quantrs2_anneal/
quantum_machine_learning.rs

1//! Quantum Machine Learning with Annealing
2//!
3//! This module implements quantum machine learning algorithms that can be trained and optimized
4//! using quantum annealing techniques. It provides a comprehensive framework for quantum neural
5//! networks, variational quantum classifiers, quantum feature maps, and other QML algorithms
6//! that leverage the power of quantum annealing for optimization.
7//!
8//! Key features:
9//! - Quantum Neural Networks (QNN) with annealing-based training
10//! - Variational Quantum Classifiers (VQC)
11//! - Quantum Feature Maps for encoding classical data
12//! - Quantum Kernel Methods using quantum circuits
13//! - Quantum Generative Models (QGANs)
14//! - Quantum Reinforcement Learning with annealing policy optimization
15//! - Quantum Autoencoders for dimensionality reduction
16//! - Integration with Ising/QUBO optimization
17
18use scirs2_core::random::prelude::*;
19use scirs2_core::random::ChaCha8Rng;
20use scirs2_core::random::{Rng, SeedableRng};
21use scirs2_core::Complex as NComplex;
22use std::collections::HashMap;
23use std::f64::consts::PI;
24use std::time::{Duration, Instant};
25use thiserror::Error;
26
27use crate::ising::{IsingError, IsingModel};
28use crate::simulator::{AnnealingParams, AnnealingSolution, ClassicalAnnealingSimulator};
29
30/// Errors that can occur in quantum machine learning operations
31#[derive(Error, Debug)]
32pub enum QmlError {
33    /// Ising model error
34    #[error("Ising error: {0}")]
35    IsingError(#[from] IsingError),
36
37    /// Invalid configuration
38    #[error("Invalid configuration: {0}")]
39    InvalidConfiguration(String),
40
41    /// Training error
42    #[error("Training error: {0}")]
43    TrainingError(String),
44
45    /// Data processing error
46    #[error("Data processing error: {0}")]
47    DataError(String),
48
49    /// Model architecture error
50    #[error("Model architecture error: {0}")]
51    ArchitectureError(String),
52
53    /// Optimization error
54    #[error("Optimization error: {0}")]
55    OptimizationError(String),
56
57    /// Dimension mismatch
58    #[error("Dimension mismatch: expected {expected}, got {actual}")]
59    DimensionMismatch { expected: usize, actual: usize },
60}
61
62/// Result type for QML operations
63pub type QmlResult<T> = Result<T, QmlError>;
64
65/// Quantum gate types for quantum circuits
66#[derive(Debug, Clone, Copy, PartialEq)]
67pub enum QuantumGate {
68    /// Pauli-X (NOT) gate
69    PauliX,
70    /// Pauli-Y gate
71    PauliY,
72    /// Pauli-Z gate
73    PauliZ,
74    /// Hadamard gate
75    Hadamard,
76    /// Rotation around X-axis
77    RX(f64),
78    /// Rotation around Y-axis
79    RY(f64),
80    /// Rotation around Z-axis
81    RZ(f64),
82    /// Controlled-NOT gate
83    CNOT,
84    /// Controlled-Z gate
85    CZ,
86    /// Two-qubit ZZ rotation
87    ZZRotation(f64),
88    /// Phase gate
89    Phase(f64),
90    /// S gate
91    SGate,
92    /// T gate
93    TGate,
94}
95
96/// Quantum circuit layer for variational algorithms
97#[derive(Debug, Clone)]
98pub struct QuantumLayer {
99    /// Gates in this layer
100    pub gates: Vec<(QuantumGate, Vec<usize>)>,
101    /// Trainable parameters
102    pub parameters: Vec<f64>,
103    /// Parameter indices for each gate
104    pub parameter_indices: Vec<Option<usize>>,
105}
106
107/// Quantum circuit for machine learning models
108#[derive(Debug, Clone)]
109pub struct QuantumCircuit {
110    /// Number of qubits
111    pub num_qubits: usize,
112    /// Circuit layers
113    pub layers: Vec<QuantumLayer>,
114    /// Total number of parameters
115    pub num_parameters: usize,
116    /// Circuit depth
117    pub depth: usize,
118}
119
120impl QuantumCircuit {
121    /// Create a new quantum circuit
122    #[must_use]
123    pub const fn new(num_qubits: usize) -> Self {
124        Self {
125            num_qubits,
126            layers: Vec::new(),
127            num_parameters: 0,
128            depth: 0,
129        }
130    }
131
132    /// Add a parameterized layer to the circuit
133    pub fn add_layer(&mut self, layer: QuantumLayer) {
134        self.num_parameters += layer.parameters.len();
135        self.depth += 1;
136        self.layers.push(layer);
137    }
138
139    /// Create a hardware-efficient ansatz
140    #[must_use]
141    pub fn hardware_efficient_ansatz(num_qubits: usize, num_layers: usize) -> Self {
142        let mut circuit = Self::new(num_qubits);
143
144        for layer in 0..num_layers {
145            let mut gates = Vec::new();
146            let mut parameters = Vec::new();
147            let mut param_indices = Vec::new();
148            let mut param_count = 0;
149
150            // Single-qubit rotations
151            for qubit in 0..num_qubits {
152                // RY rotation
153                gates.push((QuantumGate::RY(0.0), vec![qubit]));
154                parameters.push(0.0);
155                param_indices.push(Some(param_count));
156                param_count += 1;
157
158                // RZ rotation
159                gates.push((QuantumGate::RZ(0.0), vec![qubit]));
160                parameters.push(0.0);
161                param_indices.push(Some(param_count));
162                param_count += 1;
163            }
164
165            // Entangling gates
166            for qubit in 0..num_qubits {
167                let target = (qubit + 1) % num_qubits;
168                gates.push((QuantumGate::CNOT, vec![qubit, target]));
169                param_indices.push(None);
170            }
171
172            circuit.add_layer(QuantumLayer {
173                gates,
174                parameters,
175                parameter_indices: param_indices,
176            });
177        }
178
179        circuit
180    }
181
182    /// Update circuit parameters
183    pub fn update_parameters(&mut self, params: &[f64]) -> QmlResult<()> {
184        if params.len() != self.num_parameters {
185            return Err(QmlError::DimensionMismatch {
186                expected: self.num_parameters,
187                actual: params.len(),
188            });
189        }
190
191        let mut param_idx = 0;
192        for layer in &mut self.layers {
193            for (i, gate_param_idx) in layer.parameter_indices.iter().enumerate() {
194                if let Some(idx) = gate_param_idx {
195                    layer.parameters[*idx] = params[param_idx];
196                    param_idx += 1;
197
198                    // Update gate parameters
199                    match &mut layer.gates[i].0 {
200                        QuantumGate::RX(ref mut angle)
201                        | QuantumGate::RY(ref mut angle)
202                        | QuantumGate::RZ(ref mut angle)
203                        | QuantumGate::Phase(ref mut angle)
204                        | QuantumGate::ZZRotation(ref mut angle) => {
205                            *angle = layer.parameters[*idx];
206                        }
207                        _ => {}
208                    }
209                }
210            }
211        }
212
213        Ok(())
214    }
215}
216
217/// Quantum feature map for encoding classical data
218#[derive(Debug, Clone)]
219pub struct QuantumFeatureMap {
220    /// Number of features
221    pub num_features: usize,
222    /// Number of qubits
223    pub num_qubits: usize,
224    /// Feature map type
225    pub map_type: FeatureMapType,
226    /// Circuit for feature encoding
227    pub circuit: QuantumCircuit,
228    /// Feature scaling parameters
229    pub scaling: Vec<f64>,
230}
231
232/// Types of quantum feature maps
233#[derive(Debug, Clone, PartialEq, Eq)]
234pub enum FeatureMapType {
235    /// Simple amplitude encoding
236    AmplitudeEncoding,
237    /// Angle encoding using RY gates
238    AngleEncoding,
239    /// Pauli feature map
240    PauliFeatureMap { entanglement: EntanglementType },
241    /// ZZ feature map
242    ZZFeatureMap { repetitions: usize },
243    /// Custom feature map
244    Custom,
245}
246
247/// Types of entanglement for feature maps
248#[derive(Debug, Clone, PartialEq, Eq)]
249pub enum EntanglementType {
250    /// Linear entanglement
251    Linear,
252    /// Circular entanglement
253    Circular,
254    /// Full entanglement
255    Full,
256}
257
258impl QuantumFeatureMap {
259    /// Create a new quantum feature map
260    pub fn new(
