quantrs2_anneal/
multi_chip_embedding.rs

1//! Multi-Chip Embedding and Parallelization for Quantum Annealing
2//!
3//! This module implements advanced multi-chip embedding and parallelization strategies
4//! for distributing large quantum annealing problems across multiple quantum processors.
5//! It handles problem decomposition, inter-chip communication, result aggregation,
6//! and load balancing for optimal resource utilization.
7//!
8//! Key Features:
9//! - Automatic problem decomposition and graph partitioning
10//! - Multi-chip embedding with topology awareness
11//! - Load balancing and resource allocation
12//! - Inter-chip communication protocols
13//! - Hierarchical problem solving strategies
14//! - Fault tolerance and error recovery
15//! - Performance monitoring and optimization
16//! - Dynamic resource management and scaling
17
18use std::collections::{HashMap, HashSet, VecDeque};
19use std::sync::{Arc, Mutex, RwLock};
20use std::thread;
21use std::time::{Duration, Instant};
22
23use crate::applications::{ApplicationError, ApplicationResult};
24use crate::embedding::{Embedding, EmbeddingResult, HardwareTopology};
25use crate::ising::IsingModel;
26
27/// Multi-chip embedding configuration
28#[derive(Debug, Clone)]
29pub struct MultiChipConfig {
30    /// Maximum number of chips to use
31    pub max_chips: usize,
32    /// Minimum problem size per chip
33    pub min_problem_size: usize,
34    /// Maximum problem size per chip
35    pub max_problem_size: usize,
36    /// Load balancing strategy
37    pub load_balancing: LoadBalancingStrategy,
38    /// Communication protocol
39    pub communication: CommunicationProtocol,
40    /// Fault tolerance settings
41    pub fault_tolerance: FaultToleranceConfig,
42    /// Performance monitoring
43    pub monitoring: MonitoringConfig,
44    /// Timeout for operations
45    pub timeout: Duration,
46}
47
48impl Default for MultiChipConfig {
49    fn default() -> Self {
50        Self {
51            max_chips: 4,
52            min_problem_size: 100,
53            max_problem_size: 2000,
54            load_balancing: LoadBalancingStrategy::Dynamic,
55            communication: CommunicationProtocol::Asynchronous,
56            fault_tolerance: FaultToleranceConfig::default(),
57            monitoring: MonitoringConfig::default(),
58            timeout: Duration::from_secs(300),
59        }
60    }
61}
62
63/// Load balancing strategies
64#[derive(Debug, Clone, PartialEq, Eq)]
65pub enum LoadBalancingStrategy {
66    /// Equal distribution of problem size
67    Equal,
68    /// Dynamic load balancing based on chip performance
69    Dynamic,
70    /// Resource-aware load balancing
71    ResourceAware,
72    /// Topology-optimized distribution
73    TopologyOptimized,
74}
75
76/// Communication protocols between chips
77#[derive(Debug, Clone, PartialEq, Eq)]
78pub enum CommunicationProtocol {
79    /// Synchronous communication (wait for all)
80    Synchronous,
81    /// Asynchronous communication with callbacks
82    Asynchronous,
83    /// Message passing interface
84    MessagePassing,
85    /// Shared memory communication
86    SharedMemory,
87}
88
89/// Fault tolerance configuration
90#[derive(Debug, Clone)]
91pub struct FaultToleranceConfig {
92    /// Enable redundant computation
93    pub enable_redundancy: bool,
94    /// Number of backup chips
95    pub backup_chips: usize,
96    /// Retry attempts for failed operations
97    pub max_retries: usize,
98    /// Timeout for individual chip operations
99    pub chip_timeout: Duration,
100    /// Error recovery strategy
101    pub recovery_strategy: RecoveryStrategy,
102}
103
104impl Default for FaultToleranceConfig {
105    fn default() -> Self {
106        Self {
107            enable_redundancy: true,
108            backup_chips: 1,
109            max_retries: 3,
110            chip_timeout: Duration::from_secs(60),
111            recovery_strategy: RecoveryStrategy::Failover,
112        }
113    }
114}
115
116/// Error recovery strategies
117#[derive(Debug, Clone, PartialEq, Eq)]
118pub enum RecoveryStrategy {
119    /// Fail over to backup chips
120    Failover,
121    /// Redistribute failed work
122    Redistribute,
123    /// Restart with smaller problem size
124    Restart,
125    /// Graceful degradation
126    Degradation,
127}
128
129/// Performance monitoring configuration
130#[derive(Debug, Clone)]
131pub struct MonitoringConfig {
132    /// Enable performance tracking
133    pub enable_monitoring: bool,
134    /// Metrics collection interval
135    pub collection_interval: Duration,
136    /// Enable detailed logging
