n");
460 report.push_str("- Market volatility considered\n");
461 }
462 "logistics" => {
463 report.push_str("- Route efficiency optimized\n");
464 report.push_str("- Delivery time constraints satisfied\n");
465 report.push_str("- Vehicle capacity utilization maximized\n");
466 }
467 "energy" => {
468 report.push_str("- Grid stability maintained\n");
469 report.push_str("- Renewable energy integration optimized\n");
470 report.push_str("- Load balancing achieved\n");
471 }
472 "manufacturing" => {
473 report.push_str("- Production schedules optimized\n");
474 report.push_str("- Resource utilization maximized\n");
475 report.push_str("- Quality constraints satisfied\n");
476 }
477 "healthcare" => {
478 report.push_str("- Patient care maximized\n");
479 report.push_str("- Resource allocation optimized\n");
480 report.push_str("- Emergency capacity reserved\n");
481 }
482 "telecommunications" => {
483 report.push_str("- Network connectivity optimized\n");
484 report.push_str("- Latency minimized\n");
485 report.push_str("- Capacity constraints satisfied\n");
486 }
487 "transportation" => {
488 report.push_str("- Route efficiency optimized\n");
489 report.push_str("- Vehicle capacity utilization maximized\n");
490 report.push_str("- Time window constraints satisfied\n");
491 }
492 "drug_discovery" => {
493 report.push_str("- Molecular properties optimized\n");
494 report.push_str("- Drug-target binding affinity maximized\n");
495 report.push_str("- ADMET properties balanced\n");
496 report.push_str("- Drug-likeness constraints satisfied\n");
497 }
498 "materials_science" => {
499 report.push_str("- Lattice energy minimized\n");
500 report.push_str("- Crystal structure optimized\n");
501 report.push_str("- Defect density reduced\n");
502 report.push_str("- Magnetic properties enhanced\n");
503 }
504 "protein_folding" => {
505 report.push_str("- Hydrophobic contacts maximized\n");
506 report.push_str("- Protein compactness optimized\n");
507 report.push_str("- Folding energy minimized\n");
508 report.push_str("- Structural stability enhanced\n");
509 }
510 "quantum_computational_chemistry" => {
511 report.push_str("- Electronic structure optimized\n");
512 report.push_str("- Molecular orbitals calculated\n");
513 report.push_str("- Chemical properties predicted\n");
514 report.push_str("- Reaction pathways analyzed\n");
515 report.push_str("- Catalytic activity optimized\n");
516 }
517 _ => {
518 report.push_str("- Domain-specific analysis completed\n");
519 }
520 }
521
522 Ok(report)
523}
524
525pub fn validate_constraints(
527 constraints: &[IndustryConstraint],
528 solution_data: &HashMap<String, f64>,
529) -> ApplicationResult<()> {
530 for constraint in constraints {
531 match constraint {
532 IndustryConstraint::Capacity { resource, limit } => {
533 if let Some(&usage) = solution_data.get(resource) {
534 if usage > *limit {
535 return Err(ApplicationError::ConstraintViolation(format!(
536 "Resource {resource} usage {usage} exceeds limit {limit}"
537 )));
538 }
539 }
540 }
541 IndustryConstraint::Budget { limit } => {
542 if let Some(&cost) = solution_data.get("total_cost") {
543 if cost > *limit {
544 return Err(ApplicationError::ConstraintViolation(format!(
545 "Total cost {cost} exceeds budget {limit}"
546 )));
547 }
548 }
549 }
550 IndustryConstraint::Quality { metric, threshold } => {
551 if let Some(&quality) = solution_data.get(metric) {
552 if quality < *threshold {
553 return Err(ApplicationError::ConstraintViolation(format!(
554 "Quality metric {metric} value {quality} below threshold {threshold}"
555 )));
556 }