261        num_features: usize,
262        num_qubits: usize,
263        map_type: FeatureMapType,
264    ) -> QmlResult<Self> {
265        if num_features > num_qubits {
266            return Err(QmlError::ArchitectureError(format!(
267                "Cannot encode {num_features} features into {num_qubits} qubits"
268            )));
269        }
270
271        let circuit = match &map_type {
272            FeatureMapType::AngleEncoding => Self::create_angle_encoding_circuit(num_qubits),
273            FeatureMapType::PauliFeatureMap { entanglement } => {
274                Self::create_pauli_feature_map_circuit(num_qubits, entanglement.clone())
275            }
276            FeatureMapType::ZZFeatureMap { repetitions } => {
277                Self::create_zz_feature_map_circuit(num_qubits, *repetitions)
278            }
279            _ => QuantumCircuit::new(num_qubits),
280        };
281
282        Ok(Self {
283            num_features,
284            num_qubits,
285            map_type,
286            circuit,
287            scaling: vec![1.0; num_features],
288        })
289    }
290
291    /// Create angle encoding circuit
292    fn create_angle_encoding_circuit(num_qubits: usize) -> QuantumCircuit {
293        let mut circuit = QuantumCircuit::new(num_qubits);
294
295        let mut gates = Vec::new();
296        let mut parameters = Vec::new();
297        let mut param_indices = Vec::new();
298
299        for qubit in 0..num_qubits {
300            gates.push((QuantumGate::RY(0.0), vec![qubit]));
301            parameters.push(0.0);
302            param_indices.push(Some(qubit));
303        }
304
305        circuit.add_layer(QuantumLayer {
306            gates,
307            parameters,
308            parameter_indices: param_indices,
309        });
310
311        circuit
312    }
313
314    /// Create Pauli feature map circuit
315    fn create_pauli_feature_map_circuit(
316        num_qubits: usize,
317        entanglement: EntanglementType,
318    ) -> QuantumCircuit {
319        let mut circuit = QuantumCircuit::new(num_qubits);
320
321        // Hadamard layer
322        let mut gates = Vec::new();
323        for qubit in 0..num_qubits {
324            gates.push((QuantumGate::Hadamard, vec![qubit]));
325        }
326
327        circuit.add_layer(QuantumLayer {
328            gates: gates.clone(),
329            parameters: Vec::new(),
330            parameter_indices: vec![None; gates.len()],
331        });
332
333        // Feature encoding layer
334        let mut feature_gates = Vec::new();
335        let mut parameters = Vec::new();
336        let mut param_indices = Vec::new();
337
338        for qubit in 0..num_qubits {
339            feature_gates.push((QuantumGate::RZ(0.0), vec![qubit]));
340            parameters.push(0.0);
341            param_indices.push(Some(qubit));
342        }
343
344        // Entanglement layer
345        match entanglement {
346            EntanglementType::Linear => {
347                for qubit in 0..num_qubits - 1 {
348                    feature_gates.push((QuantumGate::CNOT, vec![qubit, qubit + 1]));
349                    param_indices.push(None);
350                }
351            }
352            EntanglementType::Circular => {
353                for qubit in 0..num_qubits {
354                    let target = (qubit + 1) % num_qubits;
355                    feature_gates.push((QuantumGate::CNOT, vec![qubit, target]));
356                    param_indices.push(None);
357                }
358            }
359            EntanglementType::Full => {
360                for i in 0..num_qubits {
361                    for j in (i + 1)..num_qubits {
362                        feature_gates.push((QuantumGate::CNOT, vec![i, j]));
363                        param_indices.push(None);
364                    }
365                }
366            }
367        }
368
369        circuit.add_layer(QuantumLayer {
370            gates: feature_gates,
371            parameters,
372            parameter_indices: param_indices,
373        });
374
375        circuit
376    }
377
378    /// Create ZZ feature map circuit
379    fn create_zz_feature_map_circuit(num_qubits: usize, repetitions: usize) -> QuantumCircuit {
380        let mut circuit = QuantumCircuit::new(num_qubits);
381
382        for _ in 0..repetitions {
383            // Hadamard layer
384            let mut gates = Vec::new();
385            for qubit in 0..num_qubits {
386                gates.push((QuantumGate::Hadamard, vec![qubit]));
387            }
388
389            circuit.add_layer(QuantumLayer {
390                gates,
391                parameters: Vec::new(),
392                parameter_indices: vec![None; num_qubits],
393            });
394
395            // ZZ rotation layer
396            let mut zz_gates = Vec::new();
397            let mut parameters = Vec::new();
398            let mut param_indices = Vec::new();
399            let mut param_count = 0;
400
401            for i in 0..num_qubits {
402                for j in (i + 1)..num_qubits {
403                    zz_gates.push((QuantumGate::ZZRotation(0.0), vec![i, j]));
404                    parameters.push(0.0);
405                    param_indices.push(Some(param_count));
406                    param_count += 1;
407                }
408            }
409
410            circuit.add_layer(QuantumLayer {
411                gates: zz_gates,
412                parameters,
413                parameter_indices: param_indices,
414            });
415        }
416
417        circuit
418    }
419
420    /// Encode data into quantum state
421    pub fn encode(&self, data: &[f64]) -> QmlResult<Vec<f64>> {
422        if data.len() != self.num_features {
423            return Err(QmlError::DimensionMismatch {
424                expected: self.num_features,
425                actual: data.len(),
426            });
427        }
428
429        // Scale data
430        let scaled_data: Vec<f64> = data
431            .iter()
432            .zip(&self.scaling)
433            .map(|(x, scale)| x * scale)
434            .collect();
435
436        match self.map_type {
437            FeatureMapType::AngleEncoding => {
438                // Map data directly to rotation angles
439                let mut params = vec![0.0; self.num_qubits];
440                for (i, &value) in scaled_data.iter().enumerate().take(self.num_qubits) {
441                    params[i] = value * PI;
442                }
443                Ok(params)
444            }
445            _ => {
446                // For other encodings, return scaled data
447                Ok(scaled_data)
448            }
449        }
450    }
451}
452
453/// Variational Quantum Classifier
454#[derive(Debug, Clone)]
455pub struct VariationalQuantumClassifier {
456    /// Feature map for data encoding
457    pub feature_map: QuantumFeatureMap,
458    /// Variational ansatz
459    pub ansatz: QuantumCircuit,
460    /// Trainable parameters
461    pub parameters: Vec<f64>,
462    /// Number of classes
463    pub num_classes: usize,
464    /// Training configuration
465    pub config: VqcConfig,
466    /// Training history
467    pub training_history: TrainingHistory,
468}
469
470/// Configuration for Variational Quantum Classifier
471#[derive(Debug, Clone)]
472pub struct VqcConfig {
473    /// Maximum training iterations
474    pub max_iterations: usize,
475    /// Learning rate
476    pub learning_rate: f64,
477    /// Convergence tolerance
478    pub tolerance: f64,
479    /// Number of shots for quantum measurements
480    pub num_shots: usize,
481    /// Regularization strength
482    pub regularization: f64,
483    /// Batch size for training
484    pub batch_size: usize,
485    /// Random seed
486    pub seed: Option<u64>,
487}
488
489impl Default for VqcConfig {
490    fn default() -> Self {
491        Self {
492            max_iterations: 1000,
493            learning_rate: 0.01,
494            tolerance: 1e-6,
495            num_shots: 1024,
496            regularization: 0.001,
497            batch_size: 32,
498            seed: None,
499        }
500    }
501}
502
503/// Training sample for supervised learning
504#[derive(Debug, Clone)]
505pub struct TrainingSample {
506    /// Input features
507    pub features: Vec<f64>,
508    /// Target label
509    pub label: usize,
510    /// Sample weight
511    pub weight: f64,
512}
513
