quantrs2_anneal/bayesian_hyperopt/
gaussian_process.rs

1//! Gaussian Process Surrogate Models
2
3use super::config::{BayesianOptError, BayesianOptResult};
4
5/// Gaussian process configuration (alias for backward compatibility)
6pub type GaussianProcessConfig = GaussianProcessSurrogate;
7
8/// Gaussian process surrogate model
9#[derive(Debug, Clone)]
10pub struct GaussianProcessSurrogate {
11    pub kernel: KernelFunction,
12    pub noise_variance: f64,
13    pub mean_function: MeanFunction,
14}
15
16impl Default for GaussianProcessSurrogate {
17    fn default() -> Self {
18        Self {
19            kernel: KernelFunction::RBF,
20            noise_variance: 1e-6,
21            mean_function: MeanFunction::Zero,
22        }
23    }
24}
25
26impl GaussianProcessSurrogate {
27    /// Simple predict method for compatibility
28    pub const fn predict(&self, _x: &[f64]) -> BayesianOptResult<(f64, f64)> {
29        // Simplified prediction - in practice would use trained model
30        // Returns (mean, variance)
31        Ok((0.0, 1.0))
32    }
33}
34
35/// Kernel functions for Gaussian processes
36#[derive(Debug, Clone, PartialEq, Eq)]
37pub enum KernelFunction {
38    /// Radial Basis Function (RBF) kernel
39    RBF,
40    /// Matern kernel
41    Matern,
42    /// Linear kernel
43    Linear,
44    /// Polynomial kernel
45    Polynomial,
46    /// Spectral mixture kernel
47    SpectralMixture,
48}
49
50/// Mean functions for Gaussian processes
51#[derive(Debug, Clone, PartialEq)]
52pub enum MeanFunction {
53    /// Zero mean function
54    Zero,
55    /// Constant mean function
56    Constant(f64),
57    /// Linear mean function
58    Linear,
59    /// Polynomial mean function
60    Polynomial { degree: usize },
61}
62
63/// Gaussian process hyperparameters
64#[derive(Debug, Clone)]
65pub struct GPHyperparameters {
66    pub length_scales: Vec<f64>,
67    pub signal_variance: f64,
68    pub noise_variance: f64,
69    pub mean_parameters: Vec<f64>,
70}
71
72impl Default for GPHyperparameters {
73    fn default() -> Self {
74        Self {
75            length_scales: vec![1.0],
76            signal_variance: 1.0,
77            noise_variance: 1e-6,
78            mean_parameters: vec![0.0],
79        }
80    }
81}
82
83/// Gaussian Process Model implementation
84#[derive(Debug, Clone)]
85pub struct GaussianProcessModel {
86    /// Training input data
87    pub x_train: Vec<Vec<f64>>,
88    /// Training output data
89    pub y_train: Vec<f64>,
90    /// GP configuration
91    pub config: GaussianProcessConfig,
92    /// Learned hyperparameters
93    pub hyperparameters: GPHyperparameters,
94    /// Precomputed kernel matrix inverse (for efficiency)
95    pub k_inv: Option<Vec<Vec<f64>>>,
96}
97
98impl GaussianProcessModel {
99    /// Create new Gaussian Process model
100    pub fn new(
101        x_train: Vec<Vec<f64>>,
102        y_train: Vec<f64>,
103        config: GaussianProcessConfig,
104    ) -> BayesianOptResult<Self> {
105        if x_train.len() != y_train.len() {
106            return Err(BayesianOptError::GaussianProcessError(
107                "Training inputs and outputs must have same length".to_string(),
108            ));
109        }
110
111        if x_train.is_empty() {
112            return Err(BayesianOptError::GaussianProcessError(
113                "Training data cannot be empty".to_string(),
114            ));
115        }
116
117        let input_dim = x_train[0].len();
118        let hyperparameters = GPHyperparameters {
119            length_scales: vec![1.0; input_dim],
120            signal_variance: 1.0,
121            noise_variance: config.noise_variance,
122            mean_parameters: vec![0.0],
123        };
124
125        let mut model = Self {
126            x_train,
127            y_train,
128            config,
129            hyperparameters,
130            k_inv: None,
131        };
132
133        // Fit the model (simple implementation)
134        model.fit()?;
135
136        Ok(model)
137    }
138
139    /// Fit the Gaussian Process model
140    pub fn fit(&mut self) -> BayesianOptResult<()> {
141        // Simple hyperparameter setting (in practice would optimize via ML-II)
142        self.optimize_hyperparameters()?;
143
144        // Precompute kernel matrix inverse for predictions
145        self.precompute_kernel_inverse()?;
146
147        Ok(())
148    }
149
150    /// Simple hyperparameter optimization (placeholder)
151    fn optimize_hyperparameters(&mut self) -> BayesianOptResult<()> {
152        let n = self.x_train.len();
153        if n == 0 {
154            return Ok(());
155        }
156
157        // Simple heuristic hyperparameter setting
158        let input_dim = self.x_train[0].len();
159
160        // Set length scales based on input ranges
161        for dim in 0..input_dim {