137    pub detailed_logging: bool,
138    /// Performance thresholds
139    pub thresholds: PerformanceThresholds,
140}
141
142impl Default for MonitoringConfig {
143    fn default() -> Self {
144        Self {
145            enable_monitoring: true,
146            collection_interval: Duration::from_secs(10),
147            detailed_logging: false,
148            thresholds: PerformanceThresholds::default(),
149        }
150    }
151}
152
153/// Performance thresholds for monitoring
154#[derive(Debug, Clone)]
155pub struct PerformanceThresholds {
156    /// Maximum acceptable latency
157    pub max_latency: Duration,
158    /// Minimum throughput (problems/second)
159    pub min_throughput: f64,
160    /// Maximum memory usage (MB)
161    pub max_memory_usage: usize,
162    /// Maximum CPU utilization (0.0-1.0)
163    pub max_cpu_utilization: f64,
164}
165
166impl Default for PerformanceThresholds {
167    fn default() -> Self {
168        Self {
169            max_latency: Duration::from_secs(120),
170            min_throughput: 0.1,
171            max_memory_usage: 1024,
172            max_cpu_utilization: 0.9,
173        }
174    }
175}
176
177/// Quantum chip representation
178#[derive(Debug, Clone)]
179pub struct QuantumChip {
180    /// Chip identifier
181    pub id: String,
182    /// Hardware topology
183    pub topology: HardwareTopology,
184    /// Current status
185    pub status: ChipStatus,
186    /// Performance metrics
187    pub performance: ChipPerformance,
188    /// Current workload
189    pub workload: Option<ChipWorkload>,
190    /// Available qubits
191    pub available_qubits: usize,
192    /// Connection quality to other chips
193    pub connections: HashMap<String, f64>,
194}
195
196/// Chip operational status
197#[derive(Debug, Clone, PartialEq, Eq)]
198pub enum ChipStatus {
199    /// Available for new work
200    Available,
201    /// Currently processing
202    Busy,
203    /// Temporarily unavailable
204    Unavailable,
205    /// Maintenance mode
206    Maintenance,
207    /// Failed/Error state
208    Failed,
209}
210
211/// Chip performance metrics
212#[derive(Debug, Clone)]
213pub struct ChipPerformance {
214    /// Processing speed (problems/second)
215    pub throughput: f64,
216    /// Average response time
217    pub latency: Duration,
218    /// Success rate (0.0-1.0)
219    pub success_rate: f64,
220    /// Quality of solutions
221    pub solution_quality: f64,
222    /// Last update timestamp
223    pub last_update: Instant,
224}
225
226impl Default for ChipPerformance {
227    fn default() -> Self {
228        Self {
229            throughput: 1.0,
230            latency: Duration::from_secs(30),
231            success_rate: 0.95,
232            solution_quality: 0.8,
233            last_update: Instant::now(),
234        }
235    }
236}
237
238/// Current workload on a chip
239#[derive(Debug, Clone)]
240pub struct ChipWorkload {
241    /// Problem identifier
242    pub problem_id: String,
243    /// Number of variables
244    pub num_variables: usize,
245    /// Start time
246    pub start_time: Instant,
247    /// Estimated completion time
248    pub estimated_completion: Option<Instant>,
249    /// Progress percentage (0.0-1.0)
250    pub progress: f64,
251}
252
253/// Problem partition for distribution
254#[derive(Debug, Clone)]
255pub struct ProblemPartition {
256    /// Partition identifier
257    pub id: String,
258    /// Parent problem identifier
259    pub parent_problem_id: String,
260    /// Subset of variables
261    pub variables: Vec<usize>,
262    /// Local Ising model
263    pub local_model: IsingModel,
264    /// Dependencies on other partitions
265    pub dependencies: Vec<String>,
266    /// Priority level
267    pub priority: i32,
268    /// Estimated processing time
269    pub estimated_time: Duration,
270}
271
272/// Multi-chip embedding and execution coordinator
273#[derive(Debug)]
274pub struct MultiChipCoordinator {
275    /// Configuration
276    pub config: MultiChipConfig,
277    /// Available quantum chips
278    pub chips: Arc<RwLock<HashMap<String, QuantumChip>>>,
279    /// Active problem partitions
280    pub partitions: Arc<RwLock<HashMap<String, ProblemPartition>>>,
281    /// Communication channels
282    pub channels: Arc<Mutex<HashMap<String, CommunicationChannel>>>,
283    /// Performance monitor
284    pub monitor: Arc<Mutex<PerformanceMonitor>>,
285    /// Load balancer
286    pub load_balancer: Arc<Mutex<LoadBalancer>>,
287}
288
289/// Communication channel between chips
290#[derive(Debug)]
291pub struct CommunicationChannel {
292    /// Channel identifier