514/// Training history tracking
515#[derive(Debug, Clone)]
516pub struct TrainingHistory {
517    /// Loss values over iterations
518    pub losses: Vec<f64>,
519    /// Accuracy values over iterations
520    pub accuracies: Vec<f64>,
521    /// Training times
522    pub iteration_times: Vec<Duration>,
523    /// Parameter updates
524    pub parameter_updates: Vec<Vec<f64>>,
525}
526
527impl TrainingHistory {
528    /// Create new training history
529    #[must_use]
530    pub const fn new() -> Self {
531        Self {
532            losses: Vec::new(),
533            accuracies: Vec::new(),
534            iteration_times: Vec::new(),
535            parameter_updates: Vec::new(),
536        }
537    }
538}
539
540impl VariationalQuantumClassifier {
541    /// Create a new VQC
542    pub fn new(
543        num_features: usize,
544        num_qubits: usize,
545        num_classes: usize,
546        ansatz_layers: usize,
547        config: VqcConfig,
548    ) -> QmlResult<Self> {
549        // Create feature map
550        let feature_map = QuantumFeatureMap::new(
551            num_features,
552            num_qubits,
553            FeatureMapType::ZZFeatureMap { repetitions: 2 },
554        )?;
555
556        // Create variational ansatz
557        let ansatz = QuantumCircuit::hardware_efficient_ansatz(num_qubits, ansatz_layers);
558
559        // Initialize parameters randomly
560        let mut rng = match config.seed {
561            Some(seed) => ChaCha8Rng::seed_from_u64(seed),
562            None => ChaCha8Rng::seed_from_u64(thread_rng().gen()),
563        };
564
565        let parameters: Vec<f64> = (0..ansatz.num_parameters)
566            .map(|_| rng.gen_range(-PI..PI))
567            .collect();
568
569        Ok(Self {
570            feature_map,
571            ansatz,
572            parameters,
573            num_classes,
574            config,
575            training_history: TrainingHistory::new(),
576        })
577    }
578
579    /// Train the classifier using annealing optimization
580    pub fn train(&mut self, training_data: &[TrainingSample]) -> QmlResult<()> {
581        if training_data.is_empty() {
582            return Err(QmlError::TrainingError("Empty training data".to_string()));
583        }
584
585        println!("Training VQC with {} samples", training_data.len());
586
587        // Convert to optimization problem
588        let optimization_problem = self.create_optimization_problem(training_data)?;
589
590        // Use annealing to optimize parameters
591        let annealing_params = AnnealingParams {
592            num_sweeps: self.config.max_iterations.min(200),
593            num_repetitions: 3,
594            initial_temperature: 5.0,
595            timeout: Some(10.0), // 10 second timeout
596            ..Default::default()
597        };
598
599        let simulator = ClassicalAnnealingSimulator::new(annealing_params)
600            .map_err(|e| QmlError::OptimizationError(format!("Annealing setup failed: {e}")))?;
601
602        let start = Instant::now();
603        let result = simulator
604            .solve(&optimization_problem)
605            .map_err(|e| QmlError::OptimizationError(format!("Annealing failed: {e}")))?;
606
607        // Update parameters from annealing result
608        self.update_parameters_from_solution(&result)?;
609
610        // Record training metrics
611        let loss = self.calculate_loss(training_data)?;
612        let accuracy = self.calculate_accuracy(training_data)?;
613
614        self.training_history.losses.push(loss);
615        self.training_history.accuracies.push(accuracy);
616        self.training_history.iteration_times.push(start.elapsed());
617        self.training_history
618            .parameter_updates
619            .push(self.parameters.clone());
620
621        println!(
622            "Training completed - Loss: {:.4}, Accuracy: {:.2}%",
623            loss,
624            accuracy * 100.0
625        );
626
627        Ok(())
628    }
629
630    /// Create optimization problem for parameter training
631    fn create_optimization_problem(
632        &self,
633        training_data: &[TrainingSample],
634    ) -> QmlResult<IsingModel> {
635        // Create Ising model to encode the loss function
636        let num_params = self.parameters.len();
637        let precision_bits = 8; // Precision for parameter discretization
638        let total_qubits = num_params * precision_bits;
639
640        let mut ising = IsingModel::new(total_qubits);
641
642        // Encode loss function as Ising problem (simplified)
643        // This is a placeholder - in practice, this would involve more complex encoding
644        for i in 0..total_qubits {
645            // Add small bias to prevent trivial solutions
646            ising.set_bias(i, 0.1)?;
647        }
648
649        // Add couplings based on parameter correlations
650        for i in 0..total_qubits {
651            for j in (i + 1)..total_qubits {
652                if (i / precision_bits) != (j / precision_bits) {
653                    // Couple parameters from different groups
654                    ising.set_coupling(i, j, -0.1)?;
655                }
656            }
657        }
658
659        Ok(ising)
660    }
661
662    /// Update parameters from annealing solution
663    fn update_parameters_from_solution(&mut self, result: &AnnealingSolution) -> QmlResult<()> {
664        let precision_bits = 8;
665
666        for (param_idx, param) in self.parameters.iter_mut().enumerate() {
667            let start_bit = param_idx * precision_bits;
668            let end_bit = start_bit + precision_bits;
669
670            if end_bit <= result.best_spins.len() {
671                // Convert binary representation to parameter value
672                let mut binary_val = 0i32;
673                for (bit_idx, &spin) in result.best_spins[start_bit..end_bit].iter().enumerate() {
674                    if spin > 0 {
675                        binary_val |= 1 << bit_idx;
676                    }
677                }
678
679                // Map to parameter range [-π, π]
680                let normalized = f64::from(binary_val) / f64::from((1 << precision_bits) - 1);
681                *param = (normalized - 0.5) * 2.0 * PI;
682            }
683        }
684
685        Ok(())
686    }
687
688    /// Predict class for input features
689    pub fn predict(&self, features: &[f64]) -> QmlResult<usize> {
690        let probabilities = self.predict_proba(features)?;
691
692        // Return class with highest probability
693        let max_class = probabilities
694            .iter()
695            .enumerate()
696            .max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal))
697            .map_or(0, |(idx, _)| idx);
698
699        Ok(max_class)
700    }
701
702    /// Predict class probabilities
703    pub fn predict_proba(&self, features: &[f64]) -> QmlResult<Vec<f64>> {
704        // Encode features
705        let encoded_features = self.feature_map.encode(features)?;
706
707        // Simulate quantum circuit (simplified)
708        let mut probabilities = vec![0.0; self.num_classes];
709
710        // For simplicity, use a heuristic based on feature encoding and parameters
711        for (i, &param) in self.parameters.iter().enumerate().take(self.num_classes) {
712            let feature_sum: f64 = encoded_features.iter().sum();
713            probabilities[i] = (param * feature_sum).cos().abs();
714        }
715
716        // Normalize probabilities
717        let sum: f64 = probabilities.iter().sum();
718        if sum > 0.0 {
719            for prob in &mut probabilities {
720                *prob /= sum;
721            }
722        } else {
723            // Uniform distribution as fallback
724            let uniform_prob = 1.0 / self.num_classes as f64;
725            probabilities.fill(uniform_prob);
726        }
727
728        Ok(probabilities)
729    }
730
731    /// Calculate loss for training data
732    fn calculate_loss(&self, training_data: &[TrainingSample]) -> QmlResult<f64> {
733        let mut total_loss = 0.0;
734
735        for sample in training_data {
736            let probabilities = self.predict_proba(&sample.features)?;
737
738            // Cross-entropy loss
739            let predicted_prob = probabilities.get(sample.label).unwrap_or(&1e-10);
740            total_loss -= predicted_prob.ln() * sample.weight;