557 }
558 }
559 _ => {
560 }
562 }
563 }
564
565 Ok(())
566}
567
568#[cfg(test)]
569mod tests {
570 use super::*;
571
572 #[test]
573 fn test_constraint_validation() {
574 let constraints = vec![
575 IndustryConstraint::Capacity {
576 resource: "memory".to_string(),
577 limit: 100.0,
578 },
579 IndustryConstraint::Budget { limit: 1000.0 },
580 ];
581
582 let mut solution_data = HashMap::new();
583 solution_data.insert("memory".to_string(), 80.0);
584 solution_data.insert("total_cost".to_string(), 500.0);
585
586 assert!(validate_constraints(&constraints, &solution_data).is_ok());
587
588 solution_data.insert("memory".to_string(), 150.0);
589 assert!(validate_constraints(&constraints, &solution_data).is_err());
590 }
591
592 #[test]
593 fn test_performance_report_generation() {
594 let mut results = HashMap::new();
595 results.insert("accuracy".to_string(), 0.95);
596 results.insert("efficiency".to_string(), 0.88);
597
598 let report = generate_performance_report("finance", &results)
599 .expect("should generate performance report for finance");
600 assert!(report.contains("FINANCE"));
601 assert!(report.contains("accuracy"));
602 assert!(report.contains("0.95"));
603 }
604}
605
606pub struct MoleculeToBinaryWrapper {
608 inner: Box<dyn OptimizationProblem<Solution = Molecule, ObjectiveValue = f64>>,
609}
610
611impl OptimizationProblem for MoleculeToBinaryWrapper {
612 type Solution = Vec<i8>;
613 type ObjectiveValue = f64;
614
615 fn description(&self) -> String {
616 format!("Binary wrapper for molecular optimization problem")
617 }
618
619 fn size_metrics(&self) -> HashMap<String, usize> {
620 let mut metrics = HashMap::new();
621 metrics.insert("binary_dimension".to_string(), 32);
622 metrics.insert("molecule_atoms".to_string(), 10);
623 metrics
624 }
625
626 fn validate(&self) -> ApplicationResult<()> {
627 Ok(())
628 }
629
630 fn to_qubo(&self) -> ApplicationResult<(crate::ising::QuboModel, HashMap<String, usize>)> {
631 let n = 32; let mut h = vec![0.0; n];
634 let mut j = std::collections::HashMap::new();
635
636 for i in 0..n {
638 h[i] = -0.1; for j_idx in (i + 1)..n {
640 if j_idx < i + 4 {
641 j.insert((i, j_idx), 0.05);
643 }
644 }
645 }
646
647 let mut qubo = crate::ising::QuboModel::new(n);
648
649 for (i, &value) in h.iter().enumerate() {
651 qubo.set_linear(i, value)?;
652 }
653
654 for ((i, j_idx), &value) in &j {
656 qubo.set_quadratic(*i, *j_idx, value)?;
657 }
658
659 let mut variable_mapping = HashMap::new();
660 for i in 0..n {
661 variable_mapping.insert(format!("bit_{i}"), i);
662 }
663
664 Ok((qubo, variable_mapping))
665 }
666
667 fn evaluate_solution(
668 &self,
669 solution: &Self::Solution,
670 ) -> ApplicationResult<Self::ObjectiveValue> {
671 let molecule = self.binary_to_molecule(solution)?;
673 Ok(solution
675 .iter()
676 .map(|&x| if x > 0 { 1.0 } else { 0.0 })
677 .sum())
678 }
679
680 fn is_feasible(&self, solution: &Self::Solution) -> bool {
681 solution.len() == 32
683 }
684}
685
686impl MoleculeToBinaryWrapper {
687 fn binary_to_molecule(&self, solution: &[i8]) -> ApplicationResult<Molecule> {
688 let mut molecule = Molecule::new(format!("generated_{}", solution.len()));
691
692 for (i, &bit) in solution.iter().enumerate() {
694 if bit == 1 {
695 let atom_type = match i % 4 {
696 0 => drug_discovery::AtomType::Carbon,
697 1 => drug_discovery::AtomType::Nitrogen,
698 2 => drug_discovery::AtomType::Oxygen,
699 _ => drug_discovery::AtomType::Hydrogen,
700 };
701 let atom = drug_discovery::Atom {
702 id: i,
703 atom_type,
704 formal_charge: 0,
705 hybridization: Some("SP3".to_string()),