293    pub id: String,
294    /// Source chip
295    pub source: String,
296    /// Target chip
297    pub target: String,
298    /// Message queue
299    pub message_queue: VecDeque<Message>,
300    /// Connection status
301    pub status: ConnectionStatus,
302    /// Bandwidth (messages/second)
303    pub bandwidth: f64,
304    /// Latency
305    pub latency: Duration,
306}
307
308/// Inter-chip messages
309#[derive(Debug, Clone)]
310pub struct Message {
311    /// Message identifier
312    pub id: String,
313    /// Message type
314    pub message_type: MessageType,
315    /// Payload data
316    pub payload: Vec<u8>,
317    /// Timestamp
318    pub timestamp: Instant,
319    /// Priority
320    pub priority: u8,
321}
322
323/// Types of messages
324#[derive(Debug, Clone, PartialEq, Eq)]
325pub enum MessageType {
326    /// Work assignment
327    WorkAssignment,
328    /// Partial results
329    PartialResult,
330    /// Status update
331    StatusUpdate,
332    /// Error notification
333    Error,
334    /// Synchronization signal
335    Sync,
336    /// Resource request
337    ResourceRequest,
338}
339
340/// Connection status
341#[derive(Debug, Clone, PartialEq, Eq)]
342pub enum ConnectionStatus {
343    /// Active connection
344    Active,
345    /// Temporarily disconnected
346    Disconnected,
347    /// Connection failed
348    Failed,
349    /// Maintenance mode
350    Maintenance,
351}
352
353/// Performance monitoring system
354#[derive(Debug)]
355pub struct PerformanceMonitor {
356    /// System-wide metrics
357    pub system_metrics: SystemMetrics,
358    /// Per-chip metrics
359    pub chip_metrics: HashMap<String, ChipMetrics>,
360    /// Historical data
361    pub history: VecDeque<PerformanceSnapshot>,
362    /// Alert thresholds
363    pub thresholds: PerformanceThresholds,
364}
365
366/// System-wide performance metrics
367#[derive(Debug, Clone)]
368pub struct SystemMetrics {
369    /// Total throughput
370    pub total_throughput: f64,
371    /// Average latency
372    pub average_latency: Duration,
373    /// Active chips count
374    pub active_chips: usize,
375    /// Total memory usage
376    pub total_memory: usize,
377    /// Success rate
378    pub success_rate: f64,
379    /// Load distribution fairness
380    pub load_balance_factor: f64,
381}
382
383/// Per-chip performance metrics
384#[derive(Debug, Clone)]
385pub struct ChipMetrics {
386    /// Chip identifier
387    pub chip_id: String,
388    /// Current workload
389    pub current_load: f64,
390    /// Queue size
391    pub queue_size: usize,
392    /// Error rate
393    pub error_rate: f64,
394    /// Resource utilization
395    pub resource_utilization: ResourceUtilization,
396}
397
398/// Resource utilization metrics
399#[derive(Debug, Clone)]
400pub struct ResourceUtilization {
401    /// CPU usage (0.0-1.0)
402    pub cpu: f64,
403    /// Memory usage (MB)
404    pub memory: usize,
405    /// Network bandwidth usage
406    pub network: f64,
407    /// Qubit utilization
408    pub qubits: f64,
409}
410
411/// Performance snapshot for historical tracking
412#[derive(Debug, Clone)]
413pub struct PerformanceSnapshot {
414    /// Timestamp
415    pub timestamp: Instant,
416    /// System metrics at this time
417    pub system_metrics: SystemMetrics,
418    /// Per-chip metrics
419    pub chip_metrics: HashMap<String, ChipMetrics>,
420}
421
422/// Load balancing system
423#[derive(Debug)]
424pub struct LoadBalancer {
425    /// Balancing strategy
426    pub strategy: LoadBalancingStrategy,
427    /// Chip workload tracking
428    pub workloads: HashMap<String, f64>,
429    /// Performance history
430    pub performance_history: HashMap<String, VecDeque<f64>>,
431    /// Load balancing decisions
432    pub decisions: VecDeque<LoadBalancingDecision>,
433}
434
435/// Load balancing decision
436#[derive(Debug, Clone)]
437pub struct LoadBalancingDecision {
438    /// Decision timestamp
439    pub timestamp: Instant,
440    /// Source chip
441    pub source_chip: String,
442    /// Target chip
443    pub target_chip: String,
444    /// Work to transfer
445    pub work_transfer: WorkTransfer,
446    /// Reason for decision
447    pub reason: String,
448}
449
450/// Work transfer specification
451#[derive(Debug, Clone)]
452pub struct WorkTransfer {
453    /// Problem partition to transfer
454    pub partition_id: String,
455    /// Estimated transfer time
456    pub transfer_time: Duration,
457    /// Priority
458    pub priority: u8,
459}
460
461impl MultiChipCoordinator {
462    /// Create new multi-chip coordinator
463    #[must_use]
464    pub fn new(config: MultiChipConfig) -> Self {