162            let values: Vec<f64> = self.x_train.iter().map(|x| x[dim]).collect();
163            let min_val = values.iter().fold(f64::INFINITY, |a, &b| a.min(b));
164            let max_val = values.iter().fold(f64::NEG_INFINITY, |a, &b| a.max(b));
165            let range = (max_val - min_val).max(1e-6);
166
167            self.hyperparameters.length_scales[dim] = range / 2.0;
168        }
169
170        // Set signal variance based on output variance
171        let mean_y = self.y_train.iter().sum::<f64>() / n as f64;
172        let var_y = self
173            .y_train
174            .iter()
175            .map(|&y| (y - mean_y).powi(2))
176            .sum::<f64>()
177            / n as f64;
178
179        self.hyperparameters.signal_variance = var_y.max(1e-6);
180
181        Ok(())
182    }
183
184    /// Precompute kernel matrix inverse for efficient predictions
185    fn precompute_kernel_inverse(&mut self) -> BayesianOptResult<()> {
186        let n = self.x_train.len();
187
188        // Compute kernel matrix
189        let mut k_matrix = vec![vec![0.0; n]; n];
190        for i in 0..n {
191            for j in 0..n {
192                k_matrix[i][j] = self.kernel(&self.x_train[i], &self.x_train[j]);
193                if i == j {
194                    k_matrix[i][j] += self.hyperparameters.noise_variance;
195                }
196            }
197        }
198
199        // Compute matrix inverse (simplified - in practice would use Cholesky decomposition)
200        let k_inv = self.matrix_inverse(k_matrix)?;
201        self.k_inv = Some(k_inv);
202
203        Ok(())
204    }
205
206    /// Simple matrix inverse implementation (for small matrices)
207    fn matrix_inverse(&self, mut matrix: Vec<Vec<f64>>) -> BayesianOptResult<Vec<Vec<f64>>> {
208        let n = matrix.len();
209
210        // Create augmented matrix [A|I]
211        let mut augmented = vec![vec![0.0; 2 * n]; n];
212        for i in 0..n {
213            for j in 0..n {
214                augmented[i][j] = matrix[i][j];
215            }
216            augmented[i][i + n] = 1.0;
217        }
218
219        // Gaussian elimination
220        for i in 0..n {
221            // Find pivot
222            let mut max_row = i;
223            for k in (i + 1)..n {
224                if augmented[k][i].abs() > augmented[max_row][i].abs() {
225                    max_row = k;
226                }
227            }
228
229            // Swap rows
230            if max_row != i {
231                augmented.swap(i, max_row);
232            }
233
234            // Check for singular matrix
235            if augmented[i][i].abs() < 1e-12 {
236                return Err(BayesianOptError::GaussianProcessError(
237                    "Singular kernel matrix".to_string(),
238                ));
239            }
240
241            // Scale row
242            let pivot = augmented[i][i];
243            for j in 0..(2 * n) {
244                augmented[i][j] /= pivot;
245            }
246
247            // Eliminate column
248            for k in 0..n {
249                if k != i {
250                    let factor = augmented[k][i];
251                    for j in 0..(2 * n) {
252                        augmented[k][j] -= factor * augmented[i][j];
253                    }
254                }
255            }
256        }
257
258        // Extract inverse matrix
259        let mut inverse = vec![vec![0.0; n]; n];
260        for i in 0..n {
261            for j in 0..n {
262                inverse[i][j] = augmented[i][j + n];
263            }
264        }
265
266        Ok(inverse)
267    }
268
269    /// Compute kernel function between two points
270    fn kernel(&self, x1: &[f64], x2: &[f64]) -> f64 {
271        match self.config.kernel {
272            KernelFunction::RBF => self.rbf_kernel(x1, x2),
273            KernelFunction::Matern => self.matern_kernel(x1, x2),
274            KernelFunction::Linear => self.linear_kernel(x1, x2),
275            KernelFunction::Polynomial => self.polynomial_kernel(x1, x2),
276            KernelFunction::SpectralMixture => self.rbf_kernel(x1, x2), // Fallback to RBF
277        }
278    }
279
280    /// RBF (Gaussian) kernel
281    fn rbf_kernel(&self, x1: &[f64], x2: &[f64]) -> f64 {
282        let mut distance_sq = 0.0;
283        for (i, (&xi, &xj)) in x1.iter().zip(x2.iter()).enumerate() {
284            let length_scale = self.hyperparameters.length_scales.get(i).unwrap_or(&1.0);
285            distance_sq += ((xi - xj) / length_scale).powi(2);
286        }
287
288        self.hyperparameters.signal_variance * (-0.5 * distance_sq).exp()
289    }
290
291    /// Matern kernel (simplified to Matern 3/2)
292    fn matern_kernel(&self, x1: &[f64], x2: &[f64]) -> f64 {
293        let mut distance = 0.0;
294        for (i, (&xi, &xj)) in x1.iter().zip(x2.iter()).enumerate() {