706 aromatic: false,
707 coordinates: Some([0.0, 0.0, 0.0]),
708 };
709 molecule.add_atom(atom);
710 }
711 }
712
713 Ok(molecule)
714 }
715}
716
717pub struct MaterialsToBinaryWrapper {
719 inner: Box<
720 dyn OptimizationProblem<
721 Solution = materials_science::MaterialsLattice,
722 ObjectiveValue = f64,
723 >,
724 >,
725}
726
727impl OptimizationProblem for MaterialsToBinaryWrapper {
728 type Solution = Vec<i8>;
729 type ObjectiveValue = f64;
730
731 fn description(&self) -> String {
732 format!("Binary wrapper for materials science optimization problem")
733 }
734
735 fn size_metrics(&self) -> HashMap<String, usize> {
736 let mut metrics = HashMap::new();
737 metrics.insert("binary_dimension".to_string(), 64);
738 metrics.insert("lattice_sites".to_string(), 16);
739 metrics
740 }
741
742 fn validate(&self) -> ApplicationResult<()> {
743 Ok(())
744 }
745
746 fn to_qubo(&self) -> ApplicationResult<(crate::ising::QuboModel, HashMap<String, usize>)> {
747 let n = 64; let mut h = vec![0.0; n];
750 let mut j = std::collections::HashMap::new();
751
752 for i in 0..n {
754 h[i] = -0.05; for j_idx in (i + 1)..n {
756 if j_idx < i + 8 {
757 j.insert((i, j_idx), 0.02);
759 }
760 }
761 }
762
763 let mut qubo = crate::ising::QuboModel::new(n);
764
765 for (i, &value) in h.iter().enumerate() {
767 qubo.set_linear(i, value)?;
768 }
769
770 for ((i, j_idx), &value) in &j {
772 qubo.set_quadratic(*i, *j_idx, value)?;
773 }
774
775 let mut variable_mapping = HashMap::new();
776 for i in 0..n {
777 variable_mapping.insert(format!("site_{i}"), i);
778 }
779
780 Ok((qubo, variable_mapping))
781 }
782
783 fn evaluate_solution(
784 &self,
785 solution: &Self::Solution,
786 ) -> ApplicationResult<Self::ObjectiveValue> {
787 Ok(solution
789 .iter()
790 .map(|&x| if x > 0 { 1.0 } else { 0.0 })
791 .sum::<f64>()
792 * 0.1)
793 }
794
795 fn is_feasible(&self, solution: &Self::Solution) -> bool {
796 solution.len() == 64
797 }
798}
799
800pub struct ProteinToBinaryWrapper {
802 inner: Box<
803 dyn OptimizationProblem<Solution = protein_folding::ProteinFolding, ObjectiveValue = f64>,
804 >,
805}
806
807impl OptimizationProblem for ProteinToBinaryWrapper {
808 type Solution = Vec<i8>;
809 type ObjectiveValue = f64;
810
811 fn description(&self) -> String {
812 format!("Binary wrapper for protein folding optimization problem")
813 }
814
815 fn size_metrics(&self) -> HashMap<String, usize> {
816 let mut metrics = HashMap::new();
817 metrics.insert("binary_dimension".to_string(), 32);
818 metrics.insert("amino_acids".to_string(), 8);
819 metrics
820 }
821
822 fn validate(&self) -> ApplicationResult<()> {
823 Ok(())
824 }
825
826 fn to_qubo(&self) -> ApplicationResult<(crate::ising::QuboModel, HashMap<String, usize>)> {
827 let n = 32; let mut h = vec![0.0; n];
830 let mut j = std::collections::HashMap::new();
831
832 for i in 0..n {
834 h[i] = -0.02; for j_idx in (i + 1)..n {
836 if j_idx < i + 3 {
837 j.insert((i, j_idx), 0.01);
839 }
840 }
841 }
842
843 let mut qubo = crate::ising::QuboModel::new(n);
844
845 for (i, &value) in h.iter().enumerate() {
847 qubo.set_linear(i, value)?;
848 }
849
850 for ((i, j_idx), &value) in &j {
852 qubo.set_quadratic(*i, *j_idx, value)?;
853 }
854
855 let mut variable_mapping = HashMap::new();
856 for i in 0..n {
857 variable_mapping.insert(format!("fold_{i}"), i);
858 }
859
860 Ok((qubo, variable_mapping))
861 }
862
863 fn evaluate_solution(
864 &self,
865 solution: &Self::Solution,
866 ) -> ApplicationResult<Self::ObjectiveValue> {
867 Ok(solution
869 .iter()
870 .map(|&x| if x > 0 { 1.0 } else { 0.0 })