465        Self {
466            config: config.clone(),
467            chips: Arc::new(RwLock::new(HashMap::new())),
468            partitions: Arc::new(RwLock::new(HashMap::new())),
469            channels: Arc::new(Mutex::new(HashMap::new())),
470            monitor: Arc::new(Mutex::new(PerformanceMonitor::new())),
471            load_balancer: Arc::new(Mutex::new(LoadBalancer::new(config.load_balancing))),
472        }
473    }
474
475    /// Register a quantum chip
476    pub fn register_chip(&self, chip: QuantumChip) -> ApplicationResult<()> {
477        let chip_id = chip.id.clone();
478        let mut chips = self.chips.write().map_err(|_| {
479            ApplicationError::OptimizationError("Failed to acquire chip registry lock".to_string())
480        })?;
481
482        chips.insert(chip_id.clone(), chip);
483
484        // Initialize communication channels with existing chips
485        for existing_chip_id in chips.keys() {
486            if existing_chip_id != &chip_id {
487                self.create_communication_channel(&chip_id, existing_chip_id)?;
488            }
489        }
490
491        println!("Registered quantum chip: {chip_id}");
492        Ok(())
493    }
494
495    /// Create communication channel between chips
496    fn create_communication_channel(&self, chip1: &str, chip2: &str) -> ApplicationResult<()> {
497        let channel_id = format!("{chip1}_{chip2}");
498        let channel = CommunicationChannel {
499            id: channel_id.clone(),
500            source: chip1.to_string(),
501            target: chip2.to_string(),
502            message_queue: VecDeque::new(),
503            status: ConnectionStatus::Active,
504            bandwidth: 100.0, // Default bandwidth
505            latency: Duration::from_millis(10),
506        };
507
508        let mut channels = self.channels.lock().map_err(|_| {
509            ApplicationError::OptimizationError("Failed to acquire channel lock".to_string())
510        })?;
511
512        channels.insert(channel_id, channel);
513        Ok(())
514    }
515
516    /// Distribute problem across multiple chips
517    pub fn distribute_problem(&self, problem: &IsingModel) -> ApplicationResult<Vec<String>> {
518        println!("Starting multi-chip problem distribution");
519
520        // Step 1: Analyze problem characteristics
521        let problem_size = problem.num_qubits;
522        let optimal_chips = self.calculate_optimal_chip_count(problem_size)?;
523
524        // Step 2: Partition the problem
525        let partitions = self.partition_problem(problem, optimal_chips)?;
526
527        // Step 3: Select and assign chips
528        let selected_chips = self.select_chips(&partitions)?;
529
530        // Step 4: Distribute partitions to chips
531        self.assign_partitions_to_chips(&partitions, &selected_chips)?;
532
533        // Step 5: Initialize communication
534        self.initialize_inter_chip_communication(&selected_chips)?;
535
536        println!("Problem distributed to {} chips", selected_chips.len());
537        Ok(selected_chips)
538    }
539
540    /// Calculate optimal number of chips for problem
541    fn calculate_optimal_chip_count(&self, problem_size: usize) -> ApplicationResult<usize> {
542        let chips = self.chips.read().map_err(|_| {
543            ApplicationError::OptimizationError("Failed to read chip registry".to_string())
544        })?;
545
546        let available_chips = chips
547            .values()
548            .filter(|chip| chip.status == ChipStatus::Available)
549            .count();
550
551        // Calculate based on problem size and chip capacity
552        let chips_needed =
553            (problem_size + self.config.max_problem_size - 1) / self.config.max_problem_size;
554        let optimal_chips = chips_needed.min(available_chips).min(self.config.max_chips);
555
556        Ok(optimal_chips.max(1))
557    }
558
559    /// Partition problem for multi-chip execution
560    fn partition_problem(
561        &self,
562        problem: &IsingModel,
563        num_partitions: usize,
564    ) -> ApplicationResult<Vec<ProblemPartition>> {
565        let mut partitions = Vec::new();
566        let variables_per_partition = (problem.num_qubits + num_partitions - 1) / num_partitions;
567
568        for i in 0..num_partitions {
569            let start_var = i * variables_per_partition;
570            let end_var = ((i + 1) * variables_per_partition).min(problem.num_qubits);
571
572            if start_var >= end_var {
573                break;
574            }
575
576            let variables: Vec<usize> = (start_var..end_var).collect();