741        }
742
743        // Add regularization
744        let regularization_term: f64 =
745            self.parameters.iter().map(|&p| p * p).sum::<f64>() * self.config.regularization;
746
747        Ok(total_loss / training_data.len() as f64 + regularization_term)
748    }
749
750    /// Calculate accuracy for training data
751    fn calculate_accuracy(&self, training_data: &[TrainingSample]) -> QmlResult<f64> {
752        let mut correct = 0;
753        let mut total = 0;
754
755        for sample in training_data {
756            let predicted = self.predict(&sample.features)?;
757            if predicted == sample.label {
758                correct += 1;
759            }
760            total += 1;
761        }
762
763        Ok(f64::from(correct) / f64::from(total))
764    }
765}
766
767/// Quantum Neural Network implementation
768#[derive(Debug, Clone)]
769pub struct QuantumNeuralNetwork {
770    /// Network layers
771    pub layers: Vec<QuantumNeuralLayer>,
772    /// Network configuration
773    pub config: QnnConfig,
774    /// Training history
775    pub training_history: TrainingHistory,
776}
777
778/// Quantum neural network layer
779#[derive(Debug, Clone)]
780pub struct QuantumNeuralLayer {
781    /// Number of input qubits
782    pub input_size: usize,
783    /// Number of output qubits
784    pub output_size: usize,
785    /// Quantum circuit for this layer
786    pub circuit: QuantumCircuit,
787    /// Layer parameters
788    pub parameters: Vec<f64>,
789    /// Activation function
790    pub activation: ActivationType,
791}
792
793/// Activation function types for QNN
794#[derive(Debug, Clone, PartialEq, Eq)]
795pub enum ActivationType {
796    /// No activation (linear)
797    Linear,
798    /// Quantum sigmoid approximation
799    QuantumSigmoid,
800    /// Quantum `ReLU` approximation
801    QuantumReLU,
802    /// Quantum tanh approximation
803    QuantumTanh,
804}
805
806/// Configuration for Quantum Neural Network
807#[derive(Debug, Clone)]
808pub struct QnnConfig {
809    /// Learning rate
810    pub learning_rate: f64,
811    /// Maximum training epochs
812    pub max_epochs: usize,
813    /// Batch size
814    pub batch_size: usize,
815    /// Convergence tolerance
816    pub tolerance: f64,
817    /// Regularization strength
818    pub regularization: f64,
819    /// Random seed
820    pub seed: Option<u64>,
821}
822
823impl Default for QnnConfig {
824    fn default() -> Self {
825        Self {
826            learning_rate: 0.01,
827            max_epochs: 100,
828            batch_size: 32,
829            tolerance: 1e-6,
830            regularization: 0.001,
831            seed: None,
832        }
833    }
834}
835
836impl QuantumNeuralNetwork {
837    /// Create a new quantum neural network
838    pub fn new(architecture: &[usize], config: QnnConfig) -> QmlResult<Self> {
839        if architecture.len() < 2 {
840            return Err(QmlError::ArchitectureError(
841                "Network must have at least input and output layers".to_string(),
842            ));
843        }
844
845        let mut layers = Vec::new();
846
847        for i in 0..architecture.len() - 1 {
848            let input_size = architecture[i];
849            let output_size = architecture[i + 1];
850
851            let layer =
852                QuantumNeuralLayer::new(input_size, output_size, ActivationType::QuantumSigmoid)?;
853
854            layers.push(layer);
855        }
856
857        Ok(Self {
858            layers,
859            config,
860            training_history: TrainingHistory::new(),
861        })
862    }
863
864    /// Forward pass through the network
865    pub fn forward(&self, input: &[f64]) -> QmlResult<Vec<f64>> {
866        let mut current_output = input.to_vec();
867
868        for layer in &self.layers {
869            current_output = layer.forward(&current_output)?;
870        }
871
872        Ok(current_output)
873    }
874
875    /// Train the network using quantum annealing
876    pub fn train(&mut self, training_data: &[(Vec<f64>, Vec<f64>)]) -> QmlResult<()> {
877        println!("Training QNN with {} samples", training_data.len());
878
879        for epoch in 0..self.config.max_epochs {
880            let start = Instant::now();
881
882            // Create optimization problem for this epoch
883            let optimization_problem = self.create_training_problem(training_data)?;
884
885            // Use annealing to optimize
886            let annealing_params = AnnealingParams {
887                num_sweeps: 100,
888                num_repetitions: 2,
889                initial_temperature: 3.0,
890                timeout: Some(5.0), // 5 second timeout
891                ..Default::default()
892            };
893
894            let simulator = ClassicalAnnealingSimulator::new(annealing_params)
895                .map_err(|e| QmlError::OptimizationError(format!("Annealing setup failed: {e}")))?;
896
897            let result = simulator
898                .solve(&optimization_problem)
899                .map_err(|e| QmlError::OptimizationError(format!("Annealing failed: {e}")))?;
900
901            // Update network parameters
902            self.update_from_annealing_result(&result)?;
903
904            // Calculate metrics
905            let loss = self.calculate_loss(training_data)?;
906
907            self.training_history.losses.push(loss);
908            self.training_history.iteration_times.push(start.elapsed());
909
910            if epoch % 10 == 0 {
911                println!("Epoch {epoch}: Loss = {loss:.6}");
912            }
913
914            // Check convergence
915            if loss < self.config.tolerance {
916                println!("Converged at epoch {epoch}");
917                break;
918            }
919        }
920
921        Ok(())
922    }
923
924    /// Create optimization problem for training
925    fn create_training_problem(
926        &self,
927        training_data: &[(Vec<f64>, Vec<f64>)],
928    ) -> QmlResult<IsingModel> {
929        // Calculate total parameters
930        let total_params: usize = self.layers.iter().map(|layer| layer.parameters.len()).sum();
931
932        let precision_bits = 6;
933        let total_qubits = total_params * precision_bits;
934
935        let mut ising = IsingModel::new(total_qubits);
936
937        // Encode loss function (simplified)
938        for i in 0..total_qubits {
939            ising.set_bias(i, 0.05)?;
940        }
941
942        // Add parameter correlations
943        for i in 0..total_qubits {
944            for j in (i + 1)..total_qubits {
945                if i / precision_bits != j / precision_bits {
946                    ising.set_coupling(i, j, -0.02)?;
947                }
948            }
949        }
950
951        Ok(ising)
952    }
953
954    /// Update network from annealing result
955    fn update_from_annealing_result(&mut self, result: &AnnealingSolution) -> QmlResult<()> {
956        let precision_bits = 6;
957        let mut param_index = 0;
958
959        for layer in &mut self.layers {
960            for param in &mut layer.parameters {
961                let start_bit = param_index * precision_bits;
962                let end_bit = start_bit + precision_bits;
963
964                if end_bit <= result.best_spins.len() {
965                    let mut binary_val = 0i32;
966                    for (bit_idx, &spin) in result.best_spins[start_bit..end_bit].iter().enumerate()
967                    {
968                        if spin > 0 {
969                            binary_val |= 1 << bit_idx;
970                        }
971                    }
972
973                    let normalized = f64::from(binary_val) / f64::from((1 << precision_bits) - 1);
974                    *param = (normalized - 0.5) * 2.0; // Scale to [-1, 1]
975                }
976
977                param_index += 1;
978            }
979
980            // Update layer circuit parameters
981            layer.circuit.update_parameters(&layer.parameters)?;
982        }
983
984        Ok(())
985    }
986
987    /// Calculate loss for training data
988    fn calculate_loss(&self, training_data: &[(Vec<f64>, Vec<f64>)]) -> QmlResult<f64> {
989        let mut total_loss = 0.0;
990
991        for (input, target) in training_data {
992            let output = self.forward(input)?;
993
994            // Mean squared error
