qrcode_rs/types.rs
1use crate::cast::As;
2use std::cmp::{Ordering, PartialOrd};
3use std::fmt::{Display, Error, Formatter};
4use std::ops::Not;
5
6//------------------------------------------------------------------------------
7//{{{ QrResult
8
9/// `QrError` encodes the error encountered when generating a QR code.
10#[derive(Debug, PartialEq, Eq, Copy, Clone)]
11pub enum QrError {
12 /// The data is too long to encode into a QR code for the given version.
13 DataTooLong,
14
15 /// The provided version / error correction level combination is invalid.
16 InvalidVersion,
17
18 /// Some characters in the data cannot be supported by the provided QR code
19 /// version.
20 UnsupportedCharacterSet,
21
22 /// The provided ECI designator is invalid. A valid designator should be
23 /// between 0 and 999999.
24 InvalidEciDesignator,
25
26 /// A character not belonging to the character set is found.
27 InvalidCharacter,
28}
29
30impl Display for QrError {
31 fn fmt(&self, fmt: &mut Formatter) -> Result<(), Error> {
32 let msg = match *self {
33 QrError::DataTooLong => "data too long",
34 QrError::InvalidVersion => "invalid version",
35 QrError::UnsupportedCharacterSet => "unsupported character set",
36 QrError::InvalidEciDesignator => "invalid ECI designator",
37 QrError::InvalidCharacter => "invalid character",
38 };
39 fmt.write_str(msg)
40 }
41}
42
43impl ::std::error::Error for QrError {}
44
45/// `QrResult` is a convenient alias for a QR code generation result.
46pub type QrResult<T> = Result<T, QrError>;
47
48//}}}
49//------------------------------------------------------------------------------
50//{{{ Color
51
52/// The color of a module.
53#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
54pub enum Color {
55 /// The module is light colored.
56 Light,
57 /// The module is dark colored.
58 Dark,
59}
60
61impl Color {
62 /// Selects a value according to color of the module. Equivalent to
63 /// `if self != Color::Light { dark } else { light }`.
64 ///
65 /// # Examples
66 ///
67 /// ```rust
68 /// # use qrcode_rs::types::Color;
69 /// assert_eq!(Color::Light.select(1, 0), 0);
70 /// assert_eq!(Color::Dark.select("black", "white"), "black");
71 /// ```
72 pub fn select<T>(self, dark: T, light: T) -> T {
73 match self {
74 Color::Light => light,
75 Color::Dark => dark,
76 }
77 }
78}
79
80impl Not for Color {
81 type Output = Self;
82 fn not(self) -> Self {
83 match self {
84 Color::Light => Color::Dark,
85 Color::Dark => Color::Light,
86 }
87 }
88}
89
90//}}}
91//------------------------------------------------------------------------------
92//{{{ Error correction level
93
94/// The error correction level. It allows the original information be recovered
95/// even if parts of the code is damaged.
96#[derive(Debug, PartialEq, Eq, Copy, Clone, PartialOrd, Ord)]
97pub enum EcLevel {
98 /// Low error correction. Allows up to 7% of wrong blocks.
99 L = 0,
100
101 /// Medium error correction (default). Allows up to 15% of wrong blocks.
102 M = 1,
103
104 /// "Quartile" error correction. Allows up to 25% of wrong blocks.
105 Q = 2,
106
107 /// High error correction. Allows up to 30% of wrong blocks.
108 H = 3,
109}
110
111//}}}
112//------------------------------------------------------------------------------
113//{{{ Version
114
115/// In QR code terminology, `Version` means the size of the generated image.
116/// Larger version means the size of code is larger, and therefore can carry
117/// more information.
118///
119/// The smallest version is `Version::Normal(1)` of size 21×21, and the largest
120/// is `Version::Normal(40)` of size 177×177.
121#[derive(Debug, PartialEq, Eq, Copy, Clone)]
122pub enum Version {
123 /// A normal QR code version. The parameter should be between 1 and 40.
124 Normal(i16),
125
126 /// A Micro QR code version. The parameter should be between 1 and 4.
127 Micro(i16),
128}
129
130impl Version {
131 /// Get the number of "modules" on each size of the QR code, i.e. the width
132 /// and height of the code.
133 pub fn width(self) -> i16 {
134 match self {
135 Version::Normal(v) => v * 4 + 17,
136 Version::Micro(v) => v * 2 + 9,
137 }
138 }
139
140 /// Obtains an object from a hard-coded table.
141 ///
142 /// The table must be a 44×4 array. The outer array represents the content
143 /// for each version. The first 40 entry corresponds to QR code versions 1
144 /// to 40, and the last 4 corresponds to Micro QR code version 1 to 4. The
145 /// inner array represents the content in each error correction level, in
146 /// the order [L, M, Q, H].
147 ///
148 /// # Errors
149 ///
150 /// If the entry compares equal to the default value of `T`, this method
151 /// returns `Err(QrError::InvalidVersion)`.
152 pub fn fetch<T>(self, ec_level: EcLevel, table: &[[T; 4]]) -> QrResult<T>
153 where
154 T: PartialEq + Default + Copy,
155 {
156 match self {
157 Version::Normal(v @ 1..=40) => {
158 return Ok(table[(v - 1).as_usize()][ec_level as usize]);
159 }
160 Version::Micro(v @ 1..=4) => {
161 let obj = table[(v + 39).as_usize()][ec_level as usize];
162 if obj != T::default() {
163 return Ok(obj);
164 }
165 }
166 _ => {}
167 }
168 Err(QrError::InvalidVersion)
169 }
170
171 /// The number of bits needed to encode the mode indicator.