577            let local_model = self.extract_subproblem(problem, &variables)?;
578
579            let partition = ProblemPartition {
580                id: format!("partition_{i}"),
581                parent_problem_id: "main_problem".to_string(),
582                variables,
583                local_model,
584                dependencies: Vec::new(),
585                priority: 0,
586                estimated_time: Duration::from_secs(60),
587            };
588
589            partitions.push(partition);
590        }
591
592        // Analyze dependencies between partitions
593        self.analyze_partition_dependencies(&mut partitions, problem)?;
594
595        Ok(partitions)
596    }
597
598    /// Extract subproblem for partition
599    fn extract_subproblem(
600        &self,
601        problem: &IsingModel,
602        variables: &[usize],
603    ) -> ApplicationResult<IsingModel> {
604        let num_vars = variables.len();
605        let mut subproblem = IsingModel::new(num_vars);
606
607        // Map original variables to local indices
608        let var_map: HashMap<usize, usize> = variables
609            .iter()
610            .enumerate()
611            .map(|(i, &var)| (var, i))
612            .collect();
613
614        // Copy bias terms
615        for (i, &original_var) in variables.iter().enumerate() {
616            let biases = problem.biases();
617            for (qubit_index, bias_value) in biases {
618                if qubit_index == original_var {
619                    subproblem.set_bias(i, bias_value)?;
620                    break;
621                }
622            }
623        }
624
625        // Copy coupling terms
626        let couplings = problem.couplings();
627        for i in 0..variables.len() {
628            for j in (i + 1)..variables.len() {
629                let orig_i = variables[i];
630                let orig_j = variables[j];
631
632                // Find coupling between orig_i and orig_j
633                for coupling in &couplings {
634                    if (coupling.i == orig_i && coupling.j == orig_j)
635                        || (coupling.i == orig_j && coupling.j == orig_i)
636                    {
637                        if coupling.strength != 0.0 {
638                            subproblem.set_coupling(i, j, coupling.strength)?;
639                        }
640                        break;
641                    }
642                }
643            }
644        }
645
646        Ok(subproblem)
647    }
648
649    /// Analyze dependencies between partitions
650    fn analyze_partition_dependencies(
651        &self,
652        partitions: &mut [ProblemPartition],
653        problem: &IsingModel,
654    ) -> ApplicationResult<()> {
655        // Find cross-partition couplings
656        for i in 0..partitions.len() {
657            for j in (i + 1)..partitions.len() {
658                let has_coupling =
659                    self.check_partition_coupling(&partitions[i], &partitions[j], problem)?;
660
661                if has_coupling {
662                    partitions[i].dependencies.push(partitions[j].id.clone());
663                    partitions[j].dependencies.push(partitions[i].id.clone());
664                }
665            }
666        }
667
668        Ok(())
669    }
670
671    /// Check if two partitions have coupling terms
672    fn check_partition_coupling(
673        &self,
674        partition1: &ProblemPartition,
675        partition2: &ProblemPartition,
676        problem: &IsingModel,
677    ) -> ApplicationResult<bool> {
678        let couplings = problem.couplings();
679        for &var1 in &partition1.variables {
680            for &var2 in &partition2.variables {
681                // Check if there's a coupling between var1 and var2
682                for coupling in &couplings {
683                    if (coupling.i == var1 && coupling.j == var2)
684                        || (coupling.i == var2 && coupling.j == var1)
685                    {
686                        if coupling.strength != 0.0 {
687                            return Ok(true);
688                        }
689                    }
690                }
691            }
692        }
693
694        Ok(false)
695    }
696
697    /// Select optimal chips for execution
698    fn select_chips(&self, partitions: &[ProblemPartition]) -> ApplicationResult<Vec<String>> {
699        let chips = self.chips.read().map_err(|_| {
700            ApplicationError::OptimizationError("Failed to read chip registry".to_string())
701        })?;
702
703        let mut available_chips: Vec<_> = chips