995            let sample_loss: f64 = output
996                .iter()
997                .zip(target.iter())
998                .map(|(o, t)| (o - t).powi(2))
999                .sum();
1000
1001            total_loss += sample_loss;
1002        }
1003
1004        Ok(total_loss / training_data.len() as f64)
1005    }
1006}
1007
1008impl QuantumNeuralLayer {
1009    /// Create a new quantum neural layer
1010    pub fn new(
1011        input_size: usize,
1012        output_size: usize,
1013        activation: ActivationType,
1014    ) -> QmlResult<Self> {
1015        let num_qubits = input_size.max(output_size);
1016        let circuit = QuantumCircuit::hardware_efficient_ansatz(num_qubits, 2);
1017
1018        // Initialize parameters randomly
1019        let mut rng = ChaCha8Rng::seed_from_u64(42);
1020        let parameters: Vec<f64> = (0..circuit.num_parameters)
1021            .map(|_| rng.gen_range(-1.0..1.0))
1022            .collect();
1023
1024        Ok(Self {
1025            input_size,
1026            output_size,
1027            circuit,
1028            parameters,
1029            activation,
1030        })
1031    }
1032
1033    /// Forward pass through the layer
1034    pub fn forward(&self, input: &[f64]) -> QmlResult<Vec<f64>> {
1035        if input.len() != self.input_size {
1036            return Err(QmlError::DimensionMismatch {
1037                expected: self.input_size,
1038                actual: input.len(),
1039            });
1040        }
1041
1042        // Simplified quantum computation
1043        let mut output = vec![0.0; self.output_size];
1044
1045        for (i, &inp) in input.iter().enumerate().take(self.output_size) {
1046            let param_sum: f64 = self.parameters.iter().take(4).sum();
1047            output[i] = self.apply_activation(inp * param_sum)?;
1048        }
1049
1050        // Pad with zeros if needed
1051        while output.len() < self.output_size {
1052            output.push(0.0);
1053        }
1054
1055        Ok(output)
1056    }
1057
1058    /// Apply activation function
1059    fn apply_activation(&self, x: f64) -> QmlResult<f64> {
1060        match self.activation {
1061            ActivationType::Linear => Ok(x),
1062            ActivationType::QuantumSigmoid => {
1063                // Quantum approximation of sigmoid
1064                Ok(0.5 * (1.0 + (x * PI / 2.0).sin()))
1065            }
1066            ActivationType::QuantumReLU => {
1067                // Quantum approximation of ReLU
1068                Ok(if x > 0.0 { x } else { 0.0 })
1069            }
1070            ActivationType::QuantumTanh => {
1071                // Quantum approximation of tanh
1072                Ok((x * PI / 4.0).sin())
1073            }
1074        }
1075    }
1076}
1077
1078/// Quantum Kernel Methods for classification and regression
1079#[derive(Debug, Clone)]
1080pub struct QuantumKernelMethod {
1081    /// Feature map for kernel computation
1082    pub feature_map: QuantumFeatureMap,
1083    /// Training data
1084    pub training_data: Vec<(Vec<f64>, f64)>,
1085    /// Kernel matrix
1086    pub kernel_matrix: Vec<Vec<f64>>,
1087    /// Support vectors
1088    pub support_vectors: Vec<usize>,
1089    /// Kernel method type
1090    pub method_type: KernelMethodType,
1091}
1092
1093/// Types of quantum kernel methods
1094#[derive(Debug, Clone, PartialEq)]
1095pub enum KernelMethodType {
1096    /// Support Vector Machine
1097    SupportVectorMachine { c_parameter: f64 },
1098    /// Kernel Ridge Regression
1099    RidgeRegression { regularization: f64 },
1100    /// Gaussian Process
1101    GaussianProcess,
1102}
1103
1104impl QuantumKernelMethod {
1105    /// Create a new quantum kernel method
1106    #[must_use]
1107    pub const fn new(feature_map: QuantumFeatureMap, method_type: KernelMethodType) -> Self {
1108        Self {
1109            feature_map,
1110            training_data: Vec::new(),
1111            kernel_matrix: Vec::new(),
1112            support_vectors: Vec::new(),
1113            method_type,
1114        }
1115    }
1116
1117    /// Compute quantum kernel between two data points
1118    pub fn quantum_kernel(&self, x1: &[f64], x2: &[f64]) -> QmlResult<f64> {
1119        let encoding1 = self.feature_map.encode(x1)?;
1120        let encoding2 = self.feature_map.encode(x2)?;
1121
1122        // Simplified quantum kernel computation
1123        // In practice, this would involve computing overlap between quantum states
1124        let mut kernel_value = 0.0;
1125
1126        for (e1, e2) in encoding1.iter().zip(encoding2.iter()) {
1127            kernel_value += (e1 * e2).cos();
1128        }
1129
1130        kernel_value /= encoding1.len() as f64;
1131        Ok(kernel_value.abs())
1132    }
1133
1134    /// Train the kernel method
1135    pub fn train(&mut self, training_data: Vec<(Vec<f64>, f64)>) -> QmlResult<()> {
1136        self.training_data = training_data;
1137        let n = self.training_data.len();
1138
1139        // Compute kernel matrix
1140        self.kernel_matrix = vec![vec![0.0; n]; n];
1141
1142        for i in 0..n {
1143            for j in 0..n {
1144                let kernel_val =
1145                    self.quantum_kernel(&self.training_data[i].0, &self.training_data[j].0)?;
1146                self.kernel_matrix[i][j] = kernel_val;
1147            }
1148        }
1149
1150        // Solve kernel method (simplified)
1151        match &self.method_type {
1152            KernelMethodType::SupportVectorMachine { .. } => {
1153                self.solve_svm()?;
1154            }
1155            KernelMethodType::RidgeRegression { .. } => {
1156                self.solve_ridge_regression()?;
1157            }
1158            KernelMethodType::GaussianProcess => {
1159                self.solve_gaussian_process()?;
1160            }
1161        }
1162
1163        Ok(())
1164    }
1165
1166    /// Solve SVM optimization problem
1167    fn solve_svm(&mut self) -> QmlResult<()> {
1168        // Simplified SVM solving - in practice, this would use proper quadratic programming
1169        let n = self.training_data.len();
1170
1171        // Find support vectors (simplified heuristic)
1172        for i in 0..n {
1173            let mut is_support = false;
1174
1175            // Check if this point is on the margin
1176            for j in 0..n {
1177                if i != j && self.kernel_matrix[i][j] > 0.5 {
1178                    is_support = true;
1179                    break;
1180                }
1181            }
1182
1183            if is_support {
1184                self.support_vectors.push(i);
1185            }
1186        }
1187
1188        Ok(())
1189    }
1190
1191    /// Solve ridge regression
1192    fn solve_ridge_regression(&mut self) -> QmlResult<()> {
1193        // Simplified ridge regression solving
1194        // In practice, this would involve matrix inversion
1195        self.support_vectors = (0..self.training_data.len()).collect();
1196        Ok(())
1197    }
1198
1199    /// Solve Gaussian process
1200    fn solve_gaussian_process(&mut self) -> QmlResult<()> {
1201        // Simplified GP solving
1202        self.support_vectors = (0..self.training_data.len()).collect();
1203        Ok(())
1204    }
1205
1206    /// Make prediction for new data point
1207    pub fn predict(&self, x: &[f64]) -> QmlResult<f64> {
1208        let mut prediction = 0.0;
1209
1210        for &sv_idx in &self.support_vectors {
1211            let kernel_val = self.quantum_kernel(x, &self.training_data[sv_idx].0)?;
1212            prediction += kernel_val * self.training_data[sv_idx].1;
1213        }
1214
1215        prediction /= self.support_vectors.len() as f64;
1216        Ok(prediction)
1217    }
1218}
1219
1220/// Quantum Generative Adversarial Network
1221#[derive(Debug, Clone)]
1222pub struct QuantumGAN {
1223    /// Generator network
1224    pub generator: QuantumNeuralNetwork,
1225    /// Discriminator network
1226    pub discriminator: QuantumNeuralNetwork,
1227    /// Training configuration
1228    pub config: QGanConfig,
1229    /// Training history
1230    pub training_history: QGanTrainingHistory,
1231}
1232
1233/// Configuration for Quantum GAN
1234#[derive(Debug, Clone)]
1235pub struct QGanConfig {
1236    /// Latent dimension
1237    pub latent_dim: usize,
1238    /// Data dimension
1239    pub data_dim: usize,
1240    /// Training epochs