172 pub fn mode_bits_count(self) -> usize {
173 if let Version::Micro(a) = self {
174 (a - 1).as_usize()
175 } else {
176 4
177 }
178 }
179
180 /// Checks whether is version refers to a Micro QR code.
181 pub fn is_micro(self) -> bool {
182 matches!(self, Version::Micro(_))
183 }
184}
185
186//}}}
187//------------------------------------------------------------------------------
188//{{{ Mode indicator
189
190/// The mode indicator, which specifies the character set of the encoded data.
191#[derive(Debug, PartialEq, Eq, Copy, Clone)]
192pub enum Mode {
193 /// The data contains only characters 0 to 9.
194 Numeric,
195
196 /// The data contains only uppercase letters (A–Z), numbers (0–9) and a few
197 /// punctuations marks (space, `$`, `%`, `*`, `+`, `-`, `.`, `/`, `:`).
198 Alphanumeric,
199
200 /// The data contains arbitrary binary data.
201 Byte,
202
203 /// The data contains Shift-JIS-encoded double-byte text.
204 Kanji,
205}
206
207impl Mode {
208 /// Computes the number of bits needed to encode the data length.
209 ///
210 /// use qrcode_rs::types::{Version, Mode};
211 ///
212 /// assert_eq!(Mode::Numeric.length_bits_count(Version::Normal(1)), 10);
213 ///
214 /// This method will return `Err(QrError::UnsupportedCharacterSet)` if the
215 /// mode is not supported in the given version.
216 pub fn length_bits_count(self, version: Version) -> usize {
217 match version {
218 Version::Micro(a) => {
219 let a = a.as_usize();
220 match self {
221 Mode::Numeric => 2 + a,
222 Mode::Alphanumeric | Mode::Byte => 1 + a,
223 Mode::Kanji => a,
224 }
225 }
226 Version::Normal(1..=9) => match self {
227 Mode::Numeric => 10,
228 Mode::Alphanumeric => 9,
229 Mode::Byte | Mode::Kanji => 8,
230 },
231 Version::Normal(10..=26) => match self {
232 Mode::Numeric => 12,
233 Mode::Alphanumeric => 11,
234 Mode::Byte => 16,
235 Mode::Kanji => 10,
236 },
237 Version::Normal(_) => match self {
238 Mode::Numeric => 14,
239 Mode::Alphanumeric => 13,
240 Mode::Byte => 16,
241 Mode::Kanji => 12,
242 },
243 }
244 }
245
246 /// Computes the number of bits needed to some data of a given raw length.
247 ///
248 /// use qrcode_rs::types::Mode;
249 ///
250 /// assert_eq!(Mode::Numeric.data_bits_count(7), 24);
251 ///
252 /// Note that in Kanji mode, the `raw_data_len` is the number of Kanjis,
253 /// i.e. half the total size of bytes.
254 pub fn data_bits_count(self, raw_data_len: usize) -> usize {
255 match self {
256 Mode::Numeric => (raw_data_len * 10 + 2) / 3,
257 Mode::Alphanumeric => (raw_data_len * 11 + 1) / 2,
258 Mode::Byte => raw_data_len * 8,
259 Mode::Kanji => raw_data_len * 13,
260 }
261 }
262
263 /// Find the lowest common mode which both modes are compatible with.
264 ///
265 /// use qrcode_rs::types::Mode;
266 ///
267 /// let a = Mode::Numeric;
268 /// let b = Mode::Kanji;
269 /// let c = a.max(b);
270 /// assert!(a <= c);
271 /// assert!(b <= c);
272 ///
273 #[must_use]
274 pub fn max(self, other: Self) -> Self {
275 match self.partial_cmp(&other) {
276 Some(Ordering::Greater) => self,
277 Some(_) => other,
278 None => Mode::Byte,
279 }
280 }
281}
282
283impl PartialOrd for Mode {
284 /// Defines a partial ordering between modes. If `a <= b`, then `b` contains
285 /// a superset of all characters supported by `a`.
286 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
287 match (self, other) {
288 (a, b) if a == b => Some(Ordering::Equal),
289 (Mode::Numeric, Mode::Alphanumeric) | (_, Mode::Byte) => Some(Ordering::Less),
290 (Mode::Alphanumeric, Mode::Numeric) | (Mode::Byte, _) => Some(Ordering::Greater),
291 _ => None,
292 }
293 }
294}
295
296#[cfg(test)]
297mod mode_tests {
298 use crate::types::Mode::{Alphanumeric, Byte, Kanji, Numeric};
299
300 #[test]
301 fn test_mode_order() {
302 assert!(Numeric < Alphanumeric);
303 assert!(Byte > Kanji);
304 assert!(!(Numeric < Kanji));
305 assert!(!(Numeric >= Kanji));
306 assert!(Numeric.partial_cmp(&Kanji).is_none());
307 }
308
309 #[test]
310 fn test_max() {
311 assert_eq!(Byte.max(Kanji), Byte);
312 assert_eq!(Numeric.max(Alphanumeric), Alphanumeric);
313 assert_eq!(Alphanumeric.max(Alphanumeric), Alphanumeric);
314 assert_eq!(Numeric.max(Kanji), Byte);
315 assert_eq!(Kanji.max(Numeric), Byte);
316 assert_eq!(Alphanumeric.max(Numeric), Alphanumeric);
317 assert_eq!(Kanji.max(Kanji), Kanji);
318 }
319}
320
321//}}}