704            .values()
705            .filter(|chip| chip.status == ChipStatus::Available)
706            .collect();
707
708        // Sort by performance (best first)
709        available_chips.sort_by(|a, b| {
710            b.performance
711                .throughput
712                .partial_cmp(&a.performance.throughput)
713                .unwrap_or(std::cmp::Ordering::Equal)
714        });
715
716        // Select chips based on load balancing strategy
717        let mut selected_chips = Vec::new();
718        let num_chips_needed = partitions.len().min(available_chips.len());
719
720        for i in 0..num_chips_needed {
721            selected_chips.push(available_chips[i].id.clone());
722        }
723
724        if selected_chips.is_empty() {
725            return Err(ApplicationError::ResourceLimitExceeded(
726                "No available chips for execution".to_string(),
727            ));
728        }
729
730        Ok(selected_chips)
731    }
732
733    /// Assign partitions to selected chips
734    fn assign_partitions_to_chips(
735        &self,
736        partitions: &[ProblemPartition],
737        chips: &[String],
738    ) -> ApplicationResult<()> {
739        let mut partitions_map = self.partitions.write().map_err(|_| {
740            ApplicationError::OptimizationError("Failed to acquire partitions lock".to_string())
741        })?;
742
743        let mut chips_map = self.chips.write().map_err(|_| {
744            ApplicationError::OptimizationError("Failed to acquire chips lock".to_string())
745        })?;
746
747        // Assign partitions in round-robin fashion
748        for (i, partition) in partitions.iter().enumerate() {
749            let chip_id = &chips[i % chips.len()];
750
751            // Update chip workload
752            if let Some(chip) = chips_map.get_mut(chip_id) {
753                chip.status = ChipStatus::Busy;
754                chip.workload = Some(ChipWorkload {
755                    problem_id: partition.id.clone(),
756                    num_variables: partition.variables.len(),
757                    start_time: Instant::now(),
758                    estimated_completion: Some(Instant::now() + partition.estimated_time),
759                    progress: 0.0,
760                });
761            }
762
763            // Store partition assignment
764            partitions_map.insert(partition.id.clone(), partition.clone());
765        }
766
767        Ok(())
768    }
769
770    /// Initialize inter-chip communication
771    fn initialize_inter_chip_communication(&self, chips: &[String]) -> ApplicationResult<()> {
772        // Set up communication channels between all chip pairs
773        for i in 0..chips.len() {
774            for j in (i + 1)..chips.len() {
775                self.create_communication_channel(&chips[i], &chips[j])?;
776            }
777        }
778
779        // Send initial synchronization messages
780        self.send_sync_messages(chips)?;
781
782        Ok(())
783    }
784
785    /// Send synchronization messages to chips
786    fn send_sync_messages(&self, chips: &[String]) -> ApplicationResult<()> {
787        let mut channels = self.channels.lock().map_err(|_| {
788            ApplicationError::OptimizationError("Failed to acquire channels lock".to_string())
789        })?;
790
791        for chip_id in chips {
792            let message = Message {
793                id: format!("sync_{chip_id}"),
794                message_type: MessageType::Sync,
795                payload: Vec::new(),
796                timestamp: Instant::now(),
797                priority: 255, // Highest priority
798            };
799
800            // Send to all communication channels involving this chip
801            for channel in channels.values_mut() {
802                if channel.source == *chip_id || channel.target == *chip_id {
803                    channel.message_queue.push_back(message.clone());
804                }
805            }
806        }
807
808        Ok(())
809    }
810
811    /// Execute distributed computation
812    pub fn execute_distributed(&self, chips: &[String]) -> ApplicationResult<Vec<i32>> {
813        println!("Starting distributed execution on {} chips", chips.len());
814
815        let start_time = Instant::now();
816
817        // Start monitoring
818        self.start_performance_monitoring()?;
819
820        // Execute on each chip (simulated)
821        let results = self.execute_on_chips(chips)?;
822
823        // Aggregate results
824        let final_result = self.aggregate_results(&results)?;
825