1241    pub epochs: usize,
1242    /// Batch size
1243    pub batch_size: usize,
1244    /// Learning rates
1245    pub generator_lr: f64,
1246    pub discriminator_lr: f64,
1247    /// Random seed
1248    pub seed: Option<u64>,
1249}
1250
1251/// Training history for Quantum GAN
1252#[derive(Debug, Clone)]
1253pub struct QGanTrainingHistory {
1254    /// Generator losses
1255    pub generator_losses: Vec<f64>,
1256    /// Discriminator losses
1257    pub discriminator_losses: Vec<f64>,
1258    /// Training times per epoch
1259    pub epoch_times: Vec<Duration>,
1260}
1261
1262impl QuantumGAN {
1263    /// Create a new Quantum GAN
1264    pub fn new(config: QGanConfig) -> QmlResult<Self> {
1265        // Create generator: latent -> data
1266        let generator = QuantumNeuralNetwork::new(
1267            &[config.latent_dim, config.data_dim * 2, config.data_dim],
1268            QnnConfig {
1269                learning_rate: config.generator_lr,
1270                seed: config.seed,
1271                ..Default::default()
1272            },
1273        )?;
1274
1275        // Create discriminator: data -> 1 (real/fake probability)
1276        let discriminator = QuantumNeuralNetwork::new(
1277            &[config.data_dim, config.data_dim / 2, 1],
1278            QnnConfig {
1279                learning_rate: config.discriminator_lr,
1280                seed: config.seed.map(|s| s + 1),
1281                ..Default::default()
1282            },
1283        )?;
1284
1285        Ok(Self {
1286            generator,
1287            discriminator,
1288            config,
1289            training_history: QGanTrainingHistory {
1290                generator_losses: Vec::new(),
1291                discriminator_losses: Vec::new(),
1292                epoch_times: Vec::new(),
1293            },
1294        })
1295    }
1296
1297    /// Train the Quantum GAN
1298    pub fn train(&mut self, real_data: &[Vec<f64>]) -> QmlResult<()> {
1299        println!("Training Quantum GAN for {} epochs", self.config.epochs);
1300
1301        let mut rng = match self.config.seed {
1302            Some(seed) => ChaCha8Rng::seed_from_u64(seed),
1303            None => ChaCha8Rng::seed_from_u64(thread_rng().gen()),
1304        };
1305
1306        for epoch in 0..self.config.epochs {
1307            let start = Instant::now();
1308
1309            // Train discriminator
1310            let d_loss = self.train_discriminator(real_data, &mut rng)?;
1311
1312            // Train generator
1313            let g_loss = self.train_generator(&mut rng)?;
1314
1315            self.training_history.generator_losses.push(g_loss);
1316            self.training_history.discriminator_losses.push(d_loss);
1317            self.training_history.epoch_times.push(start.elapsed());
1318
1319            if epoch % 10 == 0 {
1320                println!("Epoch {epoch}: G_loss = {g_loss:.4}, D_loss = {d_loss:.4}");
1321            }
1322        }
1323
1324        Ok(())
1325    }
1326
1327    /// Train discriminator
1328    fn train_discriminator(
1329        &mut self,
1330        real_data: &[Vec<f64>],
1331        rng: &mut ChaCha8Rng,
1332    ) -> QmlResult<f64> {
1333        let batch_size = self.config.batch_size.min(real_data.len());
1334
1335        // Create training data for discriminator
1336        let mut d_training_data = Vec::new();
1337
1338        // Real data (label = 1)
1339        for _ in 0..batch_size / 2 {
1340            let idx = rng.gen_range(0..real_data.len());
1341            d_training_data.push((real_data[idx].clone(), vec![1.0]));
1342        }
1343
1344        // Fake data (label = 0)
1345        for _ in 0..batch_size / 2 {
1346            let fake_sample = self.generate_sample(rng)?;
1347            d_training_data.push((fake_sample, vec![0.0]));
1348        }
1349
1350        // Train discriminator
1351        self.discriminator.train(&d_training_data)?;
1352
1353        // Calculate discriminator loss
1354        self.discriminator.calculate_loss(&d_training_data)
1355    }
1356
1357    /// Train generator
1358    fn train_generator(&mut self, rng: &mut ChaCha8Rng) -> QmlResult<f64> {
1359        let batch_size = self.config.batch_size;
1360
1361        // Create training data for generator (trying to fool discriminator)
1362        let mut g_training_data = Vec::new();
1363
1364        for _ in 0..batch_size {
1365            let latent: Vec<f64> = (0..self.config.latent_dim)
1366                .map(|_| rng.gen_range(-1.0..1.0))
1367                .collect();
1368
1369            // Generator tries to produce data that discriminator labels as real (1)
1370            g_training_data.push((latent, vec![1.0]));
1371        }
1372
1373        // Train generator
1374        self.generator.train(&g_training_data)?;
1375
1376        // Calculate generator loss
1377        self.generator.calculate_loss(&g_training_data)
1378    }
1379
1380    /// Generate a sample from random noise
1381    pub fn generate_sample(&self, rng: &mut ChaCha8Rng) -> QmlResult<Vec<f64>> {
1382        let latent: Vec<f64> = (0..self.config.latent_dim)
1383            .map(|_| rng.gen_range(-1.0..1.0))
1384            .collect();
1385
1386        self.generator.forward(&latent)
1387    }
1388
1389    /// Generate multiple samples
1390    pub fn generate_samples(
1391        &self,
1392        num_samples: usize,
1393        rng: &mut ChaCha8Rng,
1394    ) -> QmlResult<Vec<Vec<f64>>> {
1395        let mut samples = Vec::new();
1396
1397        for _ in 0..num_samples {
1398            samples.push(self.generate_sample(rng)?);
1399        }
1400
1401        Ok(samples)
1402    }
1403}
1404
1405/// Quantum Reinforcement Learning Agent
1406#[derive(Debug, Clone)]
1407pub struct QuantumRLAgent {
1408    /// Policy network
1409    pub policy_network: QuantumNeuralNetwork,
1410    /// Value network (for actor-critic)
1411    pub value_network: Option<QuantumNeuralNetwork>,
1412    /// Agent configuration
1413    pub config: QRLConfig,
1414    /// Experience replay buffer
1415    pub experience_buffer: Vec<Experience>,
1416    /// Training statistics
1417    pub stats: QRLStats,
1418}
1419
1420/// Configuration for Quantum RL Agent
1421#[derive(Debug, Clone)]
1422pub struct QRLConfig {
1423    /// State dimension
1424    pub state_dim: usize,
1425    /// Action dimension
1426    pub action_dim: usize,
1427    /// Buffer capacity
1428    pub buffer_capacity: usize,
1429    /// Learning rate
1430    pub learning_rate: f64,
1431    /// Discount factor
1432    pub gamma: f64,
1433    /// Exploration rate
1434    pub epsilon: f64,
1435    /// Use actor-critic
1436    pub use_actor_critic: bool,
1437    /// Random seed
1438    pub seed: Option<u64>,
1439}
1440
1441/// Experience tuple for reinforcement learning
1442#[derive(Debug, Clone)]
1443pub struct Experience {
1444    /// Current state
1445    pub state: Vec<f64>,
1446    /// Action taken
1447    pub action: usize,
1448    /// Reward received
1449    pub reward: f64,
1450    /// Next state
1451    pub next_state: Vec<f64>,
1452    /// Episode done flag
1453    pub done: bool,
1454}
1455
1456/// Training statistics for Quantum RL
1457#[derive(Debug, Clone)]
1458pub struct QRLStats {
1459    /// Episode rewards
1460    pub episode_rewards: Vec<f64>,
1461    /// Episode lengths
1462    pub episode_lengths: Vec<usize>,
1463    /// Training losses
1464    pub losses: Vec<f64>,
1465}
1466
1467impl QuantumRLAgent {
1468    /// Create a new Quantum RL Agent
1469    pub fn new(config: QRLConfig) -> QmlResult<Self> {
1470        // Create policy network
1471        let policy_network = QuantumNeuralNetwork::new(
1472            &[config.state_dim, config.state_dim * 2, config.action_dim],
1473            QnnConfig {
1474                learning_rate: config.learning_rate,
1475                seed: config.seed,
1476                ..Default::default()
1477            },
1478        )?;
1479
1480        // Create value network if using actor-critic
1481        let value_network = if config.use_actor_critic {
1482            Some(QuantumNeuralNetwork::new(
1483                &[config.state_dim, config.state_dim, 1],
1484                QnnConfig {
1485                    learning_rate: config.learning_rate,
1486                    seed: config.seed.map(|s| s + 1),
1487                    ..Default::default()
1488                },
1489            )?)
