1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
use std::collections::VecDeque;
use std::fmt;

use crate::errors::*;
use crate::traits::{Close, Next, Reset};

/// Kaufman's Efficiency Ratio (ER).
///
/// It is calculated by dividing the price change over a period by the absolute sum of the price movements that occurred to achieve that change.
/// The resulting ratio ranges between 0.0 and 1.0 with higher values representing a more efficient or trending market.
///
/// # Parameters
///
/// * _length_ - number of periods (integer greater than 0)
///
/// # Example
///
/// ```
/// use quantaxis_rs::indicators::EfficiencyRatio;
/// use quantaxis_rs::Next;
///
/// let mut er = EfficiencyRatio::new(4).unwrap();
/// assert_eq!(er.next(10.0), 1.0);
/// assert_eq!(er.next(13.0), 1.0);
/// assert_eq!(er.next(12.0), 0.5);
/// assert_eq!(er.next(13.0), 0.6);
/// assert_eq!(er.next(18.0), 0.8);
/// assert_eq!(er.next(19.0), 0.75);
/// ```

pub struct EfficiencyRatio {
    length: u32,
    prices: VecDeque<f64>,
}

impl EfficiencyRatio {
    pub fn new(length: u32) -> Result<Self> {
        if length == 0 {
            Err(Error::from_kind(ErrorKind::InvalidParameter))
        } else {
            let indicator = Self {
                length: length,
                prices: VecDeque::with_capacity(length as usize + 1),
            };
            Ok(indicator)
        }
    }
}

impl Next<f64> for EfficiencyRatio {
    type Output = f64;

    fn next(&mut self, input: f64) -> f64 {
        self.prices.push_back(input);

        if self.prices.len() <= 2 {
            return 1.0;
        }

        let first = self.prices[0];

        // Calculate volatility
        let volatility = self
            .prices
            .iter()
            .skip(1)
            .fold((first, 0.0), |(prev, sum), &val| {
                (val, sum + (prev - val).abs())
            })
            .1;

        // Calculate direction
        let last_index = self.prices.len() - 1;
        let direction = (first - self.prices[last_index]).abs();

        // Get rid of the first element
        if self.prices.len() > (self.length as usize) {
            self.prices.pop_front();
        }

        // Return actual efficiency ratio
        direction / volatility
    }
}

impl<'a, T: Close> Next<&'a T> for EfficiencyRatio {
    type Output = f64;

    fn next(&mut self, input: &'a T) -> f64 {
        self.next(input.close())
    }
}

impl Reset for EfficiencyRatio {
    fn reset(&mut self) {
        self.prices.clear();
    }
}

impl Default for EfficiencyRatio {
    fn default() -> Self {
        Self::new(14).unwrap()
    }
}

impl fmt::Display for EfficiencyRatio {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "ER({})", self.length)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::test_helper::*;
    macro_rules! test_indicator {
        ($i:tt) => {
            #[test]
            fn test_indicator() {
                let bar = Bar::new();

                // ensure Default trait is implemented
                let mut indicator = $i::default();

                // ensure Next<f64> is implemented
                let first_output = indicator.next(12.3);

                // ensure next accepts &DataItem as well
                indicator.next(&bar);

                // ensure Reset is implemented and works correctly
                indicator.reset();
                assert_eq!(indicator.next(12.3), first_output);

                // ensure Display is implemented
                format!("{}", indicator);
            }
        };
    }
    test_indicator!(EfficiencyRatio);

    #[test]
    fn test_new() {
        assert!(EfficiencyRatio::new(0).is_err());
        assert!(EfficiencyRatio::new(1).is_ok());
    }

    #[test]
    fn test_next_f64() {
        let mut er = EfficiencyRatio::new(3).unwrap();

        assert_eq!(round(er.next(3.0)), 1.0);
        assert_eq!(round(er.next(5.0)), 1.0);
        assert_eq!(round(er.next(2.0)), 0.2);
        assert_eq!(round(er.next(3.0)), 0.0);
        assert_eq!(round(er.next(1.0)), 0.667);
        assert_eq!(round(er.next(3.0)), 0.2);
        assert_eq!(round(er.next(4.0)), 0.2);
        assert_eq!(round(er.next(6.0)), 1.0);

        er.reset();
        assert_eq!(round(er.next(3.0)), 1.0);
        assert_eq!(round(er.next(5.0)), 1.0);
        assert_eq!(round(er.next(2.0)), 0.2);
        assert_eq!(round(er.next(3.0)), 0.0);
    }

    #[test]
    fn test_display() {
        let er = EfficiencyRatio::new(17).unwrap();
        assert_eq!(format!("{}", er), "ER(17)");
    }
}