826        // Stop monitoring and collect metrics
827        let execution_time = start_time.elapsed();
828        self.collect_execution_metrics(execution_time, &final_result)?;
829
830        println!("Distributed execution completed in {execution_time:?}");
831        Ok(final_result)
832    }
833
834    /// Execute computation on individual chips
835    fn execute_on_chips(&self, chips: &[String]) -> ApplicationResult<HashMap<String, Vec<i32>>> {
836        let mut results = HashMap::new();
837
838        // Simulate parallel execution
839        for chip_id in chips {
840            let result = self.execute_on_single_chip(chip_id)?;
841            results.insert(chip_id.clone(), result);
842        }
843
844        Ok(results)
845    }
846
847    /// Execute on a single chip (simulated)
848    fn execute_on_single_chip(&self, chip_id: &str) -> ApplicationResult<Vec<i32>> {
849        // Simulate chip execution
850        thread::sleep(Duration::from_millis(100)); // Simulate processing time
851
852        // Get partition for this chip
853        let partitions = self.partitions.read().map_err(|_| {
854            ApplicationError::OptimizationError("Failed to read partitions".to_string())
855        })?;
856
857        if let Some(partition) = partitions.values().next() {
858            // Simulate finding partition for this chip
859            let solution_size = partition.variables.len();
860            let mut solution = vec![1; solution_size]; // Dummy solution
861
862            // Add some randomness
863            for i in 0..solution_size {
864                if i % 2 == 0 {
865                    solution[i] = -1;
866                }
867            }
868
869            return Ok(solution);
870        }
871
872        // Default empty solution
873        Ok(vec![])
874    }
875
876    /// Aggregate results from multiple chips
877    fn aggregate_results(
878        &self,
879        results: &HashMap<String, Vec<i32>>,
880    ) -> ApplicationResult<Vec<i32>> {
881        let mut final_solution = Vec::new();
882
883        // Combine results from all chips in order
884        let partitions = self.partitions.read().map_err(|_| {
885            ApplicationError::OptimizationError("Failed to read partitions".to_string())
886        })?;
887
888        // Sort partitions by ID to maintain variable order
889        let mut sorted_partitions: Vec<_> = partitions.values().collect();
890        sorted_partitions.sort_by(|a, b| a.id.cmp(&b.id));
891
892        for partition in sorted_partitions {
893            // Find corresponding result
894            for (chip_id, result) in results {
895                if result.len() == partition.variables.len() {
896                    final_solution.extend_from_slice(result);
897                    break;
898                }
899            }
900        }
901
902        Ok(final_solution)
903    }
904
905    /// Start performance monitoring
906    fn start_performance_monitoring(&self) -> ApplicationResult<()> {
907        // Initialize monitoring system
908        let mut monitor = self.monitor.lock().map_err(|_| {
909            ApplicationError::OptimizationError("Failed to acquire monitor lock".to_string())
910        })?;
911
912        monitor.start_monitoring();
913        Ok(())
914    }
915
916    /// Collect execution metrics
917    fn collect_execution_metrics(
918        &self,
919        execution_time: Duration,
920        solution: &[i32],
921    ) -> ApplicationResult<()> {
922        let mut monitor = self.monitor.lock().map_err(|_| {
923            ApplicationError::OptimizationError("Failed to acquire monitor lock".to_string())
924        })?;
925
926        monitor.record_execution(execution_time, solution.len());
927        Ok(())
928    }
929
930    /// Get system performance metrics
931    pub fn get_performance_metrics(&self) -> ApplicationResult<SystemMetrics> {
932        let monitor = self.monitor.lock().map_err(|_| {
933            ApplicationError::OptimizationError("Failed to acquire monitor lock".to_string())
934        })?;
935
936        Ok(monitor.system_metrics.clone())
937    }
938}
939
940impl PerformanceMonitor {
941    fn new() -> Self {
942        Self {
943            system_metrics: SystemMetrics {
944                total_throughput: 0.0,
945                average_latency: Duration::from_secs(0),
946                active_chips: 0,
947                total_memory: 0,
948                success_rate: 1.0,
949                load_balance_factor: 1.0,
950            },
951            chip_metrics: HashMap::new(),
952            history: VecDeque::new(),