1490        } else {
1491            None
1492        };
1493
1494        Ok(Self {
1495            policy_network,
1496            value_network,
1497            config,
1498            experience_buffer: Vec::new(),
1499            stats: QRLStats {
1500                episode_rewards: Vec::new(),
1501                episode_lengths: Vec::new(),
1502                losses: Vec::new(),
1503            },
1504        })
1505    }
1506
1507    /// Select action using current policy
1508    pub fn select_action(&self, state: &[f64], rng: &mut ChaCha8Rng) -> QmlResult<usize> {
1509        // Epsilon-greedy action selection
1510        if rng.gen::<f64>() < self.config.epsilon {
1511            // Random exploration
1512            Ok(rng.gen_range(0..self.config.action_dim))
1513        } else {
1514            // Policy-based action
1515            let action_values = self.policy_network.forward(state)?;
1516
1517            // Select action with highest value
1518            let best_action = action_values
1519                .iter()
1520                .enumerate()
1521                .max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal))
1522                .map_or(0, |(idx, _)| idx);
1523
1524            Ok(best_action)
1525        }
1526    }
1527
1528    /// Store experience in replay buffer
1529    pub fn store_experience(&mut self, experience: Experience) {
1530        self.experience_buffer.push(experience);
1531
1532        // Maintain buffer capacity
1533        if self.experience_buffer.len() > self.config.buffer_capacity {
1534            self.experience_buffer.remove(0);
1535        }
1536    }
1537
1538    /// Train the agent using stored experiences
1539    pub fn train(&mut self) -> QmlResult<()> {
1540        if self.experience_buffer.len() < 32 {
1541            return Ok(()); // Need sufficient experience
1542        }
1543
1544        // Create training data from experience buffer
1545        let mut policy_training_data = Vec::new();
1546
1547        for experience in &self.experience_buffer {
1548            // Compute target using Bellman equation
1549            let target_value = if experience.done {
1550                experience.reward
1551            } else {
1552                let next_values = self.policy_network.forward(&experience.next_state)?;
1553                let max_next_value = next_values
1554                    .iter()
1555                    .max_by(|a, b| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal))
1556                    .copied()
1557                    .unwrap_or(0.0);
1558                experience.reward + self.config.gamma * max_next_value
1559            };
1560
1561            // Create target vector
1562            let mut target = vec![0.0; self.config.action_dim];
1563            target[experience.action] = target_value;
1564
1565            policy_training_data.push((experience.state.clone(), target));
1566        }
1567
1568        // Train policy network
1569        self.policy_network.train(&policy_training_data)?;
1570
1571        // Train value network if using actor-critic
1572        if let Some(ref mut value_net) = self.value_network {
1573            let mut value_training_data = Vec::new();
1574
1575            for experience in &self.experience_buffer {
1576                let target_value = if experience.done {
1577                    experience.reward
1578                } else {
1579                    self.config.gamma.mul_add(
1580                        value_net.forward(&experience.next_state)?[0],
1581                        experience.reward,
1582                    )
1583                };
1584
1585                value_training_data.push((experience.state.clone(), vec![target_value]));
1586            }
1587
1588            value_net.train(&value_training_data)?;
1589        }
1590
1591        Ok(())
1592    }
1593}
1594
1595/// Quantum Autoencoder for dimensionality reduction
1596#[derive(Debug, Clone)]
1597pub struct QuantumAutoencoder {
1598    /// Encoder network
1599    pub encoder: QuantumNeuralNetwork,
1600    /// Decoder network
1601    pub decoder: QuantumNeuralNetwork,
1602    /// Configuration
1603    pub config: QAutoencoderConfig,
1604    /// Training history
1605    pub training_history: TrainingHistory,
1606}
1607
1608/// Configuration for Quantum Autoencoder
1609#[derive(Debug, Clone)]
1610pub struct QAutoencoderConfig {
1611    /// Input dimension
1612    pub input_dim: usize,
1613    /// Latent dimension
1614    pub latent_dim: usize,
1615    /// Learning rate
1616    pub learning_rate: f64,
1617    /// Training epochs
1618    pub epochs: usize,
1619    /// Batch size
1620    pub batch_size: usize,
1621    /// Random seed
1622    pub seed: Option<u64>,
1623}
1624
1625impl QuantumAutoencoder {
1626    /// Create a new Quantum Autoencoder
1627    pub fn new(config: QAutoencoderConfig) -> QmlResult<Self> {
1628        // Create encoder: input -> latent
1629        let encoder = QuantumNeuralNetwork::new(
1630            &[config.input_dim, config.input_dim / 2, config.latent_dim],
1631            QnnConfig {
1632                learning_rate: config.learning_rate,
1633                seed: config.seed,
1634                ..Default::default()
1635            },
1636        )?;
1637
1638        // Create decoder: latent -> input
1639        let decoder = QuantumNeuralNetwork::new(
1640            &[config.latent_dim, config.input_dim / 2, config.input_dim],
1641            QnnConfig {
1642                learning_rate: config.learning_rate,
1643                seed: config.seed.map(|s| s + 1),
1644                ..Default::default()
1645            },
1646        )?;
1647
1648        Ok(Self {
1649            encoder,
1650            decoder,
1651            config,
1652            training_history: TrainingHistory::new(),
1653        })
1654    }
1655
1656    /// Encode input to latent representation
1657    pub fn encode(&self, input: &[f64]) -> QmlResult<Vec<f64>> {
1658        self.encoder.forward(input)
1659    }
1660
1661    /// Decode latent representation to output
1662    pub fn decode(&self, latent: &[f64]) -> QmlResult<Vec<f64>> {
1663        self.decoder.forward(latent)
1664    }
1665
1666    /// Full forward pass (encode then decode)
1667    pub fn forward(&self, input: &[f64]) -> QmlResult<Vec<f64>> {
1668        let latent = self.encode(input)?;
1669        self.decode(&latent)
1670    }
1671
1672    /// Train the autoencoder
1673    pub fn train(&mut self, training_data: &[Vec<f64>]) -> QmlResult<()> {
1674        println!(
1675            "Training Quantum Autoencoder for {} epochs",
1676            self.config.epochs
1677        );
1678
1679        for epoch in 0..self.config.epochs {
1680            let start = Instant::now();
1681
1682            // Create autoencoder training data (input -> input)
1683            let ae_training_data: Vec<(Vec<f64>, Vec<f64>)> = training_data
1684                .iter()
1685                .map(|sample| (sample.clone(), sample.clone()))
1686                .collect();
1687
1688            // Train encoder and decoder jointly
1689            self.encoder.train(&ae_training_data)?;
1690            self.decoder.train(&ae_training_data)?;
1691
1692            // Calculate reconstruction loss
1693            let mut total_loss = 0.0;
1694            for sample in training_data {
1695                let reconstructed = self.forward(sample)?;
1696                let loss: f64 = sample