295            let length_scale = self.hyperparameters.length_scales.get(i).unwrap_or(&1.0);
296            distance += ((xi - xj) / length_scale).powi(2);
297        }
298        distance = distance.sqrt();
299
300        let sqrt3_r = 3.0_f64.sqrt() * distance;
301        self.hyperparameters.signal_variance * (1.0 + sqrt3_r) * (-sqrt3_r).exp()
302    }
303
304    /// Linear kernel
305    fn linear_kernel(&self, x1: &[f64], x2: &[f64]) -> f64 {
306        let dot_product: f64 = x1.iter().zip(x2.iter()).map(|(&xi, &xj)| xi * xj).sum();
307        self.hyperparameters.signal_variance * dot_product
308    }
309
310    /// Polynomial kernel
311    fn polynomial_kernel(&self, x1: &[f64], x2: &[f64]) -> f64 {
312        let dot_product: f64 = x1.iter().zip(x2.iter()).map(|(&xi, &xj)| xi * xj).sum();
313        self.hyperparameters.signal_variance * (1.0 + dot_product).powi(2)
314    }
315
316    /// Make prediction at new point
317    pub fn predict(&self, x: &[f64]) -> BayesianOptResult<(f64, f64)> {
318        let k_inv = self.k_inv.as_ref().ok_or_else(|| {
319            BayesianOptError::GaussianProcessError("Model not fitted".to_string())
320        })?;
321
322        // Compute kernel vector between x and training data
323        let k_star: Vec<f64> = self
324            .x_train
325            .iter()
326            .map(|x_train| self.kernel(x, x_train))
327            .collect();
328
329        // Compute mean prediction
330        let mut mean = 0.0;
331        for i in 0..self.y_train.len() {
332            for j in 0..self.y_train.len() {
333                mean += k_star[i] * k_inv[i][j] * self.y_train[j];
334            }
335        }
336
337        // Add mean function value
338        mean += self.mean_function_value(x);
339
340        // Compute variance prediction
341        let k_star_star = self.kernel(x, x);
342        let mut variance = k_star_star;
343
344        for i in 0..k_star.len() {
345            for j in 0..k_star.len() {
346                variance -= k_star[i] * k_inv[i][j] * k_star[j];
347            }
348        }
349
350        // Ensure non-negative variance
351        variance = variance.max(1e-12);
352
353        Ok((mean, variance))
354    }
355
356    /// Evaluate mean function
357    fn mean_function_value(&self, x: &[f64]) -> f64 {
358        match self.config.mean_function {
359            MeanFunction::Zero => 0.0,
360            MeanFunction::Constant(c) => c,
361            MeanFunction::Linear => {
362                // Simple linear mean: sum of coordinates
363                x.iter().sum::<f64>() * self.hyperparameters.mean_parameters.get(0).unwrap_or(&0.0)
364            }
365            MeanFunction::Polynomial { degree: _ } => {
366                // Simplified polynomial mean
367                let x_sum = x.iter().sum::<f64>();
368                x_sum * self.hyperparameters.mean_parameters.get(0).unwrap_or(&0.0)
369            }
370        }
371    }
372
373    /// Get marginal log-likelihood (for hyperparameter optimization)
374    pub fn log_marginal_likelihood(&self) -> BayesianOptResult<f64> {
375        let k_inv = self.k_inv.as_ref().ok_or_else(|| {
376            BayesianOptError::GaussianProcessError("Model not fitted".to_string())
377        })?;
378
379        let n = self.y_train.len();
380
381        // Compute y^T K^(-1) y
382        let mut quad_form = 0.0;
383        for i in 0..n {
384            for j in 0..n {
385                quad_form += self.y_train[i] * k_inv[i][j] * self.y_train[j];
386            }
387        }
388
389        // Compute log determinant (simplified - would use Cholesky in practice)
390        let log_det = self.log_determinant()?;
391
392        let log_likelihood = (0.5 * n as f64).mul_add(
393            -(2.0 * std::f64::consts::PI).ln(),
394            (-0.5f64).mul_add(quad_form, -(0.5 * log_det)),
395        );
396
397        Ok(log_likelihood)
398    }
399
400    /// Compute log determinant of kernel matrix (simplified)
401    fn log_determinant(&self) -> BayesianOptResult<f64> {
402        // Simplified computation - in practice would use Cholesky decomposition
403        let n = self.x_train.len();
404
405        // Rebuild kernel matrix to compute determinant
406        let mut k_matrix = vec![vec![0.0; n]; n];
407        for i in 0..n {
408            for j in 0..n {
409                k_matrix[i][j] = self.kernel(&self.x_train[i], &self.x_train[j]);
410                if i == j {
411                    k_matrix[i][j] += self.hyperparameters.noise_variance;
412                }
413            }
414        }
415
416        // Compute determinant via LU decomposition (simplified)
417        let mut det = 1.0;
418        for i in 0..n {
419            det *= k_matrix[i][i].max(1e-12);
420        }
421
422        Ok(det.ln())
423    }
424}