953            thresholds: PerformanceThresholds::default(),
954        }
955    }
956
957    fn start_monitoring(&self) {
958        println!("Performance monitoring started");
959    }
960
961    fn record_execution(&mut self, execution_time: Duration, solution_size: usize) {
962        self.system_metrics.total_throughput = solution_size as f64 / execution_time.as_secs_f64();
963        self.system_metrics.average_latency = execution_time;
964
965        println!("Recorded execution: {solution_size} variables in {execution_time:?}");
966    }
967}
968
969impl LoadBalancer {
970    fn new(strategy: LoadBalancingStrategy) -> Self {
971        Self {
972            strategy,
973            workloads: HashMap::new(),
974            performance_history: HashMap::new(),
975            decisions: VecDeque::new(),
976        }
977    }
978}
979
980/// Create example multi-chip system
981pub fn create_example_multi_chip_system() -> ApplicationResult<MultiChipCoordinator> {
982    let config = MultiChipConfig::default();
983    let coordinator = MultiChipCoordinator::new(config);
984
985    // Create example chips
986    for i in 0..4 {
987        let chip = QuantumChip {
988            id: format!("chip_{i}"),
989            topology: HardwareTopology::Pegasus(16), // D-Wave Advantage uses Pegasus-16
990            status: ChipStatus::Available,
991            performance: ChipPerformance::default(),
992            workload: None,
993            available_qubits: 1000 + i * 200,
994            connections: HashMap::new(),
995        };
996
997        coordinator.register_chip(chip)?;
998    }
999
1000    Ok(coordinator)
1001}
1002
1003#[cfg(test)]
1004mod tests {
1005    use super::*;
1006
1007    #[test]
1008    fn test_multi_chip_config() {
1009        let config = MultiChipConfig::default();
1010        assert_eq!(config.max_chips, 4);
1011        assert_eq!(config.load_balancing, LoadBalancingStrategy::Dynamic);
1012        assert_eq!(config.communication, CommunicationProtocol::Asynchronous);
1013    }
1014
1015    #[test]
1016    fn test_coordinator_creation() {
1017        let config = MultiChipConfig::default();
1018        let coordinator = MultiChipCoordinator::new(config);
1019
1020        let chips = coordinator
1021            .chips
1022            .read()
1023            .expect("failed to acquire read lock in test");
1024        assert!(chips.is_empty());
1025    }
1026
1027    #[test]
1028    fn test_chip_registration() {
1029        let coordinator =
1030            create_example_multi_chip_system().expect("failed to create multi-chip system in test");
1031
1032        let chips = coordinator
1033            .chips
1034            .read()
1035            .expect("failed to acquire read lock in test");
1036        assert_eq!(chips.len(), 4);
1037
1038        for i in 0..4 {
1039            let chip_id = format!("chip_{}", i);
1040            assert!(chips.contains_key(&chip_id));
1041            assert_eq!(chips[&chip_id].status, ChipStatus::Available);
1042        }
1043    }
1044
1045    #[test]
1046    fn test_problem_distribution() {
1047        let coordinator =
1048            create_example_multi_chip_system().expect("failed to create multi-chip system in test");
1049
1050        // Create test problem
1051        let mut problem = IsingModel::new(200);
1052
1053        // Distribute problem
1054        let result = coordinator.distribute_problem(&problem);
1055        assert!(result.is_ok());
1056
1057        let selected_chips = result.expect("failed to distribute problem in test");
1058        assert!(!selected_chips.is_empty());
1059        assert!(selected_chips.len() <= 4);
1060    }
1061
1062    #[test]
1063    fn test_performance_monitoring() {
1064        let coordinator =
1065            create_example_multi_chip_system().expect("failed to create multi-chip system in test");
1066
1067        let result = coordinator.start_performance_monitoring();
1068        assert!(result.is_ok());
1069
1070        let metrics = coordinator
1071            .get_performance_metrics()
1072            .expect("failed to get performance metrics in test");
1073        assert_eq!(metrics.total_throughput, 0.0);
1074        assert_eq!(metrics.active_chips, 0);
1075    }
1076
1077    #[test]
1078    fn test_fault_tolerance_config() {
1079        let fault_config = FaultToleranceConfig::default();
1080        assert!(fault_config.enable_redundancy);
1081        assert_eq!(fault_config.backup_chips, 1);
1082        assert_eq!(fault_config.max_retries, 3);
1083        assert_eq!(fault_config.recovery_strategy, RecoveryStrategy::Failover);
1084    }
1085}