871 .sum::<f64>()
872 * 0.05)
873 }
874
875 fn is_feasible(&self, solution: &Self::Solution) -> bool {
876 solution.len() == 32
877 }
878}
879
880pub struct ChemistryToBinaryWrapper {
882 inner: Box<
883 dyn OptimizationProblem<
884 Solution = quantum_computational_chemistry::QuantumChemistryResult,
885 ObjectiveValue = f64,
886 >,
887 >,
888}
889
890impl OptimizationProblem for ChemistryToBinaryWrapper {
891 type Solution = Vec<i8>;
892 type ObjectiveValue = f64;
893
894 fn description(&self) -> String {
895 format!("Binary wrapper for quantum computational chemistry problem")
896 }
897
898 fn size_metrics(&self) -> HashMap<String, usize> {
899 let mut metrics = HashMap::new();
900 metrics.insert("binary_dimension".to_string(), 64);
901 metrics.insert("molecular_orbitals".to_string(), 32);
902 metrics
903 }
904
905 fn validate(&self) -> ApplicationResult<()> {
906 self.inner.validate()
907 }
908
909 fn to_qubo(&self) -> ApplicationResult<(crate::ising::QuboModel, HashMap<String, usize>)> {
910 self.inner.to_qubo()
911 }
912
913 fn evaluate_solution(
914 &self,
915 solution: &Self::Solution,
916 ) -> ApplicationResult<Self::ObjectiveValue> {
917 let chemistry_result = self.binary_to_chemistry_result(solution)?;
919 self.inner.evaluate_solution(&chemistry_result)
920 }
921
922 fn is_feasible(&self, solution: &Self::Solution) -> bool {
923 solution.len() == 64 && solution.iter().all(|&x| x == 0 || x == 1)
924 }
925}
926
927impl ChemistryToBinaryWrapper {
928 fn binary_to_chemistry_result(
929 &self,
930 solution: &[i8],
931 ) -> ApplicationResult<quantum_computational_chemistry::QuantumChemistryResult> {
932 use quantum_computational_chemistry::{
933 BasisSet, CalculationMetadata, ElectronDensity, ElectronicStructureMethod,
934 MolecularOrbital, OrbitalType, QuantumChemistryResult, ThermochemicalProperties,
935 };
936
937 let mut molecular_orbitals = Vec::new();
939 for (i, &bit) in solution.iter().enumerate().take(32) {
940 molecular_orbitals.push(MolecularOrbital {
941 energy: -1.0 * i as f64,
942 coefficients: vec![if bit == 1 { 1.0 } else { 0.0 }; 10],
943 occupation: if bit == 1 { 2.0 } else { 0.0 },
944 symmetry: None,
945 orbital_type: if i < 8 {
946 OrbitalType::Core
947 } else if i < 16 {
948 OrbitalType::Valence
949 } else {
950 OrbitalType::Virtual
951 },
952 });
953 }
954
955 let electronic_energy = solution
957 .iter()
958 .map(|&x| if x == 1 { -1.0 } else { 0.0 })
959 .sum::<f64>();
960 let nuclear_repulsion = 10.0; let total_energy = electronic_energy + nuclear_repulsion;
962
963 Ok(QuantumChemistryResult {
964 system_id: "binary_chemistry".to_string(),
965 electronic_energy,
966 nuclear_repulsion,
967 total_energy,
968 molecular_orbitals,
969 electron_density: ElectronDensity {
970 grid_points: vec![[0.0, 0.0, 0.0]; 100],
971 density_values: vec![1.0; 100],
972 density_matrix: vec![vec![0.0; 10]; 10],
973 mulliken_charges: vec![0.0; 5],
974 electrostatic_potential: vec![0.0; 100],
975 },
976 dipole_moment: [0.0, 0.0, 0.0],
977 polarizability: [[0.0; 3]; 3],
978 vibrational_frequencies: vec![],
979 thermochemistry: ThermochemicalProperties {
980 zero_point_energy: 0.0,
981 thermal_energy: 0.0,
982 enthalpy: total_energy,
983 entropy: 0.0,
984 free_energy: total_energy,
985 heat_capacity: 0.0,
986 temperature: 298.15,
987 },
988 metadata: CalculationMetadata {
989 method: ElectronicStructureMethod::HartreeFock,
990 basis_set: BasisSet::STO3G,
991 scf_converged: true,
992 scf_iterations: 1,
993 cpu_time: 1.0,
994 wall_time: 1.0,
995 memory_usage: 1024,
996 error_correction_applied: true,
997 },
998 })
999 }
1000}