1697                    .iter()
1698                    .zip(reconstructed.iter())
1699                    .map(|(orig, recon)| (orig - recon).powi(2))
1700                    .sum();
1701                total_loss += loss;
1702            }
1703            total_loss /= training_data.len() as f64;
1704
1705            self.training_history.losses.push(total_loss);
1706            self.training_history.iteration_times.push(start.elapsed());
1707
1708            if epoch % 10 == 0 {
1709                println!("Epoch {epoch}: Reconstruction Loss = {total_loss:.6}");
1710            }
1711        }
1712
1713        Ok(())
1714    }
1715}
1716
1717/// Performance metrics for quantum machine learning models
1718#[derive(Debug, Clone)]
1719pub struct QmlMetrics {
1720    /// Training accuracy
1721    pub training_accuracy: f64,
1722    /// Validation accuracy
1723    pub validation_accuracy: f64,
1724    /// Training loss
1725    pub training_loss: f64,
1726    /// Validation loss
1727    pub validation_loss: f64,
1728    /// Training time
1729    pub training_time: Duration,
1730    /// Number of parameters
1731    pub num_parameters: usize,
1732    /// Quantum advantage estimate
1733    pub quantum_advantage: f64,
1734    /// Model complexity
1735    pub complexity_score: f64,
1736}
1737
1738/// Utility functions for quantum machine learning
1739
1740/// Create a simple VQC for binary classification
1741pub fn create_binary_classifier(
1742    num_features: usize,
1743    num_qubits: usize,
1744    ansatz_layers: usize,
1745) -> QmlResult<VariationalQuantumClassifier> {
1746    let config = VqcConfig {
1747        max_iterations: 500,
1748        learning_rate: 0.01,
1749        num_shots: 1024,
1750        ..Default::default()
1751    };
1752
1753    VariationalQuantumClassifier::new(num_features, num_qubits, 2, ansatz_layers, config)
1754}
1755
1756/// Create a quantum feature map for data encoding
1757pub fn create_zz_feature_map(
1758    num_features: usize,
1759    repetitions: usize,
1760) -> QmlResult<QuantumFeatureMap> {
1761    QuantumFeatureMap::new(
1762        num_features,
1763        num_features,
1764        FeatureMapType::ZZFeatureMap { repetitions },
1765    )
1766}
1767
1768/// Create a quantum kernel SVM
1769#[must_use]
1770pub const fn create_quantum_svm(
1771    feature_map: QuantumFeatureMap,
1772    c_parameter: f64,
1773) -> QuantumKernelMethod {
1774    QuantumKernelMethod::new(
1775        feature_map,
1776        KernelMethodType::SupportVectorMachine { c_parameter },
1777    )
1778}
1779
1780/// Evaluate model performance
1781pub fn evaluate_qml_model<F>(model: F, test_data: &[(Vec<f64>, usize)]) -> QmlResult<QmlMetrics>
1782where
1783    F: Fn(&[f64]) -> QmlResult<usize>,
1784{
1785    let start = Instant::now();
1786    let mut correct = 0;
1787    let mut total = 0;
1788
1789    for (features, true_label) in test_data {
1790        let predicted_label = model(features)?;
1791        if predicted_label == *true_label {
1792            correct += 1;
1793        }
1794        total += 1;
1795    }
1796
1797    let accuracy = f64::from(correct) / f64::from(total);
1798    let training_time = start.elapsed();
1799
1800    Ok(QmlMetrics {
1801        training_accuracy: accuracy,
1802        validation_accuracy: accuracy,
1803        training_loss: 0.0, // Would need access to model internals
1804        validation_loss: 0.0,
1805        training_time,
1806        num_parameters: 0,      // Would need access to model internals
1807        quantum_advantage: 1.2, // Placeholder
1808        complexity_score: 0.5,  // Placeholder
1809    })
1810}
1811
1812#[cfg(test)]
1813mod tests {
1814    use super::*;
1815
1816    #[test]
1817    fn test_quantum_circuit_creation() {
1818        let circuit = QuantumCircuit::hardware_efficient_ansatz(4, 2);
1819        assert_eq!(circuit.num_qubits, 4);
1820        assert_eq!(circuit.depth, 2);
1821        assert!(circuit.num_parameters > 0);
1822    }
1823
1824    #[test]
1825    fn test_quantum_feature_map() {
1826        let feature_map = QuantumFeatureMap::new(3, 4, FeatureMapType::AngleEncoding)
1827            .expect("should create quantum feature map");
1828
1829        assert_eq!(feature_map.num_features, 3);
1830        assert_eq!(feature_map.num_qubits, 4);
1831
1832        let data = vec![1.0, 0.5, -0.5];
1833        let encoded = feature_map.encode(&data).expect("should encode data");
1834        assert_eq!(encoded.len(), 4); // Returns num_qubits parameters for AngleEncoding
1835    }
1836
1837    #[test]
1838    fn test_vqc_creation() {
1839        let vqc = VariationalQuantumClassifier::new(4, 4, 2, 2, VqcConfig::default())
1840            .expect("should create variational quantum classifier");
1841
1842        assert_eq!(vqc.num_classes, 2);
1843        assert_eq!(vqc.feature_map.num_features, 4);
1844    }
1845
1846    #[test]
1847    fn test_quantum_neural_network() {
1848        let qnn = QuantumNeuralNetwork::new(&[3, 4, 2], QnnConfig::default())
1849            .expect("should create quantum neural network");
1850
1851        assert_eq!(qnn.layers.len(), 2);
1852
1853        let input = vec![0.5, -0.3, 0.8];
1854        let output = qnn.forward(&input).expect("should perform forward pass");
1855        assert_eq!(output.len(), 2);
1856    }
1857
1858    #[test]
1859    fn test_quantum_kernel_method() {
1860        let feature_map = QuantumFeatureMap::new(2, 2, FeatureMapType::AngleEncoding)
1861            .expect("should create quantum feature map");
1862
1863        let kernel_method = QuantumKernelMethod::new(
1864            feature_map,
1865            KernelMethodType::SupportVectorMachine { c_parameter: 1.0 },
1866        );
1867
1868        let x1 = vec![0.5, 0.3];
1869        let x2 = vec![0.7, 0.1];
1870        let kernel_val = kernel_method
1871            .quantum_kernel(&x1, &x2)
1872            .expect("should compute kernel value");
1873
1874        assert!(kernel_val >= 0.0);
1875        assert!(kernel_val <= 1.0);
1876    }
1877
1878    #[test]
1879    fn test_quantum_autoencoder() {
1880        let config = QAutoencoderConfig {
1881            input_dim: 8,
1882            latent_dim: 3,
1883            learning_rate: 0.01,
1884            epochs: 5,
1885            batch_size: 16,
1886            seed: Some(42),
1887        };
1888
1889        let autoencoder =
1890            QuantumAutoencoder::new(config).expect("should create quantum autoencoder");
1891
1892        let input = vec![1.0, 0.5, -0.5, 0.3, 0.8, -0.2, 0.6, -0.8];
1893        let latent = autoencoder
1894            .encode(&input)
1895            .expect("should encode input to latent space");
1896        assert_eq!(latent.len(), 3);
1897
1898        let reconstructed = autoencoder
1899            .decode(&latent)
1900            .expect("should decode latent to output");
1901        assert_eq!(reconstructed.len(), 8);
1902    }
1903
1904    #[test]
1905    fn test_helper_functions() {
1906        let vqc = create_binary_classifier(4, 4, 2).expect("should create binary classifier");
1907        assert_eq!(vqc.num_classes, 2);
1908
1909        let feature_map = create_zz_feature_map(3, 2).expect("should create ZZ feature map");
1910        assert_eq!(feature_map.num_features, 3);
1911
1912        let kernel_svm = create_quantum_svm(feature_map, 1.0);
1913        assert!(matches!(
1914            kernel_svm.method_type,
1915            KernelMethodType::SupportVectorMachine { .. }
1916        ));
1917    